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Simple Summary: DNA repair deficiency (DRD) is common in many cancers. This deficiency
contributes to pathogenesis of the disease, but it also presents an opportunity for therapeutic targeting.
However, current DRD identification assays are not available for all patients. We propose an efficient
machine learning algorithm which can predict DRD from histopathological images. The utility of our
method was shown by considering the detection of homologous recombination deficiency (HRD)
and mismatch repair deficiency (MMRD) in breast and gastric cancer respectively. Our findings
demonstrate that machine-learning approaches can be used in advanced applications to assist
therapy decisions.

Abstract: DNA repair deficiency (DRD) is an important driver of carcinogenesis and an efficient
target for anti-tumor therapies to improve patient survival. Thus, detection of DRD in tumors is
paramount. Currently, determination of DRD in tumors is dependent on wet-lab assays. Here we
describe an efficient machine learning algorithm which can predict DRD from histopathological
images. The utility of this algorithm is demonstrated with data obtained from 1445 cancer patients.
Our method performs rather well when trained on breast cancer specimens with homologous
recombination deficiency (HRD), AUC (area under curve) = 0.80. Results for an independent breast
cancer cohort achieved an AUC = 0.70. The utility of our method was further shown by considering
the detection of mismatch repair deficiency (MMRD) in gastric cancer, yielding an AUC = 0.81.
Our results demonstrate the capacity of our learning-base system as a low-cost tool for DRD detection.
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1. Introduction

DNA repair mechanisms have evolved to efficiently deal with various types of DNA damage from
endogenous and/or exogenous sources. Independent of the source, however, DNA repair mechanisms
are essential for maintaining genomic integrity in cells [1]. In certain human pathologies such as
cancer, disruption of repair pathways lead to genomic instability which underlies the condition.
Thus, repair pathways can also represent efficient targets for anti-tumor therapies [2]. In particular,
the homologous recombination (HR) repair pathway plays a key role in maintaining genomic stability
by driving high fidelity repair of double-stranded DNA breaks (DSBs) [3]. It has been documented that
loss of function (LOF) mutations in genes involved in DSB repair via HR, such as BRCA1 and BRCA2,
confer breast and ovarian cancer susceptibility [4]. Correspondingly, tumors deficient in HR repair
(HRD) are the most common forms of hereditary breast and ovarian cancer [4]. While HR-defective
tumors have been found to be enriched in breast cancer cases, recent studies have demonstrated
that other sporadic cancers share molecular and phenotypic characteristics of BRCA-mutant tumors,
a concept termed as “BRCAness” [4,5]. An ability to stratify these tumors would have significant
implications for cancer risk, treatment strategies, and patient survival [2–6].

Currently, biomarkers for HRD are used to identify tumors with events beyond germline or
somatic LOF mutations in BRCA1 or BRCA2 [7]. Biomarkers for HRD are also used to identify
tumors which carry additional genes involved in HR repair (HRR), such as somatic mutational
signatures, gene expression profiles of genes which play crucial roles in tumor development, functional
assays of protein expression, and “genomic scar” assays which use array-based comparative genomic
hybridization. Due to the intricacy of the HR pathway, a combination of data regarding determinant
molecular changes can improve the detection of tumors with HRD [7,8].

Comprehensive analyses of tumor-derived genome sequences have shown that a mutational
signature known as Signature 3 (COSMIC database) is a promising biomarker for HRD in breast
cancer [8,9]. Signature 3 is also recognized as a reliable readout of HR status. This signature arises from
broad molecular changes (e.g., germline variants and somatic mutations in genes involved in HRR
and epigenetic silencing of BRCA1 and RAD51c, among others) in components of the HR pathway
which are independent of BRCA1/2 mutations [8]. It has been proposed that HRD tumors can be
stratified according to their Signature 3 profile, and this profile is more robust than specific assays which
detect an isolated molecular change related to the HR pathway. However, despite being a promising
biomarker of HRD, obtaining a Signature 3 profile is dependent on the availability of next-generation
sequencing. Consequently, this profiling approach is not widely available in all clinical settings. As a
result, potential opportunities to identify patients who may benefit from poly (ADP-ribose) polymerase
inhibitor treatments have been limited [10]. Indeed, not all patients are screened for HRD status at the
time of their cancer diagnosis. Hence, efforts to uncover new approaches for quantifying HRD would
be beneficial, and could also expand the therapeutic potential of HRD-targeting agents across many
tumor types [7]. Development of a low-cost strategy to accurately and rapidly assess HRD status in
any tumor sample is of particular interest.

