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Abstract

Lowering either the administered activity or scan time is desirable in PET imaging as it decreases 

the patient’s radiation burden or improves patient comfort and reduces motion artifacts. But 

reducing these parameters lowers overall photon counts and increases noise, adversely impacting 

image contrast and quantification. To address this low count statistics problem, we propose a 

cycle-consistent generative adversarial network (Cycle GAN) model to estimate diagnostic quality 

PET images using low count data.

Cycle GAN learns a transformation to synthesize diagnostic PET images using low count data that 

would be indistinguishable from our standard clinical protocol. The algorithm also learns an 

inverse transformation such that cycle low count PET data (inverse of synthetic estimate) 

generated from synthetic full count PET is close to the true low count PET. We introduced residual 

blocks into the generator to catch the differences between low count and full count PET in the 

training dataset and better handle noise.

The average mean error and normalized mean square error in whole body were −0.14% ± 1.43% 

and 0.52% ± 0.19% with Cycle GAN model, compared to 5.59% ± 2.11% and 3.51% ± 4.14% on 

the original low count PET images. Normalized cross-correlation is improved from 0.970 to 0.996, 

and peak signal-to-noise ratio is increased from 39.4 dB to 46.0 dB with proposed method.

We developed a deep learning-based approach to accurately estimate diagnostic quality PET 

datasets from one eighth of photon counts, and has great potential to improve low count PET 

image quality to the level of diagnostic PET used in clinical settings.
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1. Introduction

Positron emission tomography (PET) has become a widely employed imaging modality for 

disease diagnosis in oncology (Czernin et al 2007, Federman and Feig 2007), cardiology 

(Lee et al 2012, Youssef et al 2012) and neurology (Nordberg et al 2010, Andersen et al 
2014). Due to degrading factors of positron range, non-collinear annihilation and scanner 

hardware design, PET images are associated with low count statistics (Votaw 1995). The 

diagnostic utility and quantitative accuracy critically depend on these count statistics (Lodge 

et al 2012), which mainly rely on scanner hardware configuration, patient attenuation, 

administered activity and scanning time (Sunderland and Christian 2015, Wickham et al 
2017). Advances in nuclear medicine such as the widespread use of lutetium-based detectors 

and the clinical adoption of silicon photomultipliers (Nguyen et al 2015), time-of-flight 

(Karp et al 2008), resolution modeling (Leahy and Qi 2000) and noise regularization (Qi and 

Leahy 1999) have significantly increased signal-to-noise ratio (SNR). These improvements 

have led to some reductions in administered dose or scan time to maintain a similar SNR to 

images from instruments without these advancements (van der Vos et al 2017).

Protocol optimization based on patient body habitus (e.g. body mass index, weight) is often 

used to maintain consistency in noise texture with possible reductions in administered 

activity and scanning time for some patients (Wickham et al 2017). There is a continued 

desire to make further reductions in the administered activity to reduce radiation exposure, 

especially in pediatric populations that have higher lifetime cancer risk (Fahey et al 2017) 

and those who receive multiple scans for restaging and treatment monitoring (Chawla et al 
2010, Fahey and Stabin 2014). Meanwhile, scanning time must be kept short for the 

consideration of motion control, patient comfort and scanner throughput (Fahey and Stabin 

2014). The low count statistics caused by the limited administered activity and scanning 

time results in increased image noise, reduced contrast-to-noise ratio (CNR), and degraded 

image quality. Moreover, quantification errors resulting from low photon counts could 

increase bias in SUV measurements of up to 15% (Boellaard 2009). Therefore further 

improvements in hardware design and processing are needed to drive down administrative 

activity and scanning time without adversely affecting image quality and quantification.

