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Abstract: Multi-label brain segmentation from brain magnetic resonance imaging (MRI) provides
valuable structural information for most neurological analyses. Due to the complexity of the
brain segmentation algorithm, it could delay the delivery of neuroimaging findings. Therefore,
we introduce Split-Attention U-Net (SAU-Net), a convolutional neural network with skip pathways
and a split-attention module that segments brain MRI scans. The proposed architecture employs
split-attention blocks, skip pathways with pyramid levels, and evolving normalization layers.
For efficient training, we performed pre-training and fine-tuning with the original and manually
modified FreeSurfer labels, respectively. This learning strategy enables involvement of heterogeneous
neuroimaging data in the training without the need for many manual annotations. Using nine
evaluation datasets, we demonstrated that SAU-Net achieved better segmentation accuracy with
better reliability that surpasses those of state-of-the-art methods. We believe that SAU-Net has
excellent potential due to its robustness to neuroanatomical variability that would enable almost
instantaneous access to accurate neuroimaging biomarkers and its swift processing runtime compared
to other methods investigated.

Keywords: multi-label brain segmentation; split-attention block; deep learning; fine-tuning; SAU-Net

1. Introduction

Magnetic resonance imaging (MRI) provides detailed in vivo insights into the human brain’s
morphology, which are essential for development, aging, and disease research [1-4]. To access
measurements such as volume, thickness, or shape for structures, neuroanatomy must be segmented,
which is a time-consuming issue when it is manually annotated. A manual delineation of neuroanatomy
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on MRI scans has long been regarded as the “ground truth”. Therefore, fully automation-based algorithms
have been sought to reduce the manual effort. In the past, many whole-brain segmentation methods
were proposed, including, but not restricted, to the region growing, clustering, and template-based
deformation methods [5]. Template-based segmentation is an essential segmentation method that
applies tissue labels to the unlabeled images using structural brain MRI as well as the corresponding
manual segmentation. In the template-based segmentation models, the deformable registration
methods typically operate by spatially deforming a template to fit a previously unlabeled target
image [6,7]. A single template-based segmentation has been successfully applied in some commercial
applications [6,7]. However, segmentation with a single template performs poorly when the target
image has considerable inter-patient variation in neuroanatomy [8,9]. More studies have proposed
multi-atlas-based schemes, which have become the actual standard template-based segmentation
approach [10,11]. The multi-atlas-based segmentation methods can segment the brain from a clinically
obtained T1-weighted MRI volume into more than 100 structural labels using a small number of
manually annotated and representative scans. In practice, the multi-atlas segmentation methods are
regarded as the standard for whole-brain segmentation methods because of their excellent accuracy
and reproducibility. The patch-based methods have been proposed to handle the local variations from
incomplete registrations [12-16]. Consequently, the multi-atlas label fusion-based methods have been
studied to model the spatial relationships between atlases and target images in the three-dimension
patches. However, one of the critical limitations of the conventional multi-atlas segmentation methods
is their high complexity cost. Therefore, a multi-atlas label fusion is typically performed with a
small number of templates. Many previous studies have been proposed to develop faster and robust
multi-atlas segmentation approaches using unlabeled or automatically labeled data to utilize a larger
number of templates or even previously unlabeled MRI images [17,18]. The machine learning-based
methods have been incorporated into the multi-atlas segmentation method to replace fusion based on
the traditional voting or statistical patch approaches. Several machine learning-based multi-atlas label
fusion approaches have been developed to learn multi-atlas segmentation from a larger number of atlas
templates [19-23]. The core idea of creating a deep-learning architecture from training image patches
has contributed to and inspired various convolutional neural network (CNN) methods, including our
proposed method.

Recently, deep-learning methods have been widely developed for whole-brain segmentation with
multiple labels. The most straightforward strategy for segmenting the whole brain is to input the
entire brain volume to a three-dimensional CNN-based segmentation framework, like U-Net [24] or
V-Net [25]. However, it is inefficient to apply clinically used MRI images in State-Of-The-Art (SOTA)
three-dimensional fully convolutional networks (FCNs) because the amount of memory in standard
graphics processing units (GPUs) cannot handle the high resolution of the MRI images. Another
challenge of utilizing CNN methods is that manually traced whole-brain MRI images with detailed
structural annotations are rare commodities. Many studies have been developed to challenge the limits
placed on training data by GPU memory restrictions. De Brebisson’s method proposed an integrated
CNN method to learn two three-dimensional patches and their spatial coordinates for multi-label
whole-brain segmentation [26]. This approach was subsequently extended to BrainSegNet [27],
which employed 2.5-dimensional patches for training an FCN. Recently, DeepNAT [28] was proposed
to perform multi-task learning on the three-dimensional patches. These methods design the whole
brain segmentation as a per-voxel segmentation problem. More recently, more robust FCNs have
been introduced to multi-label whole-brain segmentation from another perspective. QuickNAT is
a two-dimensional approach developed to train an FCN framework using a number of auxiliary
labels on initially unlabeled data [29]. Although the training was in a two-dimensional manner,
this approach revealed a promising direction for leveraging the whole-brain segmentation architecture,
using manually traced images and initially unlabeled data. FastSurfer developed a module containing
competitive dense blocks and skip pathways for training multi-slice-based 2D CNNss [30].
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However, the two-dimension-based segmentation approaches typically return low spatial
consistency in the third dimension. Therefore, it would be fascinating to perform a three-dimensional
FCN for whole-brain segmentation for higher spatial consistency [24,25]. Recently, multi-task
learning [31] and semi-supervised learning [32] have been performed for whole-brain segmentation.
Among such work, Rajchl et al. proposed a novel three-dimensional multi-task learning network
with remarkably decent segmentation performance [31]. However, the network’s input image size is
restricted to 128 x 128 x 128 because of the GPU memory restrictions, which misses about two-thirds
of the spatial information available in a 1 mm isotropic brain volume in the Montreal Neurological
Institute (MNI) template space [33]. Therefore, directly applying the three-dimensional FCN to
whole-brain segmentation is still limited by current GPU capabilities. To overcome such challenges,
Li et al. proposed a 3D CNN-based sliding window-based method, which utilized a single network to
learn the patches at different spatial locations [34]. Additionally, the spatially localized atlas network
tiles (SLANT) method was proposed to improve patch-based training using multiple independent 3D
FCN methods [35].