To date, remarkable advances have been made in predicting the relationship between a cell’s
genome and its phenotype, thereby facilitating personalized treatment strategies [11–15]. Most notably,
the development of deep learning techniques to predict outcomes, disease recurrence, and to
distinguish cancer type, tumor composition, gene mutations, and grading status are of great interest.
Herein, we trained a deep-learning model on digital histopathological images to detect HRD tumors
(Section 2, and further discussed in Section 3). The ground truth labels for the deep-learning process
are defined according to the activity of underlying mutational signatures. These signatures represent a
reliable readout of HRD. We demonstrate that histopathological images can provide an accurate and
efficient predictor of HRD status. The machine learning techniques we used employ a novel end-to-end
framework which is based on deep multiple instance learning (MIL), see Section 4. After demonstrating
its feasibility in classifying tumors as HRD, we further explore the utility and performance of our
method by applying it to a cohort of patients with gastric cancer. We detected mismatch repair deficiency
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(MMRD), a repair pathway which is frequently impaired in many cancers [16]. Extensive evidence has
also proved MMRD to be a reliable predictive biomarker guiding the treatment of some cancers [16,17].
Our pre-trained models are publicly available and can be successfully adapted to other specific types
of DNA repair deficiencies, independent of a cancer’s tissue of origin. With immunotherapy being a
focus of the cancer therapeutic paradigm in recent years, we anticipate that a low-cost, screening-based
tool as described here would have great potential.

2. Results

2.1. Weakly Supervised Deep Learning for DNA Repair Deficiency (DRD) Assessment

Here, we describe a deep learning model for DRD (DNA repair deficiency) assessment
which is applied to hematoxylin and eosin (H&E) stained histopathological whole slide images.
Briefly, breast and gastric cancer samples with matched molecular data and histopathology images
were collected from The Cancer Genome Atlas (TCGA). Next, the ground truth set of positive instances
in the data set, which represent DNA repair deficient tumors, was defined according to mutational
activity (see Methods). The architecture of our deep learning model is depicted in Figure 1, and it
comprises the following steps. First, during the inference and learning steps, a whole slide image is
tessellated into tiles. Otsu’s global thresholding is subsequently employed to discard all background
tiles. The remaining tiles are then loaded into a convolutional neural network (CNN) in order to
rank the tiles according to their probability of being positive (Figure 2). With learning gained from
the top-ranking tiles per slide, a recurrent neural network (RNN) is used to establish a final slide
classification according to slide-level aggregation. The latter process also takes into account the most
promising tiles previously detected from the CNN.
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ranking tiles per slide learned from CNN. These tiles were manually annotated by two pathologists 
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Figure 2. A whole slide image (32x) and corresponding heatmap for a single patient in the independent
test set. The intensity of coloring in the heatmap represents the probability of being class-positive in
the CNN (convolutional neural network) step.

Notably, when tracking down the spatial patterns learned by the CNN while using an independent
validation dataset, we noticed that our model selects regions which are composed of tiles that include
several cell types (Figure 3 and Figure S1). This result suggests that tile-embedded cell diversity
harbors underlying features which can predict DRD.
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Figure 3. Tissue classes learned from convolutional neural network (CNN) in stomach cancer. Examples
from mismatch repair deficiency (MMRD) and mismatch repair proficiency (MMRP) groups. The bar
represents the spectrum of histologic diversity in the test set and it contains the top-ranking tiles per slide
learned from CNN. These tiles were manually annotated by two pathologists among the following ten
tissue labels: ADI, adipose tissue; BACK, background; DEB, debris; DIS, dysplasia; INF, inflammation;
LYM, lymphocytes; MUS, smooth muscle; NORM, normal gastric mucosa; STR, cancer-associated
stroma; TUM, gastric adenocarcinoma epithelium.
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Our model detected HR deficiency in breast tumors with an area under curve (AUC) of 0.80
(95% confidence interval (CI): 0.709–0.889, Figure 4A). When the model was challenged with
an independent cohort of triple-negative breast cancer (TNBC) whole slide images taken from
formalin-fixed paraffin embedded (FFPE) sections (65 slides from 65 patients), the AUC was 0.70
(95% CI: 0.542–0.849, Figure 4B). These breast cancers were previously characterized as proficient or
deficient in HRR as described in the Methods section [18]. Taken together, these results demonstrate
that our model is consistent.
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Next, we tested the performance of our approach to predict MMRD in gastric cancer samples.
For the cases analyzed, the AUC was 0.81 (95% CI: 0.689–0.928, Figure 4C). In addition, the MMRD
prediction was consistent with a mutator phenotype known as microsatellite instability (MSI). The latter
is characterized by an accumulation of insertions or deletions of small tandem DNA repeats, known
as microsatellites [19], and high overall mutation rates. Our model was trained to predict mismatch
repair (MMR) status, yet we observed that most of the patients (83%) who were predicted to have
MMRD also harbored a MSI phenotype (see Section 2.3). This important result highlights the value of
our approach in considering mutational signatures as a surrogate for MMRD during our training tests.
Consequently, our model achieved a similar potential in predicting MSI status.

