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Abstract

Purpose: Accurate segmentation of the prostate on computed tomography (CT) for treatment 

planning is challenging due to CT’s poor soft tissue contrast. Magnetic resonance imaging (MRI) 

has been used to aid prostate delineation, but its final accuracy is limited by MRI-CT registration 

errors. We developed a deep attention-based segmentation strategy on CT-based synthetic MRI 

(sMRI) to deal with the CT prostate delineation challenge without MRI acquisition.

Methods and materials: We developed a prostate segmentation strategy which employs an 

sMRI-aided deep attention network to accurately segment the prostate on CT. Our method consists 

of three major steps. First, a cycle generative adversarial network was used to estimate an sMRI 

from CT images. Second, a deep attention fully convolution network was trained based on sMRI 

and the prostate contours deformed from MRIs. Attention models were introduced to pay more 

attention to prostate boundary. The prostate contour for a query patient was obtained by feeding 

the patient’s CT images into the trained sMRI generation model and segmentation model.

Results: The segmentation technique was validated with a clinical study of 49 patients by leave-

one-out experiments and validated with an additional 50 patients by hold-out test. The Dice 

similarity coefficient, Hausdorff distance, and mean surface distance indices between our 

segmented and deformed MRI-defined prostate manual contours were 0.92 ± 0.09, 4.38 ± 4.66, 

and 0.62 ± 0.89 mm, respectively, with leave-one-out experiments, and were 0.91 ± 0.07, 4.57 ± 

3.03, and 0.62 ± 0.65 mm, respectively, with hold-out test.
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Conclusions: We have proposed a novel CT-only prostate segmentation strategy using CT-based 

sMRI, and validated its accuracy against the prostate contours that were manually drawn on MRI 

images and deformed to CT images. This technique could provide accurate prostate volume for 

treatment planning without requiring MRI acquisition, greatly facilitating the routine clinical 

workflow.
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1. INTRODUCTION

Prostate cancer is the most common cancer and the second leading cause of cancer death 

among men in the United States.1 Depending on the risk of recurrence and extent of disease, 

around 30% of prostate cancer patients receive radiation therapy.2 External beam 

radiotherapy is a noninvasive modality which provides localized dose delivery, and has been 

widely adopted for the definitive treatment of prostate cancer. Prostate delineation is a 

prerequisite for treatment planning.3,4 In clinical practice, the prostate is contoured 

manually. Due to the low soft tissue contrast of CT images, prostate delineation suffers from 

inter- and intra-observer variability, and the delineation accuracy is highly dependent on the 

clinician’s expertise and experience.5 Studies shows that CT-defined prostate volume often 

overestimates the prostate by over 30%.6,7 Computer-aided prostate segmentation methods 

have been developed to improve the accuracy of organ delineation. The current CT prostate 

segmentation techniques can be briefly summarized as the following:8

1. Contour- and shape-based methods segment the prostate based on boundary 

information, which may be affected by unreliable edge information in CT 

images.9 Prior shape information is incorporated to provide better results.10

2. Region-based methods use predominant intensity distributions of the prostate 

region to segment the CT contour. These methods are further categorized into 

atlas11 and level set methods.12

3. Clustering-based methods extract a set of feature vectors with the goal of 

identifying groups or clusters of similar objects based on the feature vectors. 

Proximity measures are used to group data into clusters of similar types.13

4. Machine learning-based methods regard prostate as a learning-based target.14 

These methods use a set of CT images with manual contour as a priori 

information to build a classifier to assign a new arrival CT voxel to prostate and 

non-prostate regions. Supervised and unsupervised techniques are used to build 

the classifier to divide the feature space into different regions.