Data-driven approaches such as machine learning- and deep learning-based methods have 

found success in a number of computer vision tasks and demonstrated great potential in the 

low count statistical problem of PET imaging. An et al trained multi-level canonical 

correlation analysis framework to estimate full dose PET images from its low dose 

counterpart, and refined the image quality iteratively with sparse representation (An et al 
2016). MR images were also integrated into the sparse representation frameworks to provide 

anatomical and structural information for better estimation (An et al 2016, Wang et al 2016, 

2017). The performances of these machine learning-based approaches depend on the 

handcraft features extracted based on prior knowledge, and well representing images with 

handcraft features is usually challenging. Moreover, small-patch-based methods tend to 

generate over-smoothed and blurred images resulting in loss of texture information. Recent 

applications of convolutional neural network (CNN) have been employed in denoising of 

low dose computed tomography and radiography (Chen et al 2017a, 2017b). 3D conditional 
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generative adversarial network was utilized on [F-18] fluorodeoxyglucose (FDG) PET 

images to predict full dose (e.g. high count) PET images from low dose (e.g. low count) data 

and achieved superior performances to a CNN based method (Wang et al 2018). The method 

in Wang et al (2018) was applied on brain images with approximately one-quarter the counts 

of clinical protocol. Application of these data-driven approaches to brain data are often less 

complicated due to lower inter-patient anatomical variation in brain images comparing to 

that on whole-body images.

In this work, we propose a cycle-consistent generative adversarial network (Cycle GAN) to 

predict high-quality full count whole-body PET images from low count PET data. Cycle 

GAN architecture includes both a forward and reverse (i.e. cycle) training model on the low 

count and full count PET training data. This approach improves the GAN model’s prediction 

and uniqueness of the synthetic dataset. Residual blocks are also integrated to the 

architecture to better capture the difference of low count and full count images and enhance 

convergence. The proposed model was implemented and evaluated on whole-body FDG 

PET images, a more challenging dataset compared to brain images, with only 1/8th counts.

2. Method

2.1. Method overview

Figure 1 outlines the proposed full count PET synthesis algorithm, which consists of a 

training stage and a prediction stage. The full count PET image obtained with standard 

protocol is used as the deep learning-based target of the low count PET image. Due to the 

presence of noise, low count PET images demonstrate less texture information compared 

with full count PET images, thus training a transformation model from low count to full 

count (low-to-full) is an ill-posed inverse problem. To cope with this issue, a cycle-

consistent adversarial network (Cycle GAN) is introduced to capture the relationship from 

low count to full count PET images while simultaneously supervising an inverse full count 

to low count (full-to-low) transformation model. The network can be thought of as two-

pronged structure, simultaneously making itself better at both creating synthetic full count 

PET images and learning how to identify full count PET images. The input patch size for the 

Cycle GAN architecture was set to be 64 × 64 × 64. Each patch was extracted from full 

count and low count PET images by sliding the window with overlapping size of 18 × 18 × 

18 to its neighboring patches. Individual components of the algorithm are outlined in further 

detail in the following sections.

2.2. Network architecture

Figure 2 shows the detailed network architecture of generators and discriminators used in 

the proposed method. The generators learn a mapping from a source image to a target image. 

Since the source image and target image share similar structure, the residual network 

architecture was used to implement the generators to learn based on the residual image, i.e. 

the difference between the source and target image, rather than the entire images (Gao et al 
2019, Harms et al 2019). Discriminator networks were introduced to evaluate the 

synthesized image. Typically, the generator’s objective is to increase the judgement error of 

the discriminative network, that is, fool the discriminator network by producing synthetic or 
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cycle images that are indistinguishable to the input training images. The discriminators’ 

training objective is to decrease its judgement error and enhance the ability to differentiate 

true from synthetic images. In this work, the number of convolution layers in discriminator 

architecture is 9, where 8 layers are followed by batch normalization, the last 1 layer is 

followed by sigmoid function.