Taken together, our results demonstrate and substantiate the capacity for machine-learning
methods to be used in advanced applications to support therapeutic decisions.

2.2. Mutational Signature as a Quantitative Label for DNA Damage Repair Status

While it is acknowledged that targeted genetic assays facilitate the classification of DRD tumors,
comprehensive studies which have assessed exome, whole-genome, and sequencing panels have
also revealed that mutational signatures are physiological readouts of DNA damage and DNA repair
processes based on broader molecular changes in repair pathway components [8,9,20–22]. Therefore,
we initially considered groups of samples with high versus low mutational signature activities for a
given DNA repair pathway as a ground truth set for specific repair pathways. Mutational signatures
were used since histomorphologic footprints are often preceded by harbinger DNA mutations which can
be collectively identified in mutational signatures. Our results suggest that these mutational signatures
are reflected in the morphological alterations detected by our approach. Moreover, the identification of
signatures facilitates the development of a rapid and low-cost method which can be applied to a range
of clinically relevant information involving tumor etiology.

2.3. Image Classification Recapitulates Unique Molecular Drivers

After demonstrating that our approach can accurately distinguish underlying features which
are predictive of DNA repair status, we examined the molecular drivers involved. In this second
stage, we took advantage of comprehensive alterations which are likely to contribute to HRD in breast
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tumors [9]. In Figure 5A, the proportion of molecular lesions are shown by type in selected genes of
the HR pathway in the breast cancer cases examined [8]. Independent of variants in BRCA1 (germline
biallelic variants, epigenetic silencing, and somatic variants) and BRCA2 (deletion and germline biallelic
variants), other events were detected among HR pathway genes. For example, germline variants in
PALB2 and epigenetic silencing in RAD51C were detected. The latter is reflected by low expression
levels. Consistent with these findings, our model also correctly identified patients with functional
deficiencies incurred from inactivation of genes related to the HR pathway in an independent breast
cancer cohort (Figure 5B). Moreover, the molecular profiles obtained are consistent with previous
characterizations of HRD mechanisms [10].
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To evaluate the molecular landscape of gastric cancer patients predicted as MMRD and mismatch
repair proficiency (MMRP) by our TCGA-based model, we first examined the absence of MHL1 with
assays of promoter hypermethylation (Figure 6A) and transcriptional downregulation (Figure 6B).
We observed a negative correlation between decreased expression of MLH1 and hypermethylation
of its promoter (Figure 6D). Taken together, these results support the hypothesis that epigenetic
silencing of MLH1 functions as a repressive transcriptional signal. The commonly accepted association
of MLH1 and MMR-deficient gastric cancers is also confirmed by these data [23–25]. We further
evaluated how mutational activity is modulated in our MMRD and MMRP groups (Figure 6C,E,F).
Our analysis revealed high mutational activity in MMRD patients, which is expected when activity
of MLH1, a protein which plays a critical role in correcting replication errors, is low (Figure 6F).
Consistent with previous reports, we also observed higher tumor mutation burden (TMB) in the
MMRD group compared to the MMRP group (Figure 6G). Cells with a high degree of TMB correlate
with a greater probability of abnormal protein expression which can give rise to mutation-derived
antigens (neoantigens) and recruitment of tumor-infiltrating leukocytes. Significant differences were
observed between MMRD and MMRP tumors in regard to immune-related gene expression, including
genes related to pro-inflammatory markers (Figure 6H). Furthermore, our data support the findings of
other studies where MMRD tumors have exhibited increased mutation burden in combination with
upregulated immune-related signaling [19].
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Figure 6. MMR (mismatch repair)-associated molecular drivers. This figure shows the molecular
interplay among the MMRD and MMRP predicted groups, which are colored in red and blue, respectively.
(A) Changes in methylation of MLH1 promoter, (B) MLH1 expression levels and (C) mutational activity
of Signature 20 were detected by comparing MMRD and MMRP groups; Scatterplots showing
(D) methylation and gene expression levels of MLH1, (E) methylation levels of MLH1 and mutational
activity of Signature 20, (F) gene expression levels of MLH1 and mutational activity of Signature 20;
(G) Changes of Tumor Mutation Burden and (H) genes related to pro-inflammatory markers across
MMRD and MMRP groups. (I) Mutational activity of Signature 20 across MSI subtype and others
molecular subtypes. Statistical significance was assessed by the two-tailed Wilcoxon Rank Sum and
it is indicated by * p < 0.05, *** p < 0.001. The MSI (Microsatellite Instability) and other subtypes
(GS: Genomically Stable; EBV: EBV-positive and CIN: Chromosomal INstability) were collected from
The Cancer Genome Atlas (TCGA) study.