Supervised machine learning has demonstrated enormous potential in medical image 

segmentation. According to the training model used, these methods can be grouped into 

support vector machines (SVM)-based,15 random forest (RF)-based,16 and deep learning-

based methods.17,18 The SVM-based and RF-based methods use handcraft information, such 

as texture features, to train a SVM or RF classifier. However, handcraft features, such as 

histogram of oriented gradient (HoG), local binary pattern (LBP), and Haar wavelet features 
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in SVM- and Haar-like features in RF-based methods, may not accurately represent the CT 

image. To address this issue, feature selection has been incorporated to identify the most 

informative features who have the discriminative power to differentiate prostate from non-

prostate.15 Deep features, which are directly assigned with semantic and structural 

information of the prostate region, are used to train a deep learning-based classifier. Liu et 

al. used deep neural networks (DNN) to learn the deep features for prostate segmentation.17 

DNN can automatically learn the deep features adaptive to the data, which differs from the 

handcrafted features. Kazemifar et al. used a 2D U-Net structure, a DNN variant, to 

delineate the prostate, bladder, and rectum in pelvic CT images.19 However, this method was 

based on 2D inputs, which lacks 3D spatial information. Balagopal et al. presented a fully 

automated workflow for male pelvic CT image segmentation using deep learning. The 

architecture consists of a 2D U-Net localization network followed by a 3D U-Net 

segmentation network for volumetric segmentation of prostate, bladder, rectum, and femoral 

heads.20

Nevertheless, the accuracy of these methods is limited by the inherent low soft tissue 

contrast of CT images, which usually yields overestimation of prostate volume. MRI has 

been used to aid prostate delineation due to its superior soft tissue contrast, but the 

corresponding prostate contour needs to be registered to CT images for dose calculation. 

Therefore, its accuracy is subject to MR-CT registration errors. Moreover, MRI may not be 

always available due to insurance issues or lack of device accessibility.

This study aims to develop an accurate prostate segmentation strategy on CT images with 

CT-based sMRI to deal with prostate segmentation challenges without requiring MRI 

acquisition. The contributions of the paper are as follows:

1. Compared to CT images, the superior soft tissue contrast of sMRI improves the 

prostate segmentation accuracy and alleviates the issue of prostate volume 

overestimation when using CT images alone.

2. A deep attention fully convolution network (DAFCN) was introduced to enhance 

the features’ discriminative ability to differentiate the prostate and non-prostate 

regions. The attention models were introduced to select the most relevant 

features to differentiate prostate and non-prostate regions.21

The paper is organized as follows: We first provide an overview of the proposed CT prostate 

segmentation framework in Section 2, followed by detailed description of the sMRI 

generation using a cycle-consistent generative adversarial network (CycleGAN),22 and 

prostate segmentation using DAFCN.21 We evaluated the proposed method through a 

comparison with a state-of-the-art U-Net segmentation method by leave-one-out 

experiments,20 and test the robustness of the proposed method by hold-out test. We 

demonstrate that prostate segmentation is enhanced with the integration of sMRI, and 

compared prostate contours generated on sMRI and CT using both U-Net and proposed 

DAFCN. Finally, along with an extended discussion, we conclude the presentation of our 

novel sMRI-aided CT prostate segmentation framework.
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2. MATERIALS AND METHODS

2.A. Overview

We propose a new prostate segmentation strategy to accurately segment the prostate on CT 

images. Figure 1 outlines the schematic flow chart of the proposed method. The 

segmentation consists of three major steps. First, a CycleGAN was used to estimate sMRI 

from CT images. By introducing an inverse CT-to-MRI mapping, CycleGAN can enforce 

the mapping from CT to MRI to be close to a one-to-one mapping.23 Second, a DAFCN was 

trained on sMRI and corresponding prostate contours that were delineated on real MRI and 

deformed to CT images. A deep attention model was integrated into the DAFCN to retrieve 

the most relevant features that can represent prostate and non-prostate boundaries. Deep 

supervision was also incorporated into this DAFCN to enhance the features’ discriminative 

ability.24,25 Finally, the segmented prostate contour of a test patient case was obtained by 

first feeding the CT image into the trained CycleGAN to generate the sMRI, and by then fed 

the sMRI into the trained DAFCN to generate the segmentation. The individual components 

of the algorithm are outlined in further detail in the following sections. The details of used 

network architectures are shown in Fig. 2.