Here, we propose Split-Attention U-Net (SAU-Net), a deep-learning architecture that can segment
the whole brain into 33 structural labels in just 20-30 s on the GPU. The basic architecture is inspired by
ResNeSt [36] and U-Net++ [37]. By applying the split-attention module of ResNeSt to the output of each
pyramid level of the U-Net++ structure and evolving normalization instead of batch normalization
(BN) [38] and rectified linear unit (ReLU) [39], the class differentiation between feature maps of the level
is improved, and efficient three-dimensional training with a small number of batch sizes is possible.
It is possible to train it more efficiently and it has strengths in the inference speed. Moreover, it can be
known that the three-dimensional patch-based SAU-Net has a higher level of spatial information for
accurate segmentation of neuroanatomical structures when compared to QuickNAT and FastSurfer.

Starting with an accurate three-dimensional whole-brain segmentation provided by a deep-learning
framework, we perform cortical and sub-cortical reconstruction and fast mapping with an approach
that quickly maps the cortex using label fusion functions. It also maps cortical labels and creates a
complete FreeSurfer [40]-based brain segmentation alternative. Only 20-30 s of run time contributes to
the whole brain segmentation. Hence, SAU-Net has the speed of a supervised deep-learning method
with the convenience of a wide range of segmentation-based capabilities offered by conventional neural
imaging pipelines.

We extensively validate our proposed segmentation method by assessing segmentation accuracy,
qualitative analysis, speed, and test-retest reliability in several publicly available datasets. This is the
work of a deep-learning approach that has been thoroughly tested. Even though it is similar to or
faster than SOTA deep-learning approaches, SAU-Net increases sensitivity and ability, making it a
reliable tool for future large-scale demographic work.

2. Materials and Methods

2.1. Subjects

We utilized eight brain MRI datasets in our experiments. Six datasets with manual annotations,
IXI [41], ADNI [42], HCP [43], PPMI [44], AIBL [45], and the Catholic Aging Brain Imaging (CABI)
database [46] of Yeouido St Mary’s Hospital, the Catholic University of Korea, were selected for training
and to evaluate segmentation accuracy. The remaining two datasets, CoORR-BNU1 [47] and ChinaSet
Multi-Center [48], were used to test the reliability of the segmentation scheme. Table 1 summarizes the
number of subjects per dataset, scanner type, matrix size, pixel spacing, the annotated information,
and purpose. IXI, ADNI, HCP, PPMI, AIBL, and CABI among our datasets are resampled to a size of
256 x 256 x 256 and pixel spacing of 1.0 X 1.0 x 1.0 (a dataset consisting of IXI, ADNI, HCP, PPMI,
AIBL, and CABI is called a “mixed dataset”). Details about the acquisition protocol used for each of
the public datasets can be found in their respective references.
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Table 1. Summary of the public datasets used for training and testing.

Dataset NO: of Scanner Matrix Size Pixel Spacing Annotations Purpose
Subjects Type (mm)
IXI 17 T1 256 x 256 x 256 1.0x1.0x1.0 33 labels All
ADNI 207 “ “ “ “ u
HCP 30 ‘" ‘" ‘" “ “
PPMI 3 “ “ “ “ u
AIBL 14 “ “ “ “ “
CABI 24 “ “ “ u u
Total mixed “ “ “ u u
dataset 300
CoRR-BNU1 47 “ 144 x 256 x 256 1.3x1.0x1.0 None Only testing
ChinaSet u i
Multi-Center 3 240 x 256 x 256 1.0x1.0x12 None Only testing
Total testing 50

only dataset

33 labels: 33 structure labels of the whole brain. All: training/testing. “: indication that it is the same as the row
line above.

Our training data were generated by using FreeSurfer (General Hospital Corporation, Boston,
MA, USA, version 6.0) annotations with manual correction in the training datasets for pre-training
(250 selected cases from the mixed dataset), and manual annotations (confirmed and corrected by
four radiologists) from 48 selected cases of the pre-training dataset for fine-tuning. From the selected
48 cases, 30 cases were used for fine-tuning and 18 cases were only used for testing. For the robust
training, the total mixed data are composed of a total of 300 scans which are collected from ten different
MRI scanners with 30 scans each, also, the selected 18 scans are collected from nine MRI scanners
with two scans each. Table 2 shows the summary of various MRI scanners; the SKYRA scanner was
excluded due to failure of the inference process on QuickNAT and FastSurfer (refer to Section 2.5).

Table 2. Summary of the numbers of subjects according to 10 magnetic resonance imaging (MRI)
scanners and description.

MRI Scanner Slt\f;))ie(:js TraPi;eing Tlliif;;g Testing Description
Intera 30 25 3 2 Philips Intera 3.0T
Pri . " " “ “ Siemens 3.0T Magnetom
risma fit . .
Prisma Fit
Ingenia “ “ “ v Philips MRI Ingenia 3.0T
Signa HDxt “ “ v ” GE Signa HDxt 3.0T MR system
Signa HDx “ Y “ “ GE Signa HDx 3.0T MRI system
Achieva “ “ “ v Philips Achieva 3.0T MRI system
DISCOVERY " " " " GE Discovery™ MR750
MR750 3.0T system
TrioTim " " " " Siemens 3.0T Trio TIM
MRI scanner
Verio “ “ ” “ Siemens 3.0T MAGNETOM Verio
SKYRA “ “ “ Siemens 3.0T MAGNETOM Skyra

“: indication that it is the same as the row line above.

