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a b s t r a c t 

We develop a new mathematical model by including the resistive class together with quarantine class 

and use it to investigate the transmission dynamics of the novel corona virus disease (COVID-19). Our 

developed model consists of four compartments, namely the susceptible class, S(t) , the healthy (resis- 

tive) class, H(t) , the infected class, I(t) and the quarantine class, Q(t) . We derive basic properties like, 

boundedness and positivity, of our proposed model in a biologically feasible region. To discuss the local as 

well as the global behaviour of the possible equilibria of the model, we compute the threshold quantity. 

The linearization and Lyapunov function theory are used to derive conditions for the stability analysis 

of the possible equilibrium states. We present numerical simulations to support our investigations. The 

simulations are compared with the available real data for Wuhan city in China, where the infection was 

initially originated. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Communicable diseases have always been an important part of 

uman history. Large number of outbreaks have been occurred in 

uman history due to which millions of people lost their lives. 

or instance the outbreak that occurred in the previous century, 

nown as Spanish flow during which millions of people died. Many 

f such diseases then became endemic like HIV/AIDS due to which 

housands of people are dying each year. In the last two decades, 

wo corona-virus epidemics have been reported [1–5] . Such micro 

rganism are classes of viruses that can result infections in hu- 

ans, ranging from the common cold to severe acute respiratory 

yndrome (SARS). The first corona-virus epidemic, known as SARS 

as effected more than eight thousand infections with eight hun- 

red deaths. The second one, called MERS, spread from Saudi Ara- 

ia to number of other countries. About 25,0 0 0 individuals were 

nfected with it among which nearly thousand people lost their 
∗ Corresponding author at: Department of Physics, College of Sciences, University 

f Bisha, PO Box 344, Bisha 61922, Saudi Arabia 
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ife. MERS is still a root of some cases [6] . Nearly a year ago, a se-

ere respirational infection originated in the Wuhan city of China 

7] . It was reported that the main cause of this infection was the 

ew coronavirus (COVID-9). It is reported that the disease was first 

ransmitted from animals to humans [8] . Some researchers say that 

ats have the corona virus from which it was transmitted to the 

umans, as all the patients that were first identified working in 

et market in the Wuhan city [9] . The infection was then trans- 

itted very rapidly in the whole city of during the months of 

anuary and February 2020. Due to international travel, in March 

020 some patients were identified in USA, Thailand and Korea. 

hen it was also announced that the disease is contagious as it is 

ransmitted from person to person by contact. During the mid of 

ach 2020, WHO announced that the infection to be an outbreak 

10] . One virologists named it ‘severe acute respiratory syndrome’ 

orona virus (SARS-CoV-2). There are many claims and several the- 

ries about the origin of COVID-19 in which the most probable is 

hat it might have been originated from bat [11] , or from a seafood

arket exposure [12] . As the disease is contagious, international 

ravel could expedite the spread of the virus [13] . The novel corona 

irus outbreak currently as the most remarkable in the recent his- 

ory. By April 2020, COVID-19 affected nearly the whole globe [14] . 

https://doi.org/10.1016/j.chaos.2020.110585
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110585&domain=pdf
mailto:amabdelaty@ub.edu.sa
mailto:e.mahmoud@tu.edu.sa
https://doi.org/10.1016/j.chaos.2020.110585
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 , 
esearchers in the area of epidemiology and other branches of bi- 

logy are working day and night to find treatment or vaccine for 

his disease. They use different tools to understand the procedure 

hrough which the disease transmits in a society and how to re- 

uce or control it. The process of infectious diseases may be easily 

nderstood and described by using mathematical models [15–17] . 

Mathematical model is a powerful tool that effectively helps 

n investigation of real world phenomenon and processes [18–22] . 

ernoulli was the first mathematician who gave idea about math- 

matical modeling of spread of an infectious disease during 1760. 

fter that numerous researchers took interest in the said area. One 

an easily understand various physical and biological phenomenon 

nd their mechanism through such models. This area has been 

ery well extended from simple models to more complex and com- 

licated models. With the help mathematical models, large num- 

er of infectious and other diseases have been studied e.g., see 

19,20] . Using mathematical models, researchers first try to under- 

tand the dynamics of a disease, and afterwards they develop con- 

rol and curing procedures for it. For some famous study in this 

egard, we refer [23–26] . 