2.B. Image acquisition

In this retrospective study, we collected the CT and MRI images of 49 patients who had 

received pelvic radiation therapy in our institution. MRIs were acquired using a Siemens 

standard T2-weighted MRI scanner with 3D T2-SPACE sequence and 1.0 × 1.0 × 2.0 mm3 

voxel size (TR/TE: 1000/123 ms, flip angle: 95°). MRIs were acquired at 1.5 T. Built-in 

distortion corrections were applied during reconstruction. CTs were captured with a Siemens 

CT scanner with 1.0 × 1.0 × 2.0 mm3 voxel size with 120 kVp and 299 mAs. The prostate 

contours manually delineated by physician on MRI images were also collected for our study. 

For each patient, all training MR and CT images were deformably registered with an intra-

subject strategy using a commercial software, Velocity AI 3.2.1 (Varian Medical Systems, 

Palo Alto, CA).

2.C. Synthetic MRI generation

The deformed MR image was used as the learning-based target of the planning CT image for 

our proposed sMRI-aided strategy. Because local mismatches between MR and CT images 

remain even after deformable registration, as the images have fundamentally different 

properties, training a CT-to-MRI transformation model is difficult. To cope with this 

challenge, inspired by a recent 2D CycleGAN study,22 we introduced a 3D CycleGAN in 

our sMRI generation algorithm because of its ability to mimic target data distribution by 

incorporating an inverse MRI-to-CT mapping.26 In addition, the patient anatomy can vary 

significantly among individuals. In order to accurately predict each voxel in the anatomic 

region (air, bone, and soft tissue), inspired by densely connected CNN,27 we introduced 

several dense blocks to capture multiscale information (including low-frequency and high-

frequency) by extracting features from previous and following hidden layers.

As shown in generator architecture of Fig. 2, after two convolution layers with stride size of 

2 to reduce the feature map sizes, the feature map goes through nine dense blocks, and then 

Lei et al. Page 4

Med Phys. Author manuscript; available in PMC 2020 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



two deconvolution layers and a tanh function to perform end-to-end mapping, that is, equal-

sized input and output. The tanh function works as a nonlinear activation function and makes 

it easy for the model to generalize or adapt to a variety of data and to map structures with 

similar CT intensities to different structures on MRI, such as prostate and bladder.28 The 

dense block is implemented by six convolution layers. A first layer is applied to the input to 

create k feature maps, which are concatenated to the input. A second layer is then applied to 

create another k feature maps, which are again concatenated to the previous feature maps. 

The operation is repeated five times. Then, the output of these layers goes through the last 

layer to shorten the feature maps to k.29

The discriminator is used to judge the realism of generated synthetic images against the 

original images. As shown in the discriminator architecture part, the discriminator is a 

typical classification-based FCN, which consists of multiple convolution layers. The number 

of convolution layers depends on input patch size, since the input patch is 64 × 64 × 64, the 

number of convolution layers is nine, where eight layers are with batch normalization and 

with stride size of 2, the last one layer is without batch normalization but with sigmoid 

function. The discriminator outputs a reduced size patch with element 1 denoting real and 

element 0 denoting fake.