2.2. Pre-Processing and Augmentation

2.2.1. Pre-Processing

The pre-processing tasks employed in brain image processing include image registration,
zero padding, and histogram matching-based intensity normalization. The first step is a rigid
registration from the target image to the MNI305 template (256 x 256 x 256) using 3D rigid registration
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with an Euler transform (SimpleITK) [49-52]. Next, zero padding is performed: 16 x 16 x 16 padding
is used for training and 24 X 24 x 24 is used for testing. The intensities of the obtained scans vary across
different devices and can even vary across different scans from the same device. Therefore, to further
normalize the intensities across different scans, a histogram matching-based intensity normalization
method is employed [53]. In this process, an MRI brain image with a protocol corresponding to a patients’
population are given as input. In the pre-training step, histogram transformation landmark parameters
are first learned from MNI-registered image data (250 cases). The images are then transformed using
the parameters learned during pre-training. This transformation is image dependent and needs to be
done for each given image. All the pre-processing steps were implemented using TorchlO [54].

2.2.2. Data Augmentation for Training

To increase the robustness of the segmentation model, input images for pre-training and fine-tuning
were randomly processed using the 3D data augmentation module (“Transforms”) of TorchlO [54]
with the following augmentation types and settings:

e  Gaussian noise: Zero mean noise for standard deviation randomly chosen from the range 0 to 0.2

e  Bias field: Uniformly distributed in the range —0.5 to 0.5

e  Affine transform: A scale factor range of 0.9 to 1.1, rotation degree range of —10 to 10, trilinear
interpolation (shearing and translation were not applied)

e  FElastic deformation: A probabilistic spin was given to the basic affine transform. Since the affine
transform is linear, the image is uniformly deformed as linearity. On the other hand, elastic
deformation deforms the image in different directions for each pixel. It is also common in medical
imaging data since these are data observed in living things. [55] The parameter is pre-defined as
seven control points for each axis X, Y, and Z.

2.3. SAU-Net Architecture

The architecture of SAU-Net is largely based on an encoder/decoder which has a skip pathway
with a pyramid level similar to that of the U-Net++ architecture with an encoder sub-layer or backbone
followed by a decoder sub-layer, as shown in Figure 1a [24,37]. The last layer is a classifier block
using softmax. The proposed SAU-Net architecture includes re-designed skip pathways between all
encoder and decoder blocks with the same spatial resolution [37]. Each convolution layer is constructed
using Evolving Normalization—Activation Layers (EvoNorm) [38] and 3D convolution (Figure 1b).
The number of convolution layers depends on the pyramid level, and a 3D ResNeSt block [36] is used
at the output of the skip pathways. Essentially, the EvoNorm-based convolution and 3D ResNeSt
blocks bring the semantic level of the encoder feature maps closer to that of the corresponding feature
maps in the decoder. Based on this architecture, EvoNorm with group normalization is used in the
convolution layer of the skip pathways instead of Batch Normalization (BN) and Rectified Linear Unit
(ReLU) activation fucntion, and a 3D ResNeSt block is used in the skip connections instead of the
existing 3D convolution layer [56]. This process is convenient for improving training efficiency with
small batch size and segmentation accuracy for small subcortical structures.
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Random Sampling Cropped Samples

RZT ResNeSt Block

Figure 1. Split-attention U-Net (SAU-Net): (a) overall architecture and (b) modified convolution
layer. (EvoNorm-S0: Evolving normalization layer with the Group Normalization and Swish

activation function).

2.3.1. ResNeSt Block with Split-Attention

In the proposed architecture, the 3D ResNeSt block is used in the skip connections to efficiently
overcome the disadvantages of small batch sizes and enhance the response of the feature map.
Its architecture is shown in Figure 2a. The split-attention module inside the ResNeSt block is a
computational unit consisting of a group of feature maps and split-attention operations [36]. Figure 2b
presents an overview of a split-attention module.

3D ResNeSt Block e —

Cardinal 1 Cardinal 2 Input split

Split 1 Split 2 Split 1 Split 2

--------------------- v 3xdxd
i i Com s o
i ; ] Cony, 3x3x3 Cony,3x3x3
Conv,3x3x3 | ! i | Cony3x3x3 i ; Conv, 3x3x3 i | Cony3x3x3 | i
‘ Split Attention ‘ ‘ Split Attention ‘ ‘ Split Attention ‘ ‘ Split Attention ‘ |

Concatenate

Conv, IxIx1

N>
(@)

Convolution Block

3D Conv H BN H ReLU

[C) (b)

Figure 2. ResNeSt block: (a) overall architecture, (b) split-attention module, and (c) convolution layer.
(BN: Batch Normalization, ReL.U: Rectified Linear Unit activation function).

e  Groups of feature maps: The feature can be divided into four groups, and the number of groups
of feature maps is given by a cardinality K = 2 and a radix R =2 [36,57]. The total number of
feature groups G is four (G = KR).
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e  ResNeSt block (Figure 2a): The representations of a cardinal group are concatenated along the
channel dimension. As in existing residual blocks, the split-attention module’s final output is
produced by a shortcut connection. For blocks with a stride, an appropriate transformation is
applied to the shortcut connection to align the output shapes.

e  Split-attention (Figure 2b): An integrated representation for each cardinal group can be obtained by
combining it via an element-wise summation across multiple split layers [58,59]. Global semantic
information with channel-wise features can be gathered by global average pooling across spatial
dimensions [58,59]. A weighted combination of the cardinal group representation is aggregated
using channel-wise softmax, where each feature map channel is produced using a weighted
combination over split features.

