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Abstract: Accurate and reliable calibration methods are required when applying unmanned aerial
vehicle (UAV)-based thermal remote sensing in precision agriculture for crop stress monitoring,
irrigation planning, and harvesting. The primary objective of this study was to improve
the calibration accuracies of UAV-based thermal images using temperature-controlled ground
references. Two temperature-controlled ground references were installed in the field to serve as
high- and low-temperature references, approximately spanning the expected range of crop surface
temperatures during the growing season. Our results showed that the proposed method using
temperature-controlled references was able to reduce errors due to ambient conditions from 9.29 to
1.68 ◦C, when tested with validation panels. There was a significant improvement in crop temperature
estimation from the thermal image mosaic, as the error reduced from 14.0 ◦C in the un-calibrated
image to 1.01 ◦C in the calibrated image. Furthermore, a multiple linear regression model (R2 = 0.78;
p-value < 0.001; relative RMSE = 2.42%) was established to quantify soil moisture content based on
canopy surface temperature and soil type, using UAV-based thermal image data and soil electrical
conductivity (ECa) data as the predictor variables.

Keywords: unmanned aerial vehicles; thermal remote sensing; temperature-controlled ground
references; crop surface temperature; temperature calibration

1. Introduction

Remote sensing of plant temperatures has been used in breeding for the identification of traits
related to disease resistance [1,2], water stress tolerance [1,3], and tolerance to other biotic and abiotic
stresses [1–4]. It has also been used to support on-farm decision making in conjunction with maps of
soil moisture [5], soil texture [5], and crop yield [5], as well as irrigation and nitrogen statuses [6].

Most of the plant canopy and soil temperature measurements currently employed use contact
probes or thermometers [7–9] and non-contact type hand-held infrared thermometers [10–13].
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Brinkhoff et al. [7] presented the use of multisensory capacitance probes for the simultaneous
monitoring of ponded water level, soil moisture, and temperature profile for soil water content
monitoring and irrigation scheduling. The contact probes showed good performance in terms of cost,
accuracy, and reliability; however, it is time-consuming and labor-intensive and thus excessively costly
if it needs to be repeated multiple times in a season. Wang et al. [13] proposed using an inexpensive
infrared optical sensor for reliable and precise canopy temperature measurements in a large rice field;
however, errors due to environmental effects were not considered in the study, and because these
non-contact sensors were also non-imaging sensors, they had low spatial detail and did not provide
much information about variability across the field. It is possible to extract field variability and crop
status information via satellite and aerial thermal remote sensing [14–17] by analyzing the spatial
temperature patterns from images. However, thermal image data acquired with unmanned aerial
vehicles (UAVs) may be more effective for agronomic applications because of their potentially higher
temporal and spatial resolutions [18–21].

UAV-based thermal remote sensing of agricultural fields has been tested for a wide range of
applications thus far, including irrigation scheduling [20], plant disease detection [21], water status
assessment [22], fruit or crop maturity evaluation [23,24], bruise detection in fruits and vegetables [25,26],
and other applications involving agricultural decision making. Möller et al. [27] demonstrated that
fusing thermal and visible images could improve the accuracy of physiological feature measurements
such as stem water potential and stomatal conductance in vineyards. However, thermal imaging
has remained underexploited for high-throughput phenotyping [28–30]. Further, the temperature
measurements are error-prone, even though thermal camera manufacturers provide software
applications to perform the necessary radiometric calibrations (e.g., IR-Flash by ICI), and precise
adjustments for atmospheric errors cannot be performed. Therefore, correcting for atmospheric effects
in UAV imagery is very important, yet remains a challenging process [31,32].