3. Discussion

We evaluated the feasibility of a weakly supervised deep learning system for assessing DRD from
whole slide images of FFPE tissues. We show that our TCGA-derived models are able to detect HR
deficiency in breast cancer (AUC = 0.80), and subsequently, we successfully applied the inferred model
to a dataset of FFPE tissues from an independent cohort (AUC = 0.71). Our classifier was further
applied to predictions of DNA MMR deficiency in gastric cancer patients (AUC = 0.81). These results
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show that our model works reasonably well while dealing with DRD. Further, our methods can be
used to detect deficiencies more generally in a broader context of other repair deficient pathways.

Classification of patients according to mutational signatures is strongly consistent with well known
molecular profiles of repair deficiency components [8,9,20,22]. To further confirm this, we characterized
our findings with known genotype-phenotype relationships by integrating data regarding gene
expression levels, methylation status, and tumor-infiltrating lymphocyte composition across our test
sets. Our findings (Figures 5 and 6) show that patients that are classified as having both HRD and
MMRD, harbor the molecular determinants that drive these deficiencies.

Previous studies have demonstrated the potential of digital pathology analysis by using deep
learning [13–15]. However, manual segmentation remains a bottleneck step in the analysis of whole
slide images. As a result, the development and implementation of this approach in the clinic has been
severely hampered. Here, we overcome this shortcoming by using MIL, a machine learning paradigm
which includes a full pass through a dataset to detect relevant local patterns in images [26].

Similar to other studies which have used FFPE-based samples, improvements are needed to
increase the performance of the methods described [12–15,27]. First, weakly supervised deep learning
on whole slide images requires appropriate exclusion of artifacts such as tissue preparation, tissue folds,
torn tissue, and pen marks. We addressed this issue by considering Otsu’s thresholding methods
by extensive experimentation. However, it is possible these methods could be further optimized.
Larger training cohorts could also improve classification performance if the network learned from
a broader range of morphological variants. Furthermore, improvements in classification accuracy
of independent patient cohorts with different staining protocols and whole slide scanners could
prevent overfitting.

In conclusion, the deep learning system for DRD assessment described here is a low-cost,
screening-based tool which holds extraordinary potential for identifying patients who may be eligible
for either genetic counseling or immunotherapy. In addition, this screening tool could identify which
patients would derive the most benefit from receiving cancer treatment as early as possible. Our results
demonstrate and add strength to the belief that machine-learning methods can be used for advanced
applications to assist therapy decisions.

4. Materials and Methods

Classification of whole slides was modeled as previously described [27]. Briefly, whole slides
are split into tiles and each tile is classified with a multiple instance learning model. Next, tile-level
classifications of each slide are aggregated by using a recurrent network resulting in a single classification
for the whole-slide (Figure 1). The following two sections further describe these steps in some detail.

4.1. Slide Pre-Processing

Initially, the available set of histopathological slide images was randomly divided into a training
set (70%) and a validation set (30%). Samples with multiple slides were kept together in their
respective sets (details in Tables S1 and S2). Next, each slide was resized to 0.5 µm/pixel magnification
and split into 224 × 224 pixel non-overlapping tiles with libvips [28] and openslide [29]. An Otsu
thresholding algorithm [30] was calculated for each tile. Tiles with a threshold value < 0.1 were
discarded. After image preprocessing, a total of 37,140 tiles (TCGA-BRCA, n = 32250; TCGA-STAD,
n = 3940; ACCC-BRCA, n = 1950) were generated.

4.2. Model Definition and Training

Classification of a slide was modeled as a multiple instance binary classification problem [26]
(Figure 1), where each slide is a bag of tiles. Positive bags must have at least K positive tiles,
while negative bags must have all negative tiles. Given a convolutional model, M1, all tiles are
classified and ranked according to a M1 prediction. The top K tiles of each bag are used to train M1,
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and this process is repeated until M1 predictions converge for a given dataset. The result is a model
which can distinguish tiles that are relevant to the whole-slide label from the rest.