2.3.2. Skip Pathways with Pyramid Levels

Each skip pathway among the nodes consists of a convolution block concatenated with three
convolution and ResNeSt block layers. A convolution layer is preceded by a concatenation layer that
combines the output from the previous convolution layer of the same concatenation block with the
corresponding up-sampled output layer of the lower dense block [37]. Formally, we formulate the
split-attention module-based skip pathway as follows:

= Cl q);l . 7=0 1)
R([Py, U], g>0

where function C(+) is a convolution operation followed by an EvoNorm activation function, U(-)
denotes an up-sampling layer, R(-) denotes a ResNeSt block, and [-] denotes the layer with the
concatenation function. All prior feature responses accumulate and reach the current node because we
make use of a concatenated convolution block along each skip pathway. Finally, the ResNeSt block is
applied to the concatenated convolution block as an input. Figure 1a illustrates this structure, showing
how the feature maps travel through the top skip pathway of U-Net++.

2.3.3. Classifier Block

The feature map output by the final ResNeSt block is passed to the classifier block, which is a
convolutional layer with a 1 X 1 x 1 kernel size that maps the input to an N channel feature map,
where N is the number of classes (34 structure labels with non-labels (zero value) in our experiments).

2.4. Training with Limited Annotated Data

Our model produces a segmentation result by taking 96 x 96 x 96 patches randomly from the
image. Because the 3D MRI volume would not fit into GPU memory using standard deep-learning
networks, we randomly employed 128 independent instances of our model as 3D patches to cover the
entire MNI space. Our model was a sub-network, whose resolution is a compromise between memory
limitations and spatial resolution. For each instance of our model, we modified its decoder part to be
compatible with 33-label output. As shown in Figure 1, 33 3D output channels have been employed in
each classifier layer.

Although the amount of unlabeled data is rapidly growing, access to labeled data is still limited
because of the intense effort needed for manual annotation. Simultaneously, deep-learning success
is mainly led by supervised learning, whereas unsupervised approaches still need much research.
In our proposed approach, we use the two-step training procedure shown in Figure 3. The first step is
pre-training on large unlabeled datasets with auxiliary labels. In this step, we use a large neuroimaging
dataset (public dataset) and process it with an existing tool to create auxiliary labels. We employ the
widely used FreeSurfer to obtain auxiliary segmentations, but other tools could be used, depending on
the application. We pre-train on this large dataset with auxiliary labels, which results in a network that
imitates the FreeSurfer segmentations. Pre-training enforces a strong prior on the network, in which
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robustness to data heterogeneity is encouraged by the diversity of the selected cases. The next step
is fine-tuning with a limited amount of manually labeled data: in this step, we take the pre-trained
model and fine-tune it with small amount of data that have manual annotations. Instead of learning all
filters from scratch, fine-tuning only focuses on rectifying the discrepancies between the auxiliary and
manual labels.

/ Step 1: Pre-training with auxiliary labels \

=

Training

FreeSurfer +
Manual correction

[Step 2: Fine-tuning with radiologist-confirmed labels * \

Transfer learning

— [

Training/ Testing

Confirmed labels /

Figure 3. Two-step training strategy for SAU-Net. First, we used FreeSurfer to automatically segment

a large unlabeled dataset (a mixed dataset consisting of 250 scans listed in the Table 1). These labels
are referred to as auxiliary labels and used for pre-training. Second, we fine-tuned the network on
48 scans selected from the same public dataset that were manually annotated by four radiologists.
Fine-tuning does not start from scratch but continues to optimize the pre-trained model to leverage the
scarce amount of data with manual annotations.

2.5. Aggregation

When separating the entire MNI space into randomly selected 128 subspaces, if the subspaces
overlap (12 x 12 x 12), this provides more than one inference result for a single voxel. A step beyond
concatenation is required to obtain the final segmentation label for that voxel from multiple candidates.
In this work, the “OR logical label fusion method” was employed to obtain the final segmentation
results. Briefly, this method was used to fuse all the segmentations from cropped sub-images according
to the size of patches and subspaces overlapping into a single final segmentation in MNI space.
The space outside each patch was excluded from the label fusion. The final segmentation in the original
target image space was then achieved by registering the segmentation to the original space using a
rigid registration. Note that if the segments do not overlap, a naive concatenation is employed to
obtain a final single segmentation directly without using label fusion.

2.6. Experimental Settings

We evaluated SAU-Net in a series of six experiments to evaluate its accuracy, quality, speed,
reproducibility, and sensitivity on a variety of neuroimaging datasets, as summarized in Table 3. In all
experiments, SAU-Net was trained as described in Section 2. In the experiment of segmentation
performance, we evaluate our segmentation robustness by comparison with other methods. Next,
we then performed another three experiments to validate the reliability and consistency of SAU-Net
segmentations. To test reliability, we constructed the test dataset as follows:
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Table 3. Experimental settings for the evaluation of SAU-Net.

Evaluation Experiment Testing Purpose of Experiment
Accurac Selected mixed dataset =~ Comparison of Dice overlap and
Segmentation y for testing only (18) * ASSD scores with other methods
Performance - . “ Comparison of segmentation
Qualitative Analysis quality with other methods
" Comparison of runtime speed
Speed with other methods
. L ” Inter-scan reliability with nine
Segmentation Device Inter-Variability MRI scanners
Reliability Intra-Session Reliability CoRR-BNUI (47) Intra-session r'ellablhty with two
scans per session (same scanner)
. Ly ChinaSet Reliability across 12 locations
Multi-Center Reliability Multi-Center (3) with same scanners

ASSD: average symmetric surface distance. * Numbers in parentheses: numbers of the corresponding dataset.
“: indication that it is the same as the row line above.