For more accurate temperature estimation and removal of atmospheric errors when using
thermal cameras, calibrations must be performed based on black-body [33–35] or known ground
references [36–38]. The calibrations of laboratory instruments involve using the instruments to measure
reference objects in the same manner as the experimental samples. Then, the instrument responses are
adjusted electronically to provide appropriate outputs, or the software used to process the instrument
outputs are adjusted so that data from the instrument are corrected based on calibration parameters.
Doing so corrects for the effects of sensor errors and atmospheric distortions. Ribeiro-Gomes et al. [39]
proposed a calibration method for uncooled thermal cameras based on a neural network with the
sensor temperature and digital response of each pixel as the input data; when calibrating with this
methodology, the measurement error was reduced from approximately 4.0 ◦C to 1.5 ◦C. Jensen et al. [40]
demonstrated two methods to calibrate thermal imagery and model external disturbances affecting
camera accuracy. One method involved a ground-based thermal camera mounted on a long boom
to capture high-resolution samples of the field temperature, which were then used to calibrate the
aerial mosaic. The other method involved using cool and warm pools of water that were actively
controlled by pumping into a heat-transfer reservoir, which was then used for calibrating the aerial
thermal images. The pools-based method had the best residual norm of 1.6, closely followed by the
ground-based thermal camera method with a residual norm of 1.96. However, it was difficult to
choose the more accurate method between these two without sample temperature measurements from
the field for ground truth. Moreover, the demonstrated methods are cumbersome and most likely
impractical on farms if this process must occur multiple times during a growing season. Kelly et al. [41]
used a simple empirical line calibration method based on three ground calibration panels composed
of wooden frames with different colors to produce a wide temperature range; this method allowed
converting digital numbers from a camera to temperature values for images captured during UAV
flights, with an accuracy of ±5 ◦C and substantial improvements over temperature estimates within a
±20 ◦C error range, in the case of thermal images obtained without effective radiometric calibrations.
However, the uncontrolled temperature calibration panels were not able to span the expected range
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of crop surface temperatures during the summer growing season and did not achieve significant
improvements in temperature calibration over the UAV-based thermal data to provide accurate
temperature measurements.

While past studies used various calibration methods, such as collecting ground-level sample
data with IR thermometers and probes before or after flights, there is a dearth of research on using
temperature-controlled ground references for more accurate temperature estimates from thermal
images. Jensen et al. [40] and Kelly et al. [41] focused on temperature calibration methods for aerial
thermal images, and their results illustrated that calibration systems based on ground references
showed improved and potentially acceptable accuracies and performances at some level. However,
there is still room to improve the ground-temperature reference designs for robustness and stability,
as well as a need to evaluate the calibration accuracies with these methods.

It is clear that the accuracies of thermal image data acquired from UAVs could greatly benefit
from thermal references on the ground. However, the methods used in prior research were
not adapted for farming operations or even large research programs, as they lacked stability
under dynamically varying temperature conditions. Thus, the goal of the present research is to
demonstrate the possibility of calibrating UAV-based thermal images with practical implementation
of electronics-based temperature-controlled ground references to improve the accuracy compared to
existing methods [39–41]. The specific objectives of this study were (1) to develop ground temperature
references with appropriate dynamic ranges for plant temperature measurements in the field for
precise calibration of UAV thermal images; (2) to evaluate the benefits of using the proposed ground
temperature references for calibrating surface temperatures in terms of accuracy improvements;
and (3) to determine the relationships between UAV-based canopy temperature estimates and soil
characteristics to demonstrate the importance of accurate canopy-temperature data, since soil moisture
content is a primary factor affecting farm productivity owing to its influence on plant growth,
microbial activity, irrigation management, and water-use efficiency [42,43].

2. Materials and Methods

2.1. Equipment

2.1.1. UAV Platform and Camera

Thermal images were acquired using a rotary-wing UAV (Matrice 600 Pro, DJI, Guangdong,
China; Figure 1), which was autonomously controlled along a predefined flight path with Pix4Dcapture
mission planning software (Pix4D SA, Lausanne, Switzerland). The UAV has a maximum payload of
6 kg and was equipped with a thermal camera (ICI 8640 P-series, Infrared Cameras Inc., Beaumont,
TX, USA) mounted on a three-axis gimbal to stabilize the images acquired during flight. The thermal
camera produced 640 × 512 resolution images and was pre-calibrated by the manufacturer, and the
temperature data were embedded in Celsius and Kelvin units in each pixel as calibrated temperature
values of 16-bit and 32-bit tiff images, respectively.