2.3. Cycle-consistent adversarial loss

The accuracy of both generator and discriminator networks depends on the design of their 

corresponding loss functions. The generator is optimized subject to

G = argmin
G

λadvLadv(S) + λdistLdist(S) (1)

where G can be Glow-full (low-to-full generator) or Glow-full (full-to-low generator), λadv and 

λdist are weighting factors for adversarial loss and distance loss, respectively. Ladv(S) is the 

adversarial loss function, which is formulated as,

Ladv(S) = MAD(D(S), 1) (2)

where D S  is the discriminator output for synthetic image S and MAD(D(S), 1) is the mean 

absolute difference between D S  and a unitary mask, measuring the number of incorrectly 

generated pixels in the synthetic full count PET image. Ldist(S) in equation (1) is the 

distance loss function composed of a compound loss function of mean p-norm distance 

(MPD) and gradient descent loss. The distance loss function is calculated as,

Ldist(S) = λMPD ∥ S, T ∥p + λGDLGDL(S, T) (3)

where GDL (S, T) is the gradient descent loss function between the target image and the 

source image, described as below. ‖·‖p represents the p-norm,

∥ x ∥ p = x1
p + x2

p + … + xn
p

1
p (4)

for a vector x of length n. In this work, p is set to 1.5. This allows for a tradeoff between the 

sharpness preserved by the l1-norm and the blurring and voxel misclassification that have 

been observed when the l2-norm is used. The gradient descent loss function is calculated by

GDL(Z, Y ) = ∑
i, j, k

Zi, j, k − Zi − 1, j, k − Y i, j, k − Y i − 1, j, k 2
2

+ Zi, j, k − Zi, j − 1, k − Y i, j, k − Y i, j − 1, k 2
2

+ Zi, j, k − Zi, j, k − 1 − Y i, j, k − Y i, j, k − 1 2
2

(5)

where i, j, and k denote pixels in the x, y, and z directions, ∥ ⋅ ∥2
2 denotes the square of 2-

norm. Equation (5) minimizes the gradient magnitude difference between the target image 

and the source image, forcing the network to enhance edges which have strong gradients. As 

mentioned previously, the framework relies on training generators to perform both a low-to-
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full transformation and a full-to-low transformation. The generators are trained by a global 

generator loss function, called a cycle-consistent adversarial loss function,

Glow‐full, Gfull−low = argmin
G

λadvLadv Isfull + λdist
cycleLdist Iclow + λdist

synLdist Isfull

+λadvLadv Islow + λdist
cycleLdist Icfull + λdist

synLdist Islow

(6)

where Isfull is the synthetic full count PET and is obtained by Isfull = Glow-full (Ilow). Ilow 

denotes the original low count PET. Iclow is the cycle low count PET and is obtained by Iclow 

= Gfull-low (Isfull). Islow is the synthetic low count PET and is obtained by Islow = Gfull-low 

(Ifull). Ifull denotes the original full count PET. Icfull is the cycle full count PET and is 

obtained by Icfull = Glow-full (Islow). λ is a regularization parameter for each component of 

equation (6). The discriminators are optimized in tandem with the generators according to

Dfull, Dlow = argmin
D

MAD Dfull Isfull , 0 + MAD Dfull Ifull , 1
+MAD Dlow Islow , 0 + MAD Dlow Ilow , 1 (7)

where MAD (Dfull (Isfull), 0) is defined the same as in equation (2), but a zero mask is used 

rather than a unit mask (all-ones matrix). The discriminator is designed to differentiate true 

images from synthetic ones. The zero masks in equation (7) reflect that the discriminator of 

a given image type (full count PET) should be able to find a synthetic image of the different 

type. On the other hand, the unit mask indicates that the discriminator should always identify 

a full count PET image. As mentioned above, the proposed framework relies on learning the 

bi-directional relationships between the source image and target image. This framework 

produces a model that is robust to noisy data or data that is compromised with artifacts. 

Given two images with similar underlying structures, the cycle-consistent adversarial 

network is designed to efficiently learn an intensity mapping from the source distribution to 

the target distribution, even if the relationship is ill posed nonlinear. The proposed 

framework learns this mapping based on residual images, or the difference between the low 

count and the full count PET images.