The researchers have used the tools of nonlinear numerical 

nalysis to establish the global, local stability for the endemic and 

isease free equilibrium (DFE). In same line recently researchers 

ave greatly investigated the novel COVID-19 through mathemati- 

al models from different aspects. The concerned investigations are 

evoted to stability theory, numerical simulation and global local 

ynamics. In this regards we have referred here some good work 

ike [27–33] . 

In all previous models the researchers have considered various 

ompartments but to the best of our knowledge the resistive com- 

artment along with quarantined class has not been reported yet. 

ur model makes the investigation unique by this way that we 
Fig. 1. Flowchart of the model 

2 
ave involved the resistive class together with quarantined class 

n construction of our new model. 

The paper is organized as follows. In Section 2 we describe 

athematical model for the current COVID-19 and discuss its fun- 

amental mathematical properties in a biologically feasible region. 

e perform the stability analysis in Section 3 and derive the basic 

eproduction number. In the same section we find conditions for 

he local as well as the global behaviour of the possible equilibria 

f the proposed model. In Section 4 we present numerical simu- 

ations to support and verify our analytical findings. These simula- 

ions are performed for biologically feasible values of the parame- 

ers of the model. Finally we conclude our work in Section 5 . 

. Formulation of the model 

Inspired from the above mentioned literature, we develop 

 new mathematical model based on susceptible individuals S, 

ealthy or resistant individuals H, infected and quarantine individ- 

als I, Q respectively. All the parameters involved in the model are 

ssumed to be non-negative. The susceptible individuals initially 

ove to the infectious class with a constant flow rate. The sus- 

ected or infected individuals move to the quarantine class and 

onfirmed cases are send back to the infected compartment for 

urther treatment. Our model under consideration is expressed in 

he form of the following autonomous ordinary differential equa- 

ions 

dS(t) 
dt 

= λ − γ S(t) I(t) − (d + μ) S(t) , 
dH(t) 

dt 
= α − βH(t) I(t) + θ I(t) − (d + μ) H(t) , 

dI(t) 
dt 

= γ S(t) I(t) + βH(t) I(t) + δQ(t) − (d + μ + η + θ ) I(t)
dQ(t) 

dt 
= ηI(t) − (d + μ + δ) Q(t) . 

(1) 
(1) under consideration+. 
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Table 1 

Parameters and their explanation in the model (1) . 

Parameters The physical interpretation 

λ Recruitment rate susceptible 

γ Disease transmission rate 

d Natural death rate 

α Recruitment rate of healthy human 

β Transmission rate of healthy human 

μ Disease related death rate infected or suspected individuals 

δ Rate at which quarantine people get infection 

θ Cure rate of infected people in the quarantine class 
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he description of parameters in (1) is given in Table 1 . 

A systematic diagram of the model is given in Flow Chart 2 : 

We will investigate (1) under the following biologically feasible 

nitial conditions 

(0) ≥ 0 , H(0) ≥ 0 , I(0) ≥ 0 , Q(0) ≥ 0 . (2) 

Let N(t) denotes the total population at time t, then we have 

(t) = S(t) + H(t) + I(t) + Q(t) . 

aking the temporal derivatives of N(t) and using (1) , one observes 

hat N(t) obeys the law of mass action 

dN(t) 

dt 
= (λ + α) − (d + μ) N(t) . (3) 

ote that (3) is an exact differential equation with solution 

(t) = 

λ + α

d + μ
+ 

(
N 0 − λ + α

d + μ

)
e −(d+ μ) t . (4) 

ence it is deduced that (4) possesses positive definite solutions 

or all t ∈ [0 , ∞ ) . 

heorem 2.1. The dynamical system (1) exhibits boundedness for all 

on-negative initial conditions which are not all identically zero in the 

ntire region given by 

= 

{
(S, H, I, Q ) ∈ R 

4 
+ : S + H + I + Q ≤ λ + α

d + μ

}
. 

roof. Assume that 	 = { (S, H, I, Q ) ∈ R 4 + } be any solution set of

he model (1) with some non-negative initial conditions such as 

(0) = S(0) + H(0) + I(0) + Q(0) ≥ 0 , (5) 

orresponding to any other non-negative initial conditions on 

, H, I and Q . Since μ is a positive parameter, so that from (3) one

ay write 

dN 

dt 
≤ (λ + α) − dN. 