2.1.2. Temperature-Controlled References

Both the temperature-controlled reference measurements were based on a 61 × 61 cm square
aluminum plate. These were chosen to provide at least 40 pixels in the aerial thermal images when the
camera was flown 40 m above the ground level (AGL). One reference served as a high-temperature
reference and was equipped with temperature sensors, thermoelectric (TE) modules, and an integrated
heating controller. The other reference served as a low-temperature reference and was equipped
with temperature sensors, cooling fans, and an integrated cooling controller (Figure 2). Nine TE
modules (Watronix, CA, USA) and nine temperature sensors (Droking, Guangdong, China) were
uniformly distributed across both the references. To dissipate heat efficiently in the low-temperature
reference panel, cooling fans (ARCTIC, Brunswick, Germany) were mounted atop each TE module.
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The circuit system comprised a heating reference circuit and a cooling reference circuit; its schematic
diagram is shown in Figure 3. Nine high- and nine low-temperature microcontroller modules (Droking,
Guangdong, China) were connected in parallel for both the high- and low-temperature references.
The temperature sensors that produce continuous analog output signals were directly connected to
analog channels of the microcontroller modules; the TE modules and cooling fans that connect to digital
channels of the microcontroller modules were actuated with digital signal processing. The surface
temperatures of both references were controlled with the nine microcontroller modules powered by a
12 V, 310 Ah rechargeable battery, based on a closed-loop temperature control method to accurately
control and maintain temperature during the process (Figure 4). The control method, which is an
efficient method for various industrial processes, contains a feedback loop in which the control system
receives analog signals measured from the corresponding temperature sensors and develops a response
to achieve temperature stability. The reference temperatures in the low and high reference controllers
were set to 20 and 50 ◦C, respectively, based on the capacity of the battery to span the expected range
of crop surface temperatures during the summer growing season.
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2.2. Field Methods

2.2.1. Test Site

Experiments were conducted in a winter wheat field at the Texas A&M AgriLife research farm
(headquarters at latitude 30.549635 N, longitude 96.436821 W in WGS-84 coordinate system) near
College Station, TX, USA. The total field area covered during the experimental flight was 6000 m2 and
included 300 wheat plots arranged in 20 rows of 5 × 2 m each (Figure 5). The row spacing for each plot
was 0.18 m. A total of fifty uniform varietal trial genotypes (hard red and soft red winter wheat) with
six replicates were planted in a randomized complete block design across the field on 30 October 2018,
and six ground-control points (GCPs) were distributed across the field to increase the geographical
accuracy of the temperature map. The ambient temperature at the time of data collection on 6 March
2019 was approximately 15.6 ◦C.
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2.2.2. Flight Procedures

The UAV flight mission combined with a 12.5 mm focal length of the thermal camera was carried
out at solar noon with no cloud cover. The thermal camera system was powered on in advance for
more than half an hour for warming up before UAV-based thermal image collection to produce stable
temperature readings. The UAV was flown at 40 m AGL with a flight speed of 2.5 m/s to provide a
ground resolution of approximately 5 cm/pixel and involved a grid pattern with back-and-forth flight
lines that had the UAV pass three times over the test equipment at the side of the field. Image overlap
was set to 80% in both the forward and sideward directions, and the camera was triggered at a
predefined trigger interval of 2 s with flight speed calculated to achieve the desired overlap.

2.2.3. Temperature Validation Tests

To investigate the benefit of calibrating the thermal image mosaic with field-based references, the
temperature-controlled references, which were supported on metal stands, were placed on a flat road
next to the test field (Figure 6). The temperature-controlled references were powered on 6 min before
the UAV flight to achieve stable surface temperatures, and continuous power supply was maintained
over the entire duration of the flight. Validation panels were installed next to the temperature references
for comparisons between the ground-measured temperatures of the panels and those obtained from
the temperature-corrected thermal image mosaics. These validation panels consisted of three sets of
three-colored (light gray, 50% reflectance; medium gray, 25% reflectance; dark gray, 50% reflectance)
square panels of dimensions 61 × 61 cm placed at three tilt angles (0, 30◦, SE; 60◦, NE) to impose
temperature variations due to relative sun angles. Temperature calibration of the thermal image
mosaic was implemented by (1) extracting the median pixel values from the high- and low-temperature
references, (2) creating a linear equation to relate the pixel values to known temperatures of the
references, and (3) calibrating all other pixels in the image mosaic with this equation.