2.4. Evaluation and validation

A retrospective sample of 25 consecutive whole-body FDG oncology patient datasets were 

collected for model training and evaluation. An additional ten consecutive whole-body FDG 

oncology patient datasets were collected for model evaluation that were not used in the 

model training and validation. All PET data were acquired with Discovery 690 PET/CT 

scanner (General Electric) using a BMI-based administration protocol of either 370 MBq 

(BMI < 30) or 444 MBq (BMI ⩾ 30) followed by a 60 min uptake period. Emission data 

were collected based on BMI for 2.5 min (BMI ⩾ 25), 2 min (18.5 < BMI < 25) or 1.5 min 

(BMI ⩽ 18.5) for each bed position. Images were reconstructed with a 3D ordered-subset 

expectation maximization (OSEM) algorithm (3 iterations, 24 subsets) with time-of-flight 

and corrections for attenuation, scatter, randoms, normalization and deadtime (Iatrou et al 
2004). A post-image Gaussian filter of 6.4 mm was applied to all images. The reconstruction 
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matrix was 192 × 192 with a pixel size of 3.65 × 3.65 × 3.27 mm3. Low count PET data 

were created by histogramming the emission data to one-eighth the bed duration for all bed 

positions and reconstructing with the same OSEM algorithm parameters.

Whole brain, lung, heart, bilateral kidneys, liver, lesions and whole-body volumes of interest 

were delineated on CT images. The performance of proposed method was quantified with 

mean error (ME) (Botchkarev 2018), normalized mean square error (NMSE) (Lee et al 
2019) and peak signal to noise ratio (PSNR) (Lei et al 2018a, Yang et al 2019) calculated for 

each contoured volume,

ME = 1
N ∑i ∈ V

Ifull(i) − I′(i)
Ifull(i)

(8)

NMSE =
Ifull − I′ 2

2

Ifull 2
2 (9)

PSNR = 10log10
N ⋅ max I′(i) 2

Ifull − I′ 2
2 , i ∈ V . (10)

ME and NMSE are averaged over all voxels inside the contoured and whole body volume V. 
N is the total number of voxels inside the volume, and Ifull (i) is are the intensity values from 

ground truth full count PET, and I′ is those of low count PET or synthetic full count PET 

image. max(·) is the max intensity inside volume V. We also calculated normalized cross 

correlations (NCC) to quantify the intensity and structure similarity between full count PET 

and low count PET or synthetic full count PET. NCC (Lei et al 2018b) is defined as,

NCC =
∑i ∈ V C ⋅ Ifull(i) − mean Ifull I′(i) − mean I′

std Ifull ⋅ std I′ (11)

where mean(·) and std(·) calculate the mean intensity and standard deviation inside volume 

V.

Cycle GAN was built on top of the established model, GAN. To demonstrate the 

effectiveness of introducing cycle-consistent framework, we compared the performance of 

the proposed Cycle GAN model and U-Net and GAN model (Wang et al 2018) with leave-

one-out cross validation and also on the dataset that are excluded from training, which is a 

hold-out test. Leave-one-out cross validation is used for evaluation of the proposed 

algorithm. In this evaluation method, we excluded one patient from each dataset when 

training the model, namely, 24 patients from total 25 patients were used for training the 

model. After training, the excluded patient’s images are used as test images. This procedure 

is repeated 25 times such that each patient is used as test patient for exactly once. The hold-

out validation was also used. For this experiment, we used previous 25 patients as training 

data, and used additional 10 patients as test data. Our algorithm was implemented in Python 

3.6 and Tensorflow with Adam gradient descent optimizer and were trained and tested on a 
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NVIDIA Tesla V100 GPU with 32 GB of memory. The learning rate for Adam optimizer 

was set to 2 × 10−5. The batch size was set to 10. During training, 7.2 GB CPU memory and 

27.6 GB GPU memory was used for each batch optimization. It takes about 12 min per 2000 

iterations during training. In the testing, it takes about 2 min to generate an estimated full 

count PET image for one patient. The training was stopped after 150 000 iterations.

3. Results

3.1. Leave-one-out cross validation

Figure 3 shows a representative subject’s low count, full count, synthetic full count PET 

with U-NET (U-NET GAN), synthetic full count PET with GAN model (GAN PET) and 

synthetic full count PET with cycle GAN model (Cycle GAN PET). All three models 

suppress image noise and enhance image quality substantially compared to low count PET. 