Figure 3 shows axial views of the CT image, sMRI, and deformed prostate manual contour 

at two axial levels for a patient. These images well demonstrate that sMRI enhanced the 

prostate soft tissue contrast as compared to CT. To better illustrate the contrast enhancement 

of sMRI, Figs. 3(a4) and 3(b4) compare the profiles of the dashed yellow lines in subfigures 

(a1) and (b1) for CT image and sMRI. To provide a meaningful comparison, we use a 
x − min X

max X − min X  normalization to scale voxel intensities on the dash line to [0, 1], where x 

denotes a voxel’s intensity on dash line, X denotes the all voxels’ intensity appeared on dash 

line. In addition, the plot profile of the binary mask of the prostate manual contour on the 

dash line was used to determine the boundary of the prostate. To make this boundary clear, 

we set 0 as non-prostate and 1.1 as prostate for the binary mask. Thus, the boundary of the 

prostate is the jump discontinuity on the plot profile of a binary mask. As is shown in the 

subfigures (a4) and (b4), sMRI provides superior prostate contrast to CT images.

2.D. Deep attention fully convolution network

The DAFCN was trained on the patients’ pelvic sMRIs, with the binary mask of 

corresponding manual prostate contour used as learning-based target. These manual prostate 

contours were delineated by physicians on MR, and deformed to CT images, which were 

verified and approved for treatment planning. A 2.5D DAFCN, which takes five consistent 

sMRI transverse slices as 5-channel input, was used to perform an end-to-end segmentation. 

As shown in Fig. 2, the DAFCN network consists of three compression and decompression 

paths, each of compression and decompression paths are connected by a bridge path. The 

compression path is constructed by three convolution layers, followed by a max-pooling 

layer. In each convolution layer, feature representations can be extracted via 2D convolutions 

followed by the parametric rectified linear unit (PReLU). The decompression path is 

constructed by a deconvolution layer to enhance the resolution and followed by two 

convolutional layers. To output equal-sized feature maps, 2 × 2 stride size is adopted for 
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deconvolutions. The bridge path concatenates the feature maps from the current compression 

path and two previous decompression paths. DAFCN with such concatenation encourages 

each path to obtain both high-frequency information (such as textural information) and low-

frequency information (such as structural information) to represent the image patch. At the 

end of DAFCN, probability maps of contours are generated with soft-max operators. A 

threshold was used to binarize the probability maps to binary masks of contours, which we 

denote as segmented contours.

Rather than directly using the feature maps from compression path, attention gates (AGs) are 

incorporated to focus on the prostate boundary structures. Previous work demonstrated that 

by integrating AGs into a standard U-Net model,21 the most relevant semantic contextual 

information can be captured without a requirement to enlarge the receptive field, which is 

highly beneficial for organ localization. As is shown in Fig. 2, the feature maps extracted 

from the coarse scale is used in gating to disambiguate irrelevant and noisy responses in skip 

connections. This is performed immediately prior to the concatenation operation to merge 

only relevant activations. Additionally, AGs filter the neuron activations during both the 

forward pass and the backward pass. Gradients originating from background regions are 

downweighted during the backward pass. This allows model parameters in shallower layers 

to be updated mostly based on spatial regions that are relevant to a given task. By using 

AGs, the most salient features from compression path are highlighted and are passed through 

the bridge path. The detailed implementation of AGs is introduced in recent works.21,30 We 

also use deep supervision to force the intermediate feature maps to be semantically 

discriminative at each image scale.31 This helps to ensure that AGs, at different scales, have 

an ability to influence the responses to a large range of prostate content.

To demonstrate the efficacy of deep attention, we compared the results of our proposed 

DAFCN algorithm against the algorithm without using deep attention, that is, deeply 

supervised FCN (DSFCN). Figure 4 shows 3D scatter plots of the first three principal 

components of patch samples in the feature maps of each decompression path outputs. We 

randomly selected 2000 samples from the prostate region as well as the non-prostate region 

around the prostate boundary, as shown in the subfigure (a4). The scatter plots of a DSFCN 

in the subfigure (b1–-b4) illustrate an overlap between the samples from the prostate and the 

non-prostate regions; thus, these two regions cannot be easily separated. Whereas with 

DAFCN, as shown in the subfigure (c1–c4), the prostate and non-prostate samples can be 

readily separated, demonstrating the significant enhanced discerning capability with the 

addition of a deep attention strategy.