For a fair comparison, the 30 scans for fine-tuning and the 18 scans for testing in the mixed dataset

(Table 1) were consistent with the label definitions of QuickNAT (22 structure labels). Additionally,
the existing U-Net [24] and U-Net++ [37], which are well-known architectures, were implemented in
the NiftyNet library (based on TensorFlow), which is well optimized for 3D patch-based data loaders
and training architectures [60]. The source code and inference model of QuickNAT were downloaded
from the author’s GitHub page. [61] Also, the following link is the GitHub page of FastSurfer. [62]

2.7. Metrics for Evaluation

We utilize the Dice overlap [63] and average symmetric surface distance (ASSD) score [64]

as an accuracy metric of segmentation, CVs gy [65] and CV; [65] are used as reliability metrics
of segmentation.

Dice overlap score: A statistical index which measures the similarity between the segmented
region (R,) and ground truth (Rg). The higher the estimate, the better the estimator. This score
has become arguably the most commonly used index in the evaluation of image segmentation,

as follows:
2|R, N Rl

Dice overlap = m
0

@)

Average symmetric surface distance (ASSD): The average of the distances from every point on the
boundary (B,) of the segmented region to the boundary (Bg) of the ground truth. The lower the
estimate, the better the estimator.

1
ASSD = —— E d(x, B E d(y,B 3
|BO|+|BG| = (x G)+ (y 0) ( )
0 yEBG

where d is the Euclidean distance [66].

CVs_avg (Average intra-session coefficient of variation): The measurement of n total average
variance for volume estimation was performed between two sessions of one paired scan set.
The CV;_ayg provides the extent of variability in the mean value. The average intra-session
coefficient of variation is computed as:

Yico (X — 1)

: @

0g =
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2.8.

2.9.

N oos/
Cstan = —(2170 ns HS) x 100 (5)

where x; and ps are the ith session measurements and mean of each pair of scan sets.

CV; (total coefficient of variation): The coefficient of variation in volume estimates within the total
variance over n scans per subject. The CV; is computed as:

2
or = Z1=n(); ut) (6)
CVe = 2 x 100 @)
by

where x; and i are the ith measurements of scans and mean of total scans per subject.

Statistical Analysis

Accuracy: We measured using Dice overlap and ASSD for the selected 18 mixed datasets and
used the mean and standard deviation for evaluation.

Speed: The atlas-based methods brought the results of the QuickNAT, and the rest of the
methods measured the runtime of the final segmentation result after the pre-processing, inference,
and post-processing were completed.

Device inter-variability: In Table 2, we show the acquired MRI scans according to ten MRI scanners,
and conducted training and evaluation. These are necessary for robust training, and it is essential
to show consistent performance for different devices. We evaluated the device inter-variability by
comparing the overall mean Dice overlap and standard deviation.

Intra-session variability: This dataset was released to test the reliability of automated whole brain
segmentation algorithms in estimating volumes of brain regions (excluding the corpus callosum)
with 32 structure labels using a test-retest protocol. In this dataset, 47 MRI T1 scan pairs were
taken on the same device with an interval of time between each scan (that is, two scans per
session). All the scans were acquired over a period of six weeks (40.94 + 4.51 days). We analyzed
the CVs_nyg of the overall 47-pair scan set. Ideally, as volume atrophy is almost insignificant within
a period of 30 days, the coefficient of variation in the estimates should be zero.

Multi-center variability: In this experiment, we validated the reliability and robustness of
estimating volumes across scans acquired from multiple centers. To do this, we used images from
the ChinaSet Multi-Center dataset. This dataset includes scans from three patients who traveled
to 12 different medical centers in China. Each of the 12 imaging centers used MRI scanners
manufactured by the same vendors (different scanning parameters). We analyzed the CV; of the
total variance over 12 scans per subject.

Training Setup

The SAU-Net was implemented using TorchIO library on the PyTorch 1.4 version and trained using

Cross Entropy loss function [67] and AdamW optimizer with AMSGrad [68,69]. The learning rate of
pre-training was 0.001; that of fine-tuning was 0.0001. The training was conducted for 300,000 iterations.
The batch size was set to four, which was the limit that could be handled by the 48 GB RAM of the two
QUADRO RTX6000 GPUs.
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3. Results
3.1. Results of Segmentation Performance

3.1.1. Accuracy

In this experiment, we compared the performance of SAU-Net with SOTA methods and evaluated
the impact of pre-training and fine-tuning. Table 4 shows the results measured using Dice overlap
scores and the average symmetric surface distance (ASSD) with 22 structure labels.

Table 4. Comparison of the Dice overlap score and ASSD of SAU-Net with 22 structure labels
(mean =+ standard deviation).

Method Dice overlap ASSD (mm)
U-Net 0.892 + 0.049 * 0.557 +0.326 *
U-Net++ 0.884 + 0.061 * 0.584 + 0.334 *
QuickNAT 0.845 + 0.080 * 0.663 + 0.167 *
FastSurfer 0.884 + 0.062 0.564 + 0.332 *
SAU-Net pre-trained 0.887 + 0.064 0.479 + 0.159
SAU-Net fine-tuned 0.897 + 0.056 0.433 + 0.136

Star symbols in bold (*): Statistical significance (p < 0.05) between the SAU-Net fine-tuned model (reference)
and the other models. (Except for SAU-Net pre-trained model since the training data is same with the SAU-Net
fine-tuned model).

Along each row, we observed that for our models, the fine-tuned model yields almost significantly
(p < 0.05) better performance than the model pre-trained using the FreeSurfer labels. Table 4 and
Figures 4 and 5 show the Dice overlap score and ASSD results for comparison with SOTA brain
segmentation methods. Along each row, we observe that for all models, the fine-tuned SAU-Net model
yields better performance than U-Net (a difference of 0.5% in Dice score and 0.124 mm in ASSD),
FastSurfer (1.3%, 0.131 mm), U-Net++ (1.3%, 0.151 mm), and QuickNAT (5.2%, 0.23 mm).