The effectiveness of the proposed temperature calibration method was evaluated by comparing
the corrected and uncorrected thermal image mosaics with temperatures measured using a Handheld
Infrared Radiometer (MI-220, Apogee Instruments Inc., Logan, UT, USA). The measurement targets
included the aforementioned validation panels and the five randomly selected wheat plots from specific
regions of interests (ROIs, solid blue blocks in Figure 5) in the test field. Temperature measurements of
the five different sample locations in each plot were averaged immediately after UAV flight at solar
noon on a clear sunny day and later compared to the corresponding sample averages for the calibrated
and un-calibrated thermal image mosaics. The mean, root-mean-squared error (RMSE; Equation (1)),
relative RMSE (Equation (2)), and RMSE improvement (Equation (3)) were calculated for each case.

RMSE =

√∑n
i=1(yi − ŷi)

2

n− 1
(1)
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Relative RMSE =
RMSE

yi
× 100% (2)

RMSE Improvement =
|RMSEuncalibrated −RMSEcalibrated|

RMSEuncalibrated
× 100% (3)

where yi and ŷi are the measured and predicted data, respectively, yi is the mean of the measured
value, and n is the total number of samples.

2.3. Image Data Processing

2.3.1. Ortho-Mosaicking Process

Prior to image mosaicking, radiometric calibrations of the individual thermal images were
performed with the IR-Flash software provided by the camera manufacturer. The software used
an internal factor to convert the digital values in JPEG format images to radiometric temperature
values (◦C) stored in the 16-bit tiff format. The geotagging of the thermal images was completed
through matching timestamps of individual images along with that of the GPS information.
The georeferenced 2D ortho-mosaic of the thermal images was then obtained from 3D point clouds
generated through structure-from-motion with Pix4Dmapper (Pix4D SA, Lausanne, Switzerland)
software. Georeferencing was performed for the image mosaic with GCP coordinates surveyed using a
real-time kinematic (RTK) global positioning system (GPS) receiver with <2 cm accuracy.
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2.3.2. Temperature Calibration

As previously noted in the introduction, radiometric calibrations conducted with the IR-Flash
software do not comprehensively account for the influences of air temperature, ambient humidity,
target object emissivity, and temperatures of the surrounding objects, which can induce errors in aerial
temperature measurements of the vegetation [44–46]. Thus, the temperature-controlled references were
deployed to remove the errors induced by ambient conditions to render the radiometric temperature
values in the thermal mosaic as close as possible to the actual surface temperatures on the ground.

2.3.3. Correlation Analysis between Canopy Temperature and Soil Properties

Twenty-four representative plots were selected from the mosaicked field image to study the
correlation between canopy surface temperature of the winter wheat genotypes planted and properties
of the underlying soil. ENVI 5.1 software (Harris Geospatial Solutions, Boulder, CO, USA) was
used to obtain data from specific ROIs (solid yellow blocks in Figure 5). A 15 cm buffer was used
to exclude areas along the perimeters of the wheat plots in the ROIs to avoid edge effects between
the genotypes that might be caused by foliage encroachments from adjacent plots. Soil volumetric
moisture contents were collected in the selected 24 plots using a ML3 Theta probe and HH2 moisture
meter (Delta-T devices, Burwell, Cambridge, UK) immediately after the UAV flight. One measurement
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per plot at 6 cm soil depth was collected; it is commonly accepted that soil moisture in the top horizons
of the soil is most important for many crops and significantly affected by temperature, especially when
the plots have plants with fibrous root systems at the early growth stage and less vegetation cover
or soil surface exposed to incident solar radiation [47–49]. The ML3 Theta probe was provided with
calibration for mineral and organic soil that can convert sensor output for soil moisture content (m3/m3)
when connected with the HH2 moisture meter. Additionally, an EM38-MK2 electromagnetic induction
meter (Geonics Limited, Mississauga, ON, Canada), which is a proximal non-contact electromagnetic
induction sensor, was used to measure the apparent soil electrical conductivity (ECa in units of
mS/m) for in-field soil variability assessment two months after germination. To prevent any drift
in data, pre-noon time of a partly cloudy day was selected for measurement. Finally, the ability of
the UAV-based thermal remote sensing approach to provide information on spatial variations in soil
properties across the field was investigated. A multiple linear regression model was developed to
estimate the soil moisture content based on canopy surface temperature from the UAV thermal image
and soil ECa from the EM38.