Comparing to U-NET and GAN models, the proposed Cycle GAN method obtains better 

image quality and better matches in texture to the full count images. The improvements in 

Cycle GAN are particularly evident in organs of normal physiological update such as the 

brain, heart, liver and kidneys in figure 3. These similarities are also evident in figure 3(g) on 

a cranial-caudal profile comparison and the joint histograms in figure 4. As shown in figure 

4, joint histogram with Cycle GAN shows a more constrict distribution towards line of 

identity, indicating better correlation to full count PET.

Table 1 presents the quantitative results of the leave-one-out cross validation. ME, NMSE, 

NCC and PSNR were calculated on low count PET, U-NET PET, GAN PET and Cycle 

GAN PET over full count PET images. Both ME and NMSE are improved to less than 1% 

with Cycle GAN model, comparing to 5.59% and 3.51% on the original low count images, 

3.46% and 3.50% on GAN PET, 0.73% and 3.32% on U-NET PET. The PSNR is enhanced 

and the PSNR increased from 39.4 dB to 46.0 dB with Cycle GAN, and more modestly to 

39.8 with GAN model and U-NET. Individual organ and whole-body contour results of the 

leave-one-out cross validation are presented in figure 5. U-NET, GAN and Cycle GAN 

reduced ME and NMSE, improved NCC and PSNR, while Cycle GAN shows superior 

performances on average in all metrics. The ME on the normal organs ranged from 1.3%–

4.3% with U-NET, 0.9%–6.3% with GAN and 0.2%–2.4% with Cycle GAN. The ME on 

lesions was reduced from 9.6% to 6.1% with U-NET, 2.2% with GAN and to 1.3% with 

Cycle GAN. Similarly, the NMSE was reduced in range from 0.7%–5.1% to 1.9%–4.3% 

with U-NET, to 1.8%–3.4% with GAN and to 0.6%–1.6% with Cycle GAN. The correlation 

between low count PET and full count PET was also enhanced with the proposed method, 

and NCC range was increased from 0.709–0.962 to 0.962–0.992 with Cycle GAN. Image 

contrast, interns of PSNR range, improved both qualitatively and quantitatively from 22.5–

29.1 dB to 22.0–29.1 dB with GAN and to 28.8–38.5 dB with Cycle GAN in normal organs. 

The PSNR in lesions improved from 19.1 dB to 19.6 dB for U-NET, to 22.0 dB for GAN 

and 29.6 dB for Cycle GAN.

3.2. Performance validation on separate dataset

The performances of the proposed method were further evaluated on the dataset that are 

excluded from training. As illustrated in figure 6, U-NET, GAN and Cycle GAN suppress 
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image noise, improve visual detectability and enhance the profiles. Cycle GAN performs 

better in all three views as illustrated in figures 6 and 7 show greater enhancement in profile 

comparison and histogram comparison. The quantitative results in figure 8 and table 2 both 

demonstrate better matching of Cycle GAN PET images with full count PET images, 

comparing to GAN PET.

4. Discussion

In this work, we proposed a cycle-consistent generative adversarial network to predict high-

quality full count PET images from low count PET data. GAN has demonstrated superior 

performances in generative image modeling compared to stand-alone CNN in medical 

imaging denoising of compromised data (Yang et al 2018, You et al 2018b). Due to the 

presence of noise in both input sources and output targets of the model training, it would be 

difficult to ensure the generator in GAN learns a meaningful mapping such that a unique 

output exists for a given input. The generator could create nonexistent features or collapse to 

a narrow distribution (You et al 2018a). Cycle GAN adds more constraint to the generator by 

introducing an inverse transformation in a circular manner. This more effectively avoids 

model collapse and better ensures the generator find a unique meaningful mapping. The 

above studies demonstrate improved performance of Cycle GAN over GAN in the low count 

PET problem.