Training tiles were fed into a resnet34 model [31] pre-trained with the ImageNet dataset [32].
For every epoch, the inference of each tile is calculated and the top K tiles are used to train this model
according to whole slide labels. Test accuracy is calculated by comparing the prediction of the top tile of
each slide with whole slide labels. Classification of a whole slide is modeled with a RNN. RNNs have
an internal state which can be used to aggregate a sequence of inputs into a single prediction.

To train the RNN model, M2, the best tile-classifier model of the first step (M1) is fixed and the top
K tiles of each slide are fed into the M1 model. After the intermediate learned features are extracted,
these features are fed into M2 to aggregate all of the features of the top K tiles and output a single
prediction variable. M2 is trained with the same dataset that was used in the first step.

The M2 RNN architecture takes a 512-vector as input, which matches the size of the intermediate
features output of resnet34, and a state (“memory”) vector. This vector aggregates the features of
previous tiles fed into the RNN. The input and the state vector is combined with ReLU activation step
resulting in a new state output. The latter is finally fed into another fully connected layer that outputs
a single prediction variable.

All of our models were built and trained with PyTorch (available at https://pytorch.org).
The computational framework for DRD status, including all parameters used in this paper, are freely
available and described at https://github.com/rvalieris/deepHE. All models were trained by using
NVIDIA TESLA V100 GPUs provided by AWS (Amazon Web Services).

4.3. Datasets

Clinical and molecular information for cases of breast cancer (TCGA-BRCA, 1011 patients,
1075 slides) and stomach cancer (TCGA-STAD, 369 patients, 394 slides) were gathered from the
Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov/). H&E-stained histologic images
derived from the TCGA-based cohort were retrieved from The Cancer Imaging Archive (TCIA)
repository. As an external validation cohort, we retrospectively analyzed archived H&E-stained
pathology slides obtained from breast cancer patients treated at the A.C. Camargo Cancer Center
(ACCC-BRCA, 65 patients, 65 slides). The HRD status for this independent cohort validation set
was assessed by considering pathogenic germline mutations and epigenetic silencing in HR-related
genes that were previously detected and reported [18]. Briefly, TNBC samples were characterized as
HR proficient or HR deficient according to the presence of BRCA1/2 germline or somatic pathogenic
mutations in DNA from leukocytes and tumors, or BRCA1 epigenetic silencing analyses of tumor DNA,
respectively [18]. Additionally, a RAD51c epigenetic silencing analysis of tumor DNA was performed
(data not published). Both clinical and molecular data from the patient cohorts analyzed during this
study are presented in Supplementary Table S1.

4.4. Biomarker for HRD and MMRD Status

A biomarker score for HR and MMR status was used. Briefly, a pattern of genome-wide mutations
(mutational process) known as a mutational signature (https://cancer.sanger.ac.uk/cosmic/signatures_v2)
was used. This mutational signature reflected the proficiency of multiple upstream components of
repair pathways [8,22]. Mutational signature activities for breast cancer (TCGA-BRCA) and their
lesions in HR genes were previously detected and described [8]. For stomach cancer (TCGA-STAD),
all somatic single nucleotide variants (SNVs) (e.g., C > A, C > G, C > T, T > A, T > C, and T > G)
were mapped onto trinucleotide sequences by including the 5′ and 3′ neighboring base-contexts.
Next, the SNV spectrum with 96 types of trinucleotide mutations for all samples was loaded into
signeR [33]. A projection analysis was performed and signature activity across the samples was inferred
by using a MMR-associated COSMIC signature. Finally, we performed assignments of per-patient
signature activity. Thus, samples with higher mutational signature activity for a given DNA repair

https://pytorch.org
https://github.com/rvalieris/deepHE
https://portal.gdc.cancer.gov/
https://cancer.sanger.ac.uk/cosmic/signatures_v2
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pathway were labeled as a ground truth set for that pathway. We used Signature 3 and Signature 20 as
readouts of HRD and MMRD for breast and stomach cancers, respectively.

4.5. Data Availability

The dataset analyzed in this study is described in our Methods and Supplementary Data.
Further information regarding this dataset is available from the authors upon request.

5. Conclusions

Our study demonstrates the use of an AI-based workflow capable of detecting DRD-positive
tumors directly from H&E-stained histologic images. The method is illustrated by considering the
detection of homologous recombination deficiency and mismatch repair deficiency across 1445 cancer
patients, including breast and gastric cancer samples. The reliability of the results is shown by
evaluating the model in an independent dataset. The success of detecting DRD-status, suggests that
deep-learning models can be used to assess other clinically relevant information, that can potentially
enhance traditional pathology reports.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/12/3687/s1,
Figure S1: Tissue classes learned from Convolutional Neural Network (CNN) in breast cancer.
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