2.E. Implementation details

The computation complexity is higher than state-of-the-art U-Net algorithms due to having 

another CycleGAN-based sMRI generation model used. At training stage, the MRI and CT 

images were fed into the network in 64 × 64 × 64 patches, with an overlap between any two 

neighboring patches of 48 × 48 × 48. This overlap ensures that a continuous whole-image 

output can be obtained and allows for increased training data for the network. The learning 

rate for Adam optimizer was set to 2e-4, and the model was trained and tested on two 

NVIDIA Tesla V100 with 32 GB of memory for each GPU, a batch size of 4. 10 GB CPU 
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memory and 58 GB GPU memory were used for each batch optimization. It takes about 36 

min per 2000 iterations during training. The training was stopped after 150 000 iterations. 

Model training takes about 45 h. For testing, sMRI patches were generated by feeding CT 

patches into the trained CycleGAN model. Pixel values were averaged when overlapping 

exists. The sMRI generation for one patient takes about 23 min. Tensor-flow was used to 

implement both CycleGAN and DAFCN network architecture. During segmentation, the 

input patch size of our proposed DAFCN was set to 512 × 512 × 5, binary cross entropy was 

used as loss function, and the learning rate for Adam optimizer was set to 1e-3. The training 

was stopped after 200 epochs. For each epoch, the batch size was set to 20. The training of 

DAFCN model takes about 1.7 h, whereas the U-Net model takes more training time (about 

2.4 h) because it first trains a 2D U-Net for localization and then trains a 3D U-Net for 

segmentation.20 However, after training, our proposed algorithm has similar segmentation 

times compared to U-Net.20 A single prostate segmentation can be completed in 1–2 s.

2.F. Quantitative measurements

We used leave-one-out experiments to evaluate the proposed segmentation algorithm on 49 

patients’ data. That is, for each experiment, one patient was used as test data and the 

remaining 48 patients were used as training data. We excluded test patient from training our 

deep learning-based segmentation model. After training, this excluded patient’s CT image 

was used for the segmentation test. We repeated the experiment 49 times to let each patient 

used as test data exactly once. Our segmentation results were compared with the contours 

that were manually delineated on MRI and deformed to CT images. We repeated on all ways 

to cut the original data on a validation set of one patient data and a training set. In addition, a 

hold-out test with additional 50 patients’ data was performed to test the robustness of the 

proposed method. We trained the proposed sMRI-aided DAFCN model from our previous 

49 patients’ data and test the model by these 50 patients’ data.

We calculated the dice similarity coefficient (DSC), precision score, recall score, Hausdorff 

distance (HD), mean surface distance (MSD), and the residual mean square distance 

(RMSD) to evaluate the accuracy of our segmentation method. The calculation of these 

metrics is introduced in recent studies.25,32–34 The DSC, precision, and recall scores are 

used to quantify volume similarity between two contours. The HD, MSD, and RMSD 

metrics are used to quantify boundary similarity between two surfaces. Generally speaking, 

more accurate segmentation results are associated with lower HD, MSD, and RMSD scores 

and higher DSC, precision, and recall scores.

To illustrate the significant improvement of our proposed step-by-step enhancement, a paired 

two-tailed t-test was used between the results of any two comparison methods. Corrected P-

value by using Bonferroni correction method was also used to compare the significance of 

the improvement.
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3. RESULTS

3.A. Efficacy of sMRI-aided strategy

To evaluate the influence of sMRI-aided strategy on the segmentation, we quantitatively 

compared the results obtained with the proposed DAFCN tested separately on CT and sMRI 

images. As is shown in Table I, compared to CT segmentation, our sMRI-aided 

segmentation demonstrates superior performances on DSC, sensitivity, HD, MSD, and 

RMSD metrics.