olving this equation leads to 

 ≤ N(t) ≤ λ + α

d + μ
+ N 0 e 

−(d+ μ) t , 

here N 0 is the initial value of the total population of the dynam- 

cal system. Thus, for t → ∞ , we have 

 ≤ N(t) ≤ λ + α

d + μ
. (6) 

ence N(t) is positive and bounded, and 	 is the largest set for 

hich the solutions are positive and bounded. This completes the 

roof of the theorem. �

. Stability analysis 

We will focus our attention on determining the possible sta- 

ionary states of the system (1) and on deriving stability results. 

e consider the situation, when there is no infection of the dis- 

ase in the community. The concerned state is called DFE. In the 

ollowing, we denote such equilibrium by E 0 . 
3 
.1. DFE state 

Inserting I = Q = 0 , in the given system and solving the au-

onomous differential Eq. (1) for S(t) and H(t) , we obtain 

 

0 (S 0 , H 

0 , I 0 , Q 

0 ) = (S 0 , H 

0 , 0 , 0) = ( 
λ

d + μ
, 

α

d + μ
, 0 , 0) . 

To calculate the endemic equilibrium, we first need to deter- 

ine the threshold quantity R 0 , which plays a significant role in 

etermining the global behavior of the given dynamical system. 

.2. Basic reproductive number 

We follow the traditional technique, the next generation 

ethod [34] to derive R 0 . Let X = (I, Q ) denotes the infectious class

n model (1) . We can write 

dX 

dt 
= F 0 − V 0 = 

(
( γ S(t) + βH(t) ) I(t) 

0 

)
−

(
−δQ(t) + (d + μ + η + θ ) I(t) 

−η I(t) + (d + μ + δ) Q(t) 

)
.

(7) 

he Jacobians of the above matrices are respectively given by 

 = 

(
γ S 0 + β H 

0 0 

0 0 

)
, V = 

(
d + μ + η + θ −δ

−η d + μ + δ

)
. 

he multiplicative inverse of the matrix V is calculated as 

 

−1 = 

1 

( d + μ + η + θ ) ( d + μ + δ) − ηδ

×
( 

d + μ + δ δ
η d + μ + η + θ

) 

. 

The next generation matrix for the DFE of the proposed prob- 

em is given by 

 V 

−1 = 

1 

( d + μ + η + θ ) ( d + μ + δ) − ηδ

×
(

( γ λ + βα) ( d + μ + δ) δ( γ λ + βα) 
0 0 

)
. 

he spectral parameter of this matrix σ (F V −1 ) gives the threshold 

arameter R 0 . Thus R 0 is given by 

 0 = 

( γ λ + β α) ( d + μ + δ) 

( d + μ) [ ( d + μ + η + θ ) ( d + μ + δ) − δ η] 
. (8) 

n Fig. 2 , we plot R 0 against different parameters involved in the 

odel under consideration. 

.3. Local stability at the DFE state 

After determining the threshold quantity, we are now in posi- 

ion to derive stability conditions for our model. 

heorem 3.1. The DFE of the dynamical system (1) is locally asymp- 

otically stable equipped the threshold quantity R 0 < 1 . and 

 1 : 
αβ + γ λ

d + μ
< (d + μ + η + θ ) . 

he DFE is unstable for R 0 > 1 and in the contrast of C 1 . 
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Fig. 2. Plot of the basic reproduction number R 0 , in terms of various parameters 

involved in the model under consideration. 
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roof. The local stability of E 0 for the proposed model (1) can be 

nquired by taking the Jacobian J 0 matrix of the form 

J(E 0 ) = 

⎛ 

⎜ ⎜ ⎝ 

−(d + μ) 0 

−γ λ
(d+ μ) 

0 −(d + μ) θ − αβ
(d+ μ) 

0 0 

αβ+ γ λ
d+ μ − (d + μ + η + θ ) 

0 0 η

Exploiting elementary row operations, the last matrix yields

J 1 (E 0 ) = 

⎛ 

⎜ ⎜ ⎝ 

−(d + μ) 0 

−γ λ
(d+ μ) 

0 −(d + μ) θ − αβ
(d+ μ) 

0 0 

αβ+ γ λ
d+ μ − (d + μ + η + θ ) 

0 0 0 

here 

 1 = (d + μ + η + θ ) − αβ + γ λ

d + μ
. 