Additionally, we performed the two-sided t-test between SAU-Net fine-tuned model and the
other each model. However, except for SAU-Net pre-trained model since it was trained using the same
dataset. The U-Net, U-Net++, and QuickNAT show statistical significance in most of the whole brain
ROl regions, but FastSurfer is challenging to confirm statistical significance in the Dice overlap results.
(p>0.05 in more than half of the whole brain ROI regions) All the models show statistical significance
in most of the whole brain ROI regions in the ASSD score results.

3.1.2. Qualitative Analysis

Sample segmentation results are shown in Figures 6 and 7 for U-Net, U-Net++, FastSurfer,
QuickNAT, pre-trained SAU-Net, and fine-tuned SAU-Net along with the radiologist-confirmed
FreeSurfer labels. We indicate the important subcortical structures, the left (blue) lateral ventricles,
with yellow boxes. We can observe the under-inclusion of the left lateral ventricle in the results
obtained by U-Net, U-Net++, and FastSurfer. We also often observe specific classified regions where
aliasing appears in the results of U-Net, QuickNAT, and FastSurfer but not in the results of U-Net++
and SAU-Net (indicated by red dashed circles).



Brain Sci. 2020, 10, 974

GM Left

GM Right

Cerebral WM Left:

Cerebral WM Right:

Cerebellum Left

Cerebellum Right

Lateral Ventricle Left:

Lateral Ventricle Right

Caudate Left;

Caudate Right!

Accumbens Left

. %
F

g
-

Accumbens Right!

Putamen Left

Putamen Right!

Amygdala Left

Amygdala Right

Hippocampus Left.

Hippocampus Right

Pallidum Left

Pallidum Right

—

— e
T
Co—Ems—

* %

-

*

*

*

*

*

*

*

* &

* %

* %

*

*

* %

*

*

* &

*

Thalamus Left! ™ SAU-Net fine-tuned i
__| SAU-Net pre-trained )
= U-Net+ e
 U-Net+++ .
Thalamus Right| 8 FastSurfer %
0 QuickNAT P
0.5 0.6 0.7 0.8 0.9

Dice Score

1.0

12 of 22

Figure 4. Comparison of the Dice overlap score results of SAU-Net, U-Net, U-Net++, FastSurfer,
and QuickNAT on the 18 test cases from the mixed dataset for all 22 structure labels. Statistical
significance (p < 0.05) with respect to SAU-Net fine-tuned model is presented by each colored asterisk.

The p-values were estimated using a two-sided t-test. The box represents the confidence interval with

50th percentile, and the line outside the box is 95th percentile, while the whiskers represent the rest of

the data except for data it determines to be outliers. (GM: Gray Matter, WM: White Matter).
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Figure 5. Comparison of ASSD results of SAU-Net, U-Net, U-Net++, FastSurfer, and QuickNAT on
the 18 test cases from the mixed dataset for all 22 structure labels. Statistical significance (p < 0.05)
with respect to SAU-Net fine-tuned model is presented by each colored asterisk. The p-values were
estimated using a two-sided t-test. The box represents the confidence interval with 50th percentile,
and the line outside the box is 95th percentile, while the whiskers represent the rest of the data except

for data it determines to be outliers. (GM: Gray Matter, WM: White Matter).
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(e) FastSurfer (f) SAU-Net pre-trained (9) SAU-Net fine-tuned

Figure 6. Example results for qualitative evaluation: (a) manually annotated image, (b) U-Net,
(c) U-Net++, (d) QuickNAT, (e) FastSurfer, (f) pre-trained SAU-Net, and (g) fine-tuned SAU-Net.

(a) Radiologist-based (d) QuickNAT

Manual Annotations

(e) FastSurfer (f) SAU-Net pre-trained (g) SAU-Net fine-tuned

Figure 7. Example results with zoom-in for qualitative evaluation: (a) manually annotated image,
(b) U-Net, (c) U-Net++, (d) QuickNAT, (e) FastSurfer, (f) pre-trained SAU-Net, and (g) fine-tuned
SAU-Net. the red dashed circles indicate low-quality results, such as aliasing, and the yellow boxes
show under-inclusion of the left lateral ventricles (blue color).

3.1.3. Speed

Conventional template-based whole-brain segmentation approaches implemented for 3D
deformable volume registration are slow [70]. The results take a long time because a single pair-wise
registration takes about 2 h. In the Multi-Atlas Labeling Challenge (MALC) [41] dataset, the approximate
segmentation runtime for Penn Image Computing & Science Lab (PICSL) [15] software for multi-atlas
segmentation is 30 h per volume. FreeSurfer has its own template and takes about 4-6 h per volume.
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FastSurfer and QuickNAT are implemented using a 2D multi-view-based segmentation approach,
and they take about 50 and 25 s, respectively, to run. Additionally, the 3D patch-based U-Net and
U-Net++ take around 18-27 s to run [60]. These methods are substantially faster than the deformable
registration-based segmentation approach. In contrast, SAU-Net segments a volume in 28 s, which is
comparable to the runtimes of the faster methods. We present the segmentation runtimes in Figure 8
on a logarithmic scale.

SAU-Net fine-tuned- 28
U-Net 18
U-Net++ - 2
QulckNAT- 25

FreeSurfer| 14,400

PICSL 108.000

10 107 107 10
speed {sec)

Figure 8. Runtime performance of the comparison methods.

3.2. Results of Segmentation Reliability

3.2.1. Device Inter-Variability

In the Dice overlap results, the fine-tuned SAU-Net model outperforms other models in about half
of the eight MRI devices included in the dataset in this study (Tables 2 and 5). In addition, SAU-Net
outperforms other models because it has the highest average Dice score (fine-tuned SAU-Net) and
lowest standard deviation (pre-trained SAU-Net) on all devices.

Table 5. Device inter-variability with respect to the Dice overlap of SAU-Net and other State-Of-The-Art
(SOTA) methods for 22 structure labels (mean + standard deviation).