Comparing to other bench mark studies, our method shows appealing performances. Wang 

et al incorporate both low dose PET and MR images in the training of a patch-based sparse 

representation framework to estimate full dose PET images achieving 1.3% NMSE in their 

brain PET image dataset (Wang et al 2016). Another study performed by the same group 

utilized 3D conditional generative adversarial networks to predict full dose PET images, and 

obtained around 2% NMSE on both normal organs and lesions (Wang et al 2018). These two 

studies were both performed on brain images, which present largely uniform and symmetric 

uptake, and do not suffer from complicated non-rigid motion artifacts observed in whole-

body. For these reasons and others, the NMSE can be lower compared to peripheral organs 

with only modest improvements in this quantitative measure as demonstrated in our work. 

We reported NMSE in brain of 0.60% ± 0.24%, which agrees well with Wang et al and is 

comparable to our results in the peripheral organs and whole-body regions.

The inferior performance of our model in brain quantification was observed on the 

evaluation with the second dataset. No significant differences were found in our quantitative 

measures, and these findings may be due to a limited number of subjects (4 of 10) having 

their whole brain imaged. Considering that all subjects in this work are referred to PET 

based on a cancer diagnosis, brain is usually not a critical focus of their treatment. Further 

work will need to be performed to evaluate the clinical significance of this methodology on 

sensitivity and specificity compared to standard of care full count PET.

Standard protocols commonly calculate administered activity proportional to patient weight, 

but these protocols still result in compromised image quality on overweight patients. Masuda 

et al found that, when patient’s weight increased from 50 kg to 77 kg, doubling the radiation 

exposures or scanning time still generated degraded SNR (Masuda et al 2009). PET counts 
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drop dramatically with increase of patient weight and attenuation. To maintain similar image 

quality, administered activity and scanning time must be increased significantly on 

overweighed patients to compensate for the loss of photon counts. The proposed method 

demonstrated superior performances to recover high quality PET images from 1/8 of 

standard counts and has potential to facilitate PET imaging on overweight patients.

With the recent introduction of total body PET, the large gain in sensitivity can reduce the 

overall scan duration to less than one minute (Rahmim et al 2019). We have shown that a 

deep learning approach with Cycle GAN can produce diagnostic quality images in 1/8th PET 

counts resulting in a whole-body scan duration of just under 2 min for 6 bed positions. The 

gain in apparent sensitivity could be utilized to further develop more sophisticated 

acquisition strategies such as dynamic whole-body acquisitions or delay imaging.

5. Conclusion

We developed a deep learning-based approach to accurately estimate diagnostic quality PET 

datasets from 1/8th of full count based on a cycle-consistent GAN with integrated residual 

blocks. The proposed deep learning-based approach has great potential to improve low count 

PET image quality to the level of diagnostic PET used in clinical settings. This approach can 

be used to substantially reduce the administered dose or scan duration while maintaining a 

high diagnostic quality.
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Figure 1. 
Schematic flow chart of the proposed method, full count PET synthesis based on cycle-

consistent generative adversarial network. The top region of the figure represents the training 

stage, and the green-outlined region represents the test stage. During training, patches are 

extracted from paired low count and full count PET images. A convolutional neural network 

is used to down-sample the low count patch and the residual difference between the low 

count and the full count is minimized at this coarsest layer. The synthetic full count image is 

then up-sampled to its original resolution, and a discriminator is trained to learn the 

difference between this synthetic full count and the ground truth full count datasets. The 

inverse of this process is then carried out to generate the cycle low count PET image. 

Simultaneously to training the network that maps low count PET (to synthetic full count 

PET and then) to cycle low count PET, a complementary network is trained to transform 

ground truth full count PET to cycle full count PET. After training, a low count PET image 

can be fed into the generator (low-to-full) network to generate a synthetic full count PET 

image.
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Figure 2. 
Network architecture.
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Figure 3. 
Leave-one-out cross validation. Images are (a) CT (b) full count PET (c) low count PET, (d) 

U-NET PET, (e) GAN PET, (f) Cycle GAN PET images on the coronal, sagittal and axial 

planes and (g) PET image profiles of low count, full count, U-NET, GAN and Cycle GAN 