bviously the matrix (10) has eigenvalues λ1 = −(d + μ) < 0 , 

2 = −(d + μ) < 0 . The remaining two eigenvalues λ3 = 

αβ+ γ λ
d+ μ −

d + μ + η + θ ) and λ4 = 

δη
L 1 

− (d + μ + δ) are negative if and only 

f 

αβ + γ λ

d + μ
< (d + μ + η + θ ) . (11) 

ence re-arranging the inequality (11) implies that R 0 < 1 . Thus 

ondition C 1 holds along with R 0 < 1 , which shows that the system

1) exhibits the local asymptotical stability. On the other hand, we 

ee that if R 0 > 1 , λ4 has non-negative real part showing instability 

f the given system with growing time. This completes the proof 
f the theorem. �

4 
0 

0 

δ

 + μ + δ) 

⎞ 

⎟ ⎟ ⎠ 

. 

0 

0 

δ

− (d + μ + δ) 

⎞ 

⎟ ⎟ ⎠ 

. (1

.4. Global stability of the DFE state 

In this section, we discuss the global stability of the disease free 

tate. In the following, we derive conditions for the global stability 

f the disease fee equilibrium using Castillo-Chaves [35] . The global 

tability of the DFE depends upon the following two conditions 

dX 
dt 

= F (X, Y ) , 
dY 

dt 
= U(X, Y ) , 

here X represents the susceptible and healthy classes, i.e., X = 

S(t) , H(t)) ∈ R 2 + , while Y denotes the infected and quarantine in-

ividuals, Y = (I(t) , Q(t)) ∈ R 2 + at the DFE point E 0 = (X 0 , 0) . Thus

he existence of the global asymptotic stability of E 0 depends upon 

he following conditions. 

 

: If dX 
dt 

= F (X, 0) then X 0 is globally asymptotically stable; 

 

: U(X, Y ) = B Y − U 

� (X, Y ) , where U 

� (X, Y ) ≥ 0 for (X, Y ) ∈ 	. 

In the condition K 2 , B = D y U(X 0 , 0) is an M-matrix having non-

egative off diagonal entries, where 	 represents the feasible re- 

ion in biological sense. Thus the following Lemma holds. 

emma 3.2. If R 0 < 1 , then the equilibrium point E 0 = (X 0 , 0) of the

ynamical system (1) is globally asymptotically stable whenever con- 

itions (K 1 ) and (K 2 ) are satisfied. 

heorem 3.3. For R 0 < 1 , the system (1) exhibits global asymptotic 

tability at the DFE point E 0 . 

roof. In order to prove the above theorem, we need to verify con- 

itions (K 1 ) and (K 2 ) . Let us use the symbols X = (S(t ) , H(t )) and

 = (I(t) , Q(t)) and define E 0 = (X 0 , 0) where X 0 = ( λ
d+ μ , α

d+ μ , 0) .

ith the use of system (1) , we may write 

dX 
dt 

= F (X, Y ) (12) 

nd 

dX 
dt 

= (λ + α) − (d + μ)(S 0 + Q 

0 )) . (13) 

ow if S = S 0 , H = H 

0 , I = 0 = Q and U(X, 0) = (λ + α) − (d +
)( α+ λ

(d+ μ) 
) = 0 . Thus we conclude that X → X 0 , whenever t → ∞ .

rom which one can say that X = X 0 is globally asymptotically sta- 

le. Similarly for the second condition, we need to express 

(X, Y ) = B Y − U 

� (X, Y ) , (14) 

here B Y is the Jacobian matrix of infected and quarantine classes 

t Y = (I Q ) T and U 

� (X, Y ) ≥ 0 . Therefore, one may verify that ma-

rix B is of the form 

 = 

(
−(d + μ + η + θ ) γ S 0 + β H 

0 + δ
η −(d + μ + δ) 

)
. (15) 

y taking 

 

� (X, Y ) = 

(
(γ I + β I)(S 0 + H 

0 ) + (γ + β I)(S + H) 
0 

)
, (16) 
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+ μ +

T  

i

e arrive at 

 Y − U 

� (X, Y ) = 

(
−(d + μ + η + θ ) γ S 0 + β H 

0 + δ
η −(d + μ + δ) 

)(
I 
Q 

)

−(γ I + β I) 

(
(S 0 + H 

0 ) − (S + H) 
0 . 