3.B. Contribution of deep attention

We also compared the numerical results of DAFCN with those of DSFCN on sMRI data in 

Table II. As is shown, DAFCN achieved significant improvements on all metrics over 

DSFCN.

3.C. Comparison with U-Net method

To further validate our proposed method, we compared its performance against a state-of-

the-art U-Net method.20 This method consists of a 2D localization U-Net followed by a 3D 

segmentation U-Net for volumetric segmentation of the prostate.20 In addition, to evaluate 

the performance of sMRI-aided and deep attention strategies separately, the comparison of 

U-Net to our proposed DAFCN was tested on both CT and sMRI images. In other words, we 

compared four strategies: U-Net on CT (CT U-Net), U-Net on sMRI (sMRI U-Net), DAFCN 

on CT (CT DAFCN), and our proposed method, that is, DAFCN on sMRI (sMRI DAFCN).

Figure 5 compares the segmentation results of these four strategies. As shown in subfigure 

(b1–b5) and (d1–d5), the prostate contour generated with the proposed method (sMRI 

DAFCN) shows the best resemblance to the manual contour.

Table III compares the numerical results obtained by these four methods. As is shown in this 

table, the proposed sMRI DAFCN method outperformed other three methods on DSC, 

sensitivity, HD, MSD, and RMSD metrics, and generates comparable specificity on prostate 

contours.

To test the robustness of our proposed method, hold-out test with additional 50 patients’ data 

was performed. As is shown from Table IV, the performance of the proposed method (sMRI 

DAFCN) on the additional patients’ data is consistent with the performance of that on leave-

one-out experiments.

4. DISCUSSION

We proposed a prostate segmentation method which incorporates both an sMRI-aided 

strategy and a deep attention strategy into an DAFCN architecture to automatically segment 

the prostate using CT images only. The proposed method makes use of the superior soft 

tissue contrast of sMRI, bypasses MR acquisition and also CT-MR registration with its 

potential registration errors, and has the potential to generate accurate and consistent 

prostate segments using CT images alone.
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Recently, Liu et al. reported a DNN-based CT prostate segmentation and mean DSC 

between their DNN-based prostate segmentation and physician-generated contours for test 

data in three groups were 0.85 ± 0.06, 0.85 ± 0.04, and 0.88 ± 0.03, respectively.17 The HD 

was 7.0 ± 3.5 mm, 7.3 ± 2.0 mm, and 6.3 ± 2.0 mm for three groups.17 Our results showed 

that the mean DSC and HD of 44 3D TRUS images were 0.92 ± 0.09 and 4.38 ± 4.66 mm, 

respectively. Although the mean metrics of our method is better than their results, the 

standard deviation of our method is larger than what Liu et al. reported. This larger standard 

deviation may be caused by the relatively smaller size of database used in our study. We will 

validate the proposed method on more patients’ data in future.

There are several limitations of the proposed method. First, our ground truth of CT prostate 

volume was obtained from the manual contours, which were delineated on MRI images by 

physicians and deformed to CT images. These manual contours may have been affected by 

systematic errors, deformation uncertainty, and random errors. Our proposed method may 

mitigate random errors. However, the systematic errors (e.g., physician’s contouring style) 

and deformation uncertainty (e.g., small local MRI-CT mismatch) can still affect our final 

segmented results. In addition, we need deformable registered MRI-CT to train the 

CycleGAN-based sMRI generation model. In this sense, the registration accuracy of the data 

also affects the delineation accuracy ultimately. Thus, accurate deformable registration 

would be expected to be a limitation to our proposed methods.

Second, the number of patients is relatively small. Since we used a small set of data from 

one institution/imaging system, the method has not been shown that it is generalizable. 

Multi-institutional study will be done in the future. Recently, unpaired CycleGAN was 

introduced to estimate synthetic CT images from MRIs by training on unpaired dataset.35 

This method could be used to take care of the deformation correction. In the future, by 

adding more sufficient data, we will focus on training an unpaired CycleGAN network and 

our deep attention segmentation network on more sufficient data to handle the deformation 

accuracy limitation.