PET. The dashed line on (b) indicates the position of a sagittal cranial-caudal profile 

displayed in (g). The brain axial PET images were displayed with brain window for better 

visualization, and all other were displayed with kidney window.
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Figure 4. 
Leave-one-out cross validation. Joint histogram of full count PET with (a) low count, (b) U-

NET, (c) GAN and (d) Cycle GAN PET. The x-axis of (a)–(d) is the pixel value of low count 

PET or synthetic full count PET generated by the U-NET, GAN, and the proposed Cycle 

GAN. The y -axis of (a)–(d) is the corresponding pixel value of full count PET. The color 

represents relative frequency in range of 0 to 100.
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Figure 5. 
Leave-one-out cross validation. Figures show quantitative comparison between low count 

PET, U-NET PET, GAN PET and Cycle GAN PET, in terms of (a) ME, (b) NMSE, (c) NCC 

and (d) PSNR on normal organs and lesions. The error bar is standard deviation.
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Figure 6. 
Hold-out validation. Images are (a) CT (b) full count PET (c) low count PET, (d) U-NET 

PET, (e) GAN PET, (f) Cycle GAN PET images on the coronal, sagittal and axial planes and 

(g) PET image profiles of low count, full count, U-NET, GAN and Cycle GAN PET. The 

dashed line on (b) indicates the position of a sagittal cranial-caudal profile displayed in (g). 

The brain axial PET images were displayed with brain window for better visualization, and 

all other were displayed with kidney window.
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Figure 7. 
Hold-out validation. Joint histogram of full count PET with (a) low count, (b) U-NET, (c) 

GAN and (d) Cycle GAN PET. The x-axis of (a)–(d) is the pixel value of low count PET or 

synthetic full count PET generated by the U-NET, GAN, and the proposed Cycle GAN. The 

y -axis of (a)–(d) is the corresponding pixel value of full count PET. The color represents 

relative frequency in range of 0 to 100.
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Figure 8. 
Hold-out validation. Figures show quantitative comparison between original low count PET, 

U-NET PET, GAN PET and Cycle GAN PET, in terms of (a) ME, (b) NMSE, (c) NCC and 

(d) PSNR on normal organs. The error bar is standard deviation.
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Table 1.

Quantitative comparison between low count PET, U-NET PET, GAN PET and Cycle GAN PET on whole 

body with leave-one-out cross validation. Data are reported as mean ± STD.

ME NMSE NCC PSNR (dB)

Low count 5.59% ± 2.11 3.51% ± 4.14% 0.970 ± 0.030 39.4 ±3.1

U-NET 0.73% ± 1.35% 3.32% ± 0.74% 0.971 ± 0.012 39.8 ± 2.3

GAN −3.46% ± 5.28% 3.50% ± 2.75% 0.970 ± 0.026 39.8 ± 3.7

Cycle GAN −0.14% ± 1.43% 0.52% ±0.19% 0.996 ± 0.002 46.0 ± 3.8

P-value Cycle GAN versus Low count <0.001 <0.001 <0.001 <0.001

P-value Cycle GAN versus GAN 0.744 <0.001 <0.001 <0.001

P-value Cycle GAN versus U-NET 0.001 <0.001 <0.001 <0.001
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Table 2.

Quantitative comparison between low count PET, U-NET PET, GAN PET and Cycle GAN PET with Hold-out 

validation. Data are reported as mean ± STD.

ME NMSE NCC PSNR (dB)

Low count 6.70% ± 4.10% 4.11% ± 2.50% 0.963 ± 0.023 38.1 ± 3.4

U-NET 1.03% ± 2.80% 3.74% ± 0.97% 0.967 ± 0.008 38.6 ± 2.1

GAN −1.4% ± 3.55% 2.90% ± 0.99% 0.975 ± 0.008 39.3 ± 4.0

Cycle GAN 0.16% ± 1.36% 1.75% ± 0.66% 0.984 ± 0.007 41.5 ± 2.5

P-value Cycle GAN versus Low count <0.001 0.004 0.004 0.001

P-value Cycle GAN versus GAN 0.290 <0.001 <0.001 <0.001

P-value Cycle GAN versus U-NET 0.198 <0.001 <0.001 0.005
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