MRI

SAU-Net

SAU-Net

Scanner Fine-Tuned Pre-Trained U-Net U-Net++ FastSurfer QuickNAT
Intera 0.907 £0.055 0.892 +£0.077 0.901 £0.055 0.894 +0.068 0.904 +0.073 0.851 + 0.103
Prisma fit 0.891 £0.073 0.898 +£0.051 0.900 = 0.039 0.898 + 0.048 0.902 +0.049 0.846 + 0.076
Ingenia 0903 +0.054 0.877+0.129 0.878+0.121 0.877+0.111 0.876 £0.129 0.837 + 0.134
Signa HDxt  0.884 +0.110 0.883 £ 0.064 0.890 +0.055 0.882 +0.062 0.875 +0.073  0.842 + 0.085
Signa HDx  0.894 +£0.053 0.875+0.100 0.872+0.100 0.897 +0.055 0.910 +0.044 0.857 + 0.069
Achieva 0917 £0.044 0.901 £ 0.058 0.900 = 0.055 0.895 + 0.057 0.901 +0.058 0.852 + 0.079
DISCOVERY
MR750 0.899 £ 0.056 0.882 +0.072 0.883+0.064 0.873 +0.081 0.885+0.076 0.837 + 0.102
TrioTim 0.899 +0.061 0.891 +£0.061 0.900 +0.047 0.885+0.07 0.896+0.054 0.860 + 0.069
Verio 0.898 £ 0.068 0.885+0.076 0.888 +0.064 0.879 +0.073 0.880 +=0.074 0.877 + 0.074
Total 0.897 £ 0.056 0.887 +£0.064 0.892+0.049 0.884 +0.049 0.884 +0.062 0.845 + 0.080

3.2.2. Intra-Session Reliability: CoRR-BNU1

We analyzed the CV_gyq of the overall 47-pair scan set of CORR-BNU1. The lower the estimate,
the better the estimator. We compare SAU-Net with FastSurfer in this regard. The results of the
experiment are reported in Table 6. In the result, fine-tuned SAU-Net performs better than the
FastSurfer model (except for accumbens right).

3.2.3. Multi-Center Reliability: ChinaSet Multi-Center

We analyzed the CV; of the total variance over 12 scans per subject (Table 7). We compared
SAU-Net with FastSurfer and report the results in Table 7. SAU-Net is more robust for the cerebral
white matter (WM) (left/right), lateral ventricle (left/right), caudate (left), accumbens (left), putamen
(left/right), amygdala (left), and thalamus (left) structures, whereas FastSurfer performs better on the
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caudate (right), accumbens (right), amygdala (right), hippocampus (left/right), pallidum (left/right),
and thalamus (right) structures. Overall, this challenging experiment demonstrates that SAU-Net and
FastSurfer are almost equally robust.

Table 6. Variation in volume measurement per structure. Fine-tuned SAU-Net is compared with
FastSurfer in terms of the CV;_gg between them. The mean volume estimates per structure are
also reported.

Volume (cc) CVs_avg (%)

Structure SAU-Net FastSurfer SAU-Net FastSurfer
Cerebral WM Left 224.703 238.169 0.294 2.553
Cerebral WM Right 231.598 238.053 0.357 2.496
Lateral Ventricle Left 7.158 6.632 1.737 6.509
Lateral Ventricle Right 6.716 5.534 1.688 6.622
Caudate Left 3.969 3.839 1.026 3.291
Caudate Right 3.457 3.996 1.196 3.551
Accumbens Left 0.559 0.66 3.905 3.599
Accumbens Right 0.668 0.654 2.793 4.37
Putamen Left 5.697 5.514 1.104 2.537
Putamen Right 5.726 5.579 0.832 2.479
Amygdala Left 2.049 1.75 1.967 2.827
Amygdala Right 2.02 1.865 1.502 2.872
Hippocampus Left 4123 4.243 1.132 2.524
Hippocampus Right 4.544 4.421 1.082 2.355
Pallidum Left 2.063 2.174 3.648 2.872
Pallidum Right 1.885 2.124 2.29 2.766
Thalamus Left 8.255 7.972 1.057 1.997
Thalamus Right 7.275 7.855 0.781 1.95

SAU-Net: fine-tuned SAU-Net model.

Table 7. CV; in volume estimation for the nine representative structures (left/right) for each subject,
using fine-tuned SAU-Net (SAU-Net) and FastSurfer.

Subject ID with CV; (%)

Structure Subject 1 Subject 2 Subject 3
SAU-Net FastSurfer SAU-Net FastSurfer SAU-Net FastSurfer
Cerebral WM Left 1.126 1.32 1.979 2.354 1.887 2.105
Cerebral WM Right 0.885 1.235 1.554 2.018 2.004 2.286
Lateral Ventricle Left 4.965 4.776 2.812 3.088 4.151 5.213
Lateral Ventricle Right 5.571 5.978 2.106 3.239 3.639 4.215
Caudate Left 1.601 1.789 1.807 2.674 2.323 1.366
Caudate Right 1.782 1.603 1.39 1.081 1.262 1.742
Accumbens Left 7.341 12.679 4.492 7.089 5.828 4.597
Accumbens Right 8.481 8.024 7.64 6.688 8.72 7.082
Putamen Left 2.636 2.707 1.562 1.401 1.737 2.58
Putamen Right 1.725 2.038 1.082 1.202 1.519 2.042
Amygdala Left 8.943 3.86 2.941 4.843 4.999 5.077
Amygdala Right 11.01 8.474 3.599 3.693 7.719 3.229
Hippocampus Left 3.288 1.669 1.577 1.861 2.273 1.467
Hippocampus Right 3.958 3.64 3.04 2.101 3.553 3.295
Pallidum Left 4.989 4.657 5.515 3.046 7.811 3.57
Pallidum Right 2.86 2.658 3.725 2.961 7.26 5.007
Thalamus Left 0.822 1.085 1.694 1.726 2217 1.279
Thalamus Right 2.523 2.541 1.785 1.094 3.152 2.438