)
. (17) 

he total population of dynamical system is bounded by S 0 and 

 

0 such that S, H, I, Q ≤ S 0 , H 

0 from which it follows that (γ I +
I)(S + H) ≤ (γ I + βI)(S 0 + H 

0 ) . Thus U 

� is positive definite. Fur-

hermore, the off diagonal elements of the M-matrix are non- 

egative. Thus conditions (K 1 ) and (K 2 ) are satisfied. So by Lemma 

tated above, the DFE E 0 is globally asymptotically stable. �

.5. Endemic equilibrium point and backward bifurcation 

In this subsection we determine the endemic equilibrium point 

f the model (1) , i.e., when the infected individuals of the system 

re non-zero. We take the following steps. Let E � = (S � , H 

� , I � , Q 

� )

epresent an arbitrary endemic equilibrium point of the dynami- 

al system (1) . Solving simultaneously equations of the model (1) 

t steady state gives 

S � (t) = 

λ

γ I � (t) + (d + μ) 
, 

 

� (t) = 

α + θ I � (t) 

βI � (t) + (d + μ) 
, (18) 

I � (t) = 

δQ 

� (t) 

(d + μ + η + θ ) − γ S � (t) − βH 

� (t) 
, 

 

� (t) = 

ηI � (t) 

(d + μ + δ) 
. 

bviously for the endemic state, we have I � (t) � = 0 . Substituting

 

� , S � and Q 

� in the third equation of the model (1) at station-

ry state, one obtains the following quadratic equation 

f (I � ) = a 1 ( I 
� ) 

2 + a 2 I 
� + a 3 , (19) 

here a 1 = γβ,a 2 = (γ + β)( d + μ) − β(γ λ + θ ) , and a 3 = 

d + μ) 2 (1 − R 0 ) . Surely the coefficient a 1 is always positive, as 

he parameters β and γ are positive. Moreover a 3 is negative 

positive) for R 0 is greater (less) than unity. Thus (19) depends 

pon the signs of a 3 and a 2 respectively to get its positive solu- 

ions. Now if R 0 is greater than unity, then two roots of (19) are

ositive real values and hence the endemic equilibrium state is 

nique. If R 0 is one, then a 3 is zero and hence there is either a

rivial or no endemic state. The whole discussion shows that the 

ndemic equilibrium of the model under consideration depends 

n R 0 . Thus there exists an interval such that 

 

� 
1 = 

−a 2 −
√ 

a 2 
2 

− 4 a 1 a 3 

2 a 1 
, I � 2 = 

−a 2 + 

√ 

a 2 
2 

− 4 a 1 a 3 

2 a 1 
. (20) 

f a 3 is non-negative and either a 2 
2 

< 4 a 1 a 3 or a 2 ≥ 0 , then there

ave no positive solution of (19) and have no endemic equilibrium 

tate. Finally, we establish the following result for various range of 

arameters. 

(E 0 ) = 

⎛ 

⎜ ⎝ 

−(γ I � + d + μ) 0 −γ S �

0 −(βI � + d + μ) −βH 

�

γ I � βI � (γ S � + βH 

� ) − (d 
0 0 η
5 
heorem 3.4. The model (1) has the following set of facts 

1. If a 3 < 0 ⇔ R 0 > 1 , then the model (1) have unique state of en-

demic equilibrium; 

2. If a 2 < 0 , and a 3 = 0 or a 2 2 − 4 a 1 a 3 = 0 , then the model (1) have

unique state of endemic equilibrium; 

3. If a 3 > 0 , a 2 < 0 , and a 2 
2 

− 4 a 1 a 3 > 0 , then the model (1) have two

unique endemic equilibria; 

4. Otherwise the model (1) has no endemic equilibria. 

Case 3 in Theorem (3.4) illustrates the existence of phe- 

omenon of backward bifurcation, where the local asymptotic sta- 

ilities of both DFE as well endemic equilibrium co-exist, when 

 0 < 1 , [36,37] . Now to probe the backward bifurcation, we must 

et the discriminant a 2 2 − 4 a 1 a 3 to zero in order to obtain critical 

alue R c of R 0 . We obtain 

 c = 1 − a 2 2 

4 βγ (d + μ) 
. (21) 

hus backward bifurcation occurs, when a 2 
2 

− 4 a 1 a 3 > 0 or equiva- 

ently R c < R 0 < 1 . The phenomenon of backward bifurcation and 

ts epidemiological significance needs a classical requirement of 

 0 < 1 , although this condition is necessary but no longer suffi- 

ient to eliminate the disease. In same scenario,the disease elim- 

nation depends upon the initial state variables or initial size of 

he sub population of the system. The backward bifurcation in the 

ame model (1) suggests the feasibility of controlling the disease 

hen threshold quantity is greater than one and would depend on 

he initial stature of the sub-population of the system (1) . 