Third, in this study, we only involved the segmented organ of prostate. Organs at risk 

(OARs), such as rectum and bladder, are also generally well delineated from MRIs. This 

method could also be used for other organs from CT images. The male CT pelvic images 

multi-organ segmentation will be our future work. In addition, it is hard to identify the 

boundaries of the prostate tumor in the CT scan, whereas in the T2-weighted MRI, the tumor 

structure within the prostate is apparent. Detecting and segmenting prostate tumors from CT 

images by using the proposed sMRI-aided strategy would be our future work.

This study aims to propose an accurate prostate segmentation method in the context of 

radiation treatment planning and demonstrate its feasibility. In order to evaluate its clinical 

utility, a dosimetric study on treatment planning based on our segmentations is worth further 

investigation. Moreover, the biological effect stem from the dosimetric benefit directly 

affects the tumor control and toxicity. Studies about the biological effect of radiation dose 

and volume, such as QUANTEC,36 are extensive. These studies present different models and 

parameters to describe the relationship between received dose and tissue injury, which would 

be helpful in estimating the resulted biological effect in future study.
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5. CONCLUSIONS

In summary, we developed an accurate prostate segmentation strategy on CT images with 

CT-based sMRI to deal with the challenge of prostate delineation. This technique could 

provide accurate prostate volumes for treatment planning without requiring MRI acquisition, 

greatly facilitating the routine clinical workflow.
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FIG. 1. 
The schematic flow diagram of the proposed method. The first row shows the synthetic 

magnetic resonance imaging generation using CycleGAN, and the training procedure of 

segmentation model. The second row shows the segmentation stage for a new patient’s 

computed tomography image.
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FIG. 2. 
The architectures of proposed networks.
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FIG. 3. 
Visual results of generated synthetic magnetic resonance imaging (sMRI). (a1) and (b1) 

show the original computed tomography (CT) image at two axial levels, (a2) and (b2) show 

the generated sMRI, (a3) and (b3) show the deformed manual contour, (a4) and (b4) show 

the plot profiles of CT, sMRI, and manual contour of the yellow dashed line in (a1) and (b1), 

respectively.
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FIG. 4. 
An illustrative example of the benefit of our deep attention fully convolution network 

(DAFCN) compared with DSFCN without attention gate, (a1) shows the original CT image 

in transverse plane. (a2) shows corresponding manual contour, (a3) shows the generated 

synthetic magnetic resonance imaging (sMRI), (a4) shows the sample patches’ central 

positions drawn from sMRI, where the samples belonging to the prostate are highlighted by 

green circles, and the samples belonging to the non-prostate are highlighted by red asterisks. 

(b1–b4) show the scatter plots of the first three principal components of corresponding patch 

samples in feature maps at each decompression path outputs by using a DSFCN, 

respectively. (c1–c4) show the scatter plots of first three principal components of 

corresponding patch samples in the feature maps at each decompression path outputs by 

using our DAFCN, respectively. The position of the viewer in (b1–b4) and (c1–c4) is 

azimuth = 10° and elevation = 30°.
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FIG. 5. 
Comparison of the proposed method with state-of-the-art U-Net model. (a1) and (c1) show 

the computed tomography (CT) image. (a2) and (c2) show the magnetic resonance imaging 

(MRI). (a3) and (c3) show the synthetic MRI (sMRI). (a4) and (c4) show the zoomed-in 

region of CT of yellow rectangle shown in (a1) and (c1). (a5) and (c5) show the zoomed-in 

region of sMRI of that yellow rectangle. (b1–b5) and (d1–d5) show the zoomed-in binary 

mask of manual contour, segmented contour obtained by CT U-Net, sMRI U-Net, CT deep 

attention fully convolution network (DAFCN), and sMRI DAFCN, respectively.
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