SAU-Net: fine-tuned SAU-Net model.
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4. Discussion

4.1. Comparison with Deep-Learning Methods

In recent years, CNNs have been proposed for whole-brain segmentation. [26-32,34,35,71,72]
QuickNAT yields lower accuracy than other approaches while requiring only 20-30 s to run. QuickNAT
has low accuracy because this model was pre-trained with FreeSurfer labels, but fine-tuned with
Neuromorphometrics Inc.’s labels [73], so the overall accuracy is low. FastSurfer is a network proposed
for segmenting the structure labels of FreeSurfer based on a 2D multi-view framework, which yields
higher accuracy than QuickNAT. Although SLANT could not be directly compared with the SAU-Net
model because it has more segmentation labels than our model, the performance seems to have similar
or lower accuracy to SAU-Net. However, SLANT is slower in terms of speed (10-15 min). We compared
U-Net, U-Net++, QuickNAT, and FastSurfer using an identical experimental setup with the Dice
overlap and ASSD metrics. By evaluating SAU-Net on six different datasets and performing a reliability
study on two datasets, we have presented a comprehensive evaluation of current CNN-based methods
for brain segmentation.

4.2. Pre-Training with Auxiliary Labels

Even if the deep learning-based methods have been highly effective, their cost is high and they
require an extensive amount of annotated data for robust training [39]. Access to plentiful annotated
data for training is challenging for medical-based applications because of the high cost of creating
expert manual annotations. This issue is more critical for deep learning-based methods, where each
image slice corresponds to a one-shot data representation, in contrast to patch-based approaches,
where many patches can be extracted from a volume [28]. We evaluated a training strategy that
leverages extensive unlabeled annotation data and a small amount of manual annotation data to train
our SAU-Net model to overcome this issue effectively [29]. We utilized FreeSurfer to automatically
segment brain structure labels from unlabeled data, and these labels were used as auxiliary labels
to pre-train our model. This pre-trained model, which imitates FreeSurfer’s segmentations, is then
fine-tuned with a small amount of manually labeled data to obtain the final model. Our results have
demonstrated that a model trained with this training strategy outperforms the same model pre-trained
on auxiliary label data only.

4.3. Architectural Design for Deep Learning

The architecture of SAU-Net has been modified to address the challenges associated with
multi-label brain segmentation. Our architecture offers faster processing and a broader context than
patch-based U-Net and U-Net++. This is because, by adding the split-attention module to the U-Net++
structure, the separation between labels seems to be improved thanks to the split grouping of the
feature channels [36]. In the skip pathways with the pyramid levels, concatenating all the layers,
which enforces spatial consistency, is an essential aspect for segmenting small subcortical structures.
In addition, using EvoNorm [38] instead of a combination of ReLU and batch normalization overcomes
the disadvantage that large batch sizes cannot be used because of the property of 3D patches, and shows
that sufficient performance is achieved even when small batch sizes are used in training. Our results
show that the SAU-Net architecture is a significant improvement on the architectures of the SOTA
deep-learning models.

4.4. Segmentation Performance

We demonstrated the high accuracy of SAU-Net in a comprehensive experiment that covers
variations in acquisition parameters and neuroanatomy. In an experiment on the mixed dataset,
we demonstrated that SAU-Net provides segmentation accuracy and ASSD scores that are slightly
higher than those of the SOTA deep-learning-based methods (Table 3, Figures 4 and 5). Our results are
similar or slightly better than the performance (for 22 structure labels) of all other methods except
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for QuickNAT. However, our models show better results in the subcortical areas such as the lateral
ventricle. Notably, SAU-Net has not failed on any scan in our datasets.

4.5. Segmentation Reliability

In two additional experiments, we evaluated the reliability of SAU-Net. We observed high
consistency for the segmentation of nine representative structures (left and right) on test-retest data
with less than 1-4% variation in most brain structures (Table 5). The test-retest data were acquired in
the same scanner. We extended the evaluation to a more challenging dataset, where the same subject
was scanned in the same machines with various scanning parameters at different sites. As expected,
the variation increased in this setup, but the reliability was comparable to that of FastSurfer (Table 6).
Since FastSurfer presented the best performance amongst SOTA deep-learning methods (except for
NiftyNet-based U-Net style architecture [60]), we have conducted further analysis to compare the
reliability of SAU-Net.

However, our results showed that the more unconstrained, deep-learning-based segmentation
could achieve higher reliability.

4.6. Limitations

As with any brain segmentation method, SAU-Net has limitations. Our mixed dataset includes
various public and patient data from domestic hospitals. However, our labeled data are an improved
manual annotation based on FreeSurfer’s segmentation, so it cannot be directly compared with
FreeSurfer. In the future, we need to utilize better-defined manual annotations. Additionally,
the SAU-Net model, like other SOTA methods, has lower accuracy in smaller subcortical regions such
as the accumbens and amygdala than in other brain regions. The accuracy was improved after the
model was fine-tuned, however, this issue remains a challenging task.

5. Conclusions

We introduced SAU-Net, a deep-learning-based method for brain segmentation that achieved
a great performance with respect to existing methods and is as fast as or orders of magnitude faster
than the SOTA deep-learning and template-based approaches. We have demonstrated that SAU-Net
generalizes well to other unseen datasets when the training data differ from the testing data and yields
high segmentation accuracy. This high segmentation accuracy enhances group analyses by obtaining
effect sizes and significance values that better match those of manual segmentations. Furthermore,
because of its high test-retest accuracy, it can be effectively used for longitudinal studies. We believe
SAU-Net can be a highly impactful segmentation network due to its robustness to neuroanatomical
variability, allowing for almost instantaneous access to accurate imaging biomarkers along with its fast
processing time.
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