emma 3.5. The dynamical system (1) endures backward bifurcation 

hen case 3 of theorem ( 3.4 )holds along with R c < R 0 < 1 . 

emma 3.6. At R 0 = 1 , the system (1) undergoes backward bifurca- 

ion if and only if a 2 < 0 . 

roof. For the sufficient part, assume the graph of f (I) = a 1 I +
 2 I + a 3 . Now if R 0 = 1 , implies that a 3 = 0 and hence f (0) = 0 .

onsequently graph of the function passes through origin. Further- 

ore, f (I) = 0 has a positive root I = 

−a 2 
a 1 

if a 2 < 0 . If we exceed

 3 from zero to some value a 3 > 0 . This guarantees that there ex-

sts an open interval (0 , ε) , which contains a 3 , where f (I) = 0 has

wo real and positive roots. In short words, we try to show if 

 0 < 1 , then there are two endemic equilibrium states. The neces- 

ity is conspicuous, if a 2 ≥ 0 , (19) has no real positive roots, when

 0 < 1 . �

.6. Local stability of endemic equilibrium state 

The following theorem is enough to show that the system (1) 

erforms local stability at the endemic equilibrium point E � . 

heorem 3.7. The unique endemic equilibrium state E � of model 

1) is locally asymptotically stable provided R 0 > 1 ,θ > (d + μ + η) . 

roof. The Jacobian matrix of the proposed model (1) for unique 

ndemic equilibrium state E � = (S � , H 

� , I � , Q 

� ) is given by 

0 

0 

 η + θ ) δ
−(d + μ + δ) 

⎞ 

⎟ ⎠ 

. (22) 

o know about the nature of the eigenvalues of the matrix (22) , it

s advantageous to apply the traditional row operations to obtain 
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Fig. 3. Dynamical behavior of the susceptible class (population). 
 1 (E � ) = 

⎛ 

⎜ ⎝ 

−(γ I � + d + μ) 0 −γ S � 

0 −(βI � + d + μ) −βH 

� 

0 0 −L 2 
0 0 0 − δη

L 2 
− (d

here L 2 = (d + μ + η + θ ) − (γ S � + βH 

� + 

γ S � I � 

γ I � + d+ μ + 

βI � 

βI � + d+ μ ) .

he eigenvalues of J(E � ) are λ1 = −(γ I � + d + μ) < 0 , λ2 =
(βI � + d + μ) < 0 , λ3 = (d + μ + η + θ ) − (γ S � + βS � + 

γ S � I � 

γ I � + d+ μ + 

βI � 

βI � + d+ μ ) and λ4 = − δη
L 2 

− (d + μ + δ) < 0 . In addition λ3 < 0 if

nd only if (γ S � + βH 

� + 

γ S � I � 

γ I � + d+ μ + 

βI � 

βI � + d+ μ ) > (d + μ + η + θ ) .

fter using simple algebra we can rewrite 

 

βγ (d + μ + δ) 2 (θ − (d + μ + η)) 
] 

I ∗2 + 

[ 
λγβ(d + μ + δ) 2 + (d

(2 βθ + δη(β + γ )) + γ (β + γ )(d + μ)(d + μ

(d + μ)(d + μ + δ) 2 (αβ + δη(d + μ)) + (d + μ) 2 (d + μ + η +

Clearly all the coefficients of (24) are positive if θ > (d + μ + η)

nd R 0 > 1 .Thus conditions of the above stated theorem are satis- 

ed and consequently result in the local asymptotic stability of the 

ndemic equilibrium E � . �

.7. Global stability of endemic equilibrium state 

In this section we explore the global stability of the endemic 

quilibrium point of our propose model (1) in terms of the basic 

eproduction number R 0 . 

heorem 3.8. The endemic equilibrium state E � of model (1) is glob- 

lly asymptotically stable, if R 0 > 1 otherwise unstable. 

roof. To study the global stability of the model (1) under consid- 

ration we construct the following Lyapunov function. 