3. Results and Discussion

3.1. Temperature-Controlled References

Figure 7 shows the observed changes in the surface temperatures of the high and low references
from the time of placement in the field to the end of the UAV flight. The high-temperature reference
required at least 6.8 min to warm-up and maintain a stable temperature, while the time required for the
low-temperature reference was approximately 4.4 min, which is shorter because of the cool weather
during the experiment. After temperature stabilization, low standard deviations from the set values
were observed (0.51 and 0.63 ◦C for the high- and low-temperature references, respectively). The high
and low ground reference temperatures spanned the range of temperatures present in the field at the
time of data collection. The experiment was conducted during winter when the ambient temperature
was low, so the observed canopy temperatures were closer to the low reference temperature (20 ◦C).
While the reference temperatures used in this study were chosen for summer conditions, they can be
modified in the future to improve calibration accuracy during colder weather conditions. Therefore,
the reference high- and low-temperatures should be set based on the expected maximum deviation
from ambient temperature during the experiment day, as canopy temperatures measured with an
infrared thermometer are highly related to ambient temperature in both stressed and non-stressed
crops [50,51].
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3.2. Temperature Accuracy Assessments

UAV thermal-image-based temperature estimates from both the un-calibrated and calibrated
mosaics had strong linear relationships (R2 = 0.98) with ground measurements from the validation
panels (Figure 8). Calibrating the data greatly reduced the RMSE values from 9.29 to 1.68 ◦C. Thus,
the trend line from the calibrated data was much closer to the 1:1 ground-truth line (dotted line) than
the un-calibrated trend line, as the IR transmission losses (scattering and diffusion) due to ambient
and atmospheric effects were mitigated in the calibration process. Therefore, the proposed calibration
method, based on the temperature-controlled references in the field, shows promise for greatly reducing
the inherent errors of surface temperature data from aerial thermal images. As darker objects are
known to absorb more thermal energy, the surface temperatures of the dark gray validation panels
were highest, followed by those of the medium and light gray panels. Further, temperature values
obtained from the panels with 60◦ tilt were the lowest among panels of the same color but with
lesser tilts. However, the temperature values obtained from the panels with 30◦ tilt were higher than
those from the 0◦ tilt. A likely reason for the low temperatures from panels with 60◦ tilt is that a
lesser surface area was exposed to solar energy at the given solar angle. Furthermore, since the sun
was not at the exact solar noon position at the time of the UAV flight, the panels with 30◦ tilt had
relatively more surface area perpendicularly intercepting the radiation than panels at 0 or 60◦ tilt.
These observations emphasize the effects of leaf angles on leaf temperatures; for example, leaves with
vertical orientations are found to have lower surface temperatures [52,53]. Overall, the results of this
test indicate that the proposed calibration method with temperature-controlled references can greatly
improve surface temperature estimation, while caution should be exercised as to the orientation of
the ground objects, such as individual leaf surfaces, because leaf angles and orientations have strong
effects on temperature measurements.

The mean values of the ground-truth temperature measurements from the wheat plots were
between 15.24 ◦C and 16.16 ◦C (Table 1). The un-calibrated thermal images provided inaccurate
estimates, with mean values ranging from 1.52 to 3.56 ◦C, and thereby large RMSE values. In general,
un-calibrated crop temperature estimates were unreliable, as the optimal leaf-temperature range for most
plants is from 15 to 36 ◦C under normal atmospheric concentrations of CO2 [54,55]. In contrast, the means
of the estimates from the calibrated thermal images ranged from 15.28 to 17.02 ◦C and were thus closer
to the ground-truth measurements. Overall, the calibrations reduced the ranges of RMSEs for plant
temperature estimations from 12.6 to 14.0 ◦C and for un-calibrated data to 0.41 to 1.01 ◦C. As mentioned
previously, Kelly et al. [41] calibrated temperatures with an accuracy range of ±5 ◦C, up to ±20 ◦C for
the influence of temperature estimates under changing ambient conditions. The calibration results
from using the temperature-controlled references demonstrated that it is a more stable and repeatable
calibration method for correcting atmospheric noises in UAV-based thermal remote sensing. From a
production-agriculture point of view, this improvement in temperature accuracy of thermal remote
sensing has important implications for on-farm decision making, including irrigation scheduling [56,57],
plant disease detection [58,59], soil property mapping [60,61], and yield estimation [62,63]. Since the
temperatures estimated by thermal infrared imagery could be significantly different at different UAV
flight heights [64], further research is needed to compare the performances of crop temperature
estimates at different flight heights based on the temperature-controlled references.
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Table 1. Temperature errors between the un-calibrated and calibrated data with temperature-
controlled references.

Site Item * Mean (◦C) RMSE (◦C) Relative RMSE (%) Improvement (%)

GTT 16.16 N/A N/A
Location 1 UCT 3.56 12.60 78.0 92.0

CCT 17.02 1.01 6.30

GTT 15.56 N/A N/A
Location 2 UCT 2.73 12.83 82.50 94.2

CCT 16.31 0.75 4.80

GTT 15.80 N/A N/A
Location 3 UCT 2.12 13.68 86.60 97.7

CCT 15.78 0.32 2.00

GTT 16.28 N/A N/A
Location 4 UCT 2.28 14.00 86.00 94.0

CCT 15.93 0.82 5.20

GTT 15.24 N/A N/A
Location 5 UCT 1.52 13.72 90.00 97.0

CCT 15.28 0.41 2.70

* GTT: ground-truth temperature, UCT: un-calibrated crop temperature, CCT: calibrated crop temperature.

3.3. Correlation Analysis between Canopy Surface Temperature and Soil Properties

Multiple linear regression between the predictor variables (UAV-based canopy temperature
and soil ECa) and soil moisture produced a good fit (R2 = 0.78; p-value < 0.001), suggesting good
ability to estimate soil moisture content in the wheat field under study (Figure 9). A small amount
of variation in the canopy temperature (13.8 to 16.7 ◦C) existed across the field because the crops
grew under well-watered conditions, indicating that the R2 value could be improved if the range of
canopy temperatures across the field was greater, as may be encountered in non-irrigated conditions.
Moreover, the multiple linear regression equation suggests that soil moisture content was negatively
correlated with both canopy temperature and soil ECa, a finding that is consistent with results from other
studies [65–68]. It was expected that a practical method for producing accurate canopy-temperature data
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across a field, which could be used for irrigation scheduling during the growing season, would enable
estimating the soil moisture content with an acceptable level of accuracy (relative RMSE = 2.42%),
if soil ECa data are practically available in farmland areas based on the proposed method of field-based
calibration of UAV thermal images. It is notable that the canopy surface temperatures obtained from the
UAV measurements were close to but lower than the low reference temperature of 20 ◦C, which was the
lowest achievable temperature on the temperature-controlled references in the outdoor environment.
Thus, further research must be conducted to improve the correlation and validate linearity between
canopy surface temperature and soil properties by modifying the low-temperature reference to span
the range of temperatures present in the field, for both summer and winter conditions.Sensors 2020, 20, x FOR PEER REVIEW 11 of 15 
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4. Conclusions

A ground-based system of temperature-controlled references was developed to improve
the temperature calibration accuracy of UAV-based thermal images obtained from 40 m AGL.
The closed-loop temperature control method, applied to both the low- and high-temperature
references, was able to provide stable reference temperatures for the entire duration of the UAV
flight. The standard deviations from the high- and low-temperature setpoints were 0.51 and 0.63 ◦C,
respectively, after temperature stabilization. The RMSE values were reduced after calibration from a
maximum of 14 to 0.82 ◦C, suggesting a 94% improvement in temperature estimation from thermal
image mosaics. Overall, the results of this study indicate that the proposed thermal calibration method
using temperature-controlled references can provide reasonable accuracy and precision for canopy
temperature estimation. Furthermore, a multiple linear regression model showed that UAV-based
canopy temperature estimates along with soil ECa data can be used to estimate soil moisture content
with an acceptable level of accuracy (R2 = 0.78; p-value < 0.001; relative RMSE = 2.42%). In the
future, the proposed temperature-controlled references should be evaluated to determine whether
images captured from different flight heights show the calibration method to be repeatable when
at different heights with different wind and environmental conditions [69]. Furthermore, since the
current reference temperature range was designed to cover canopy temperatures during summer
conditions, the power supply and method of setting reference temperatures, particularly with the
low-temperature reference, need modification so as to span the range of temperatures present in the
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field for winter conditions, which consequently should improve the performance of the multiple linear
regression model.
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