(t) = 

[ 
S − S ∗ − 1 

S ∗
ln 

(
S 

S ∗

)] 
+ 

[ 
H − H 

∗ − 1 

H 

∗ ln 

(
H 

H 

∗

)] 
+ 

[ 
I − I ∗ − 1 

I ∗
ln 

(
I 

I ∗

)] 
+ 

[ 
Q − Q 

∗ − 1 

Q 

∗ ln 

(
Q 

Q 

∗

)] 
. (25) 

learly at the endemic state E ∗, the function 
(t) = 0 for the pre-

cribed values of S = S � , H = H 

� , I = I � , and Q = Q 

� . Further the

iven function is strictly positive, whenever S > S � , H > H 

� , I > I � 

nd Q > Q 

� . This implies that the function 
(t) , for the given E � 

s positive semi-definite. 

The time derivative of the function 
(t) results in 

d


dt 
= 

˙ S + 

˙ H + 

˙ I + 

˙ Q −
˙ S 

S 
−

˙ H 

H 

−
˙ I 

I 
−

˙ Q 

Q 

. (26) 

nserting values from (1) into (26) and performing algebraic ma- 

ipulation, (26) can be formatted as 

(t) = −
(

1 

S 
− 1 

)
λ −

(
1 

H 

− 1 

)
α − (d + γ + μ) S − (d + μ + β) H

− (β + γ ) I − (θ − η − δ − 4(d + μ)) . 

Clearly d

dt 

< 0 , for S < 1 = N, H < 1 = N and 

θ
H + 

η
θ

+ d + μ >
6 
+ δ) . 

⎞ 

⎟ ⎠ 

, (23) 

)(d + μ + δ) 2 ×

+ θ )(R 0 − 1) 
] 

I � 

δη)(R 0 − 1) > 0 . (24) 

+ γ . This mean that the time rate derivative d

dt 

of the defined 

unction 
(t) is negative semi definite. From which we have that 

 

� is the largest invariant sub set in support that the endemic equi- 

ibrium state of the dynamical system (1) is globally asymptotically 

table under the condition R 0 > 1 . The graphical investigation of 

he above theorem is illustrated in Fig. 2 . �

. Numerical results and discussion 

Here we use RK4 method to perform the numerical simulations 

sing some real data of as in the following Table 2 

In the first hundred days in a locality, one thousand individ- 

als were found susceptible, among which 170 were founded 

nfected and 790 were declared healthy. 450 individuals either 

ied or got rid from the infection. The infected individuals were 

uarantined. We simulated the new constructed model under 

hese information and found that in coming few months the 

nfectious will grow exponentially and hence more people will 

e quarantined if the people and government of a locality do not 

roperly follow SOPs. As a result the resistive population decreases 

nd this causes increase the classes I and Q . It can be observed 

rom Fig. 3 that susceptibility is decreasing and as a result healthy 

opulation also declines, as shown in Fig. 4 . Hence the infected 

nd the quarantined classes are growing up, see Figures 5 and 6 
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Table 2 

Description of the parameters used in model (1) . 

Parameters The physical interpretation Numerical value 

S(t) The susceptible population (recruit for test) 1000 thousands 

H(t) The resistant population 790 thousands 

I(t) The infected population 170 thousands 

Q(t) The quarantined population 450 thousands 

λ Recruitment rate of susceptible 0.0043217 

γ Disease transmission rate 0.125 

d Natural death rate 0.002 

α Recruitment rate of healthy human 0.535 

β Transmission rate of healthy human 0.0056 

μ Disease related death rate infected or suspected individuals 0.0008 

δ Rate at which quarantine people getting infection 0.029 

θ Cure rate of infected people in quarantine 0.35 

η Contact rate of infected and healthy people 0.025 

Fig. 4. Dynamical behavior of the resistive class (population). 

Fig. 5. Dynamical behavior of the infected class (population). 

Fig. 6. Dynamical behavior of the quarantined class (population) (population) for 

the considered model (1) . 
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espectively. The asymptotic stability behavior is clearly observed 

rom these plots. Next, using available data of Wuhan city (China) 

nd using the proposed model, we compared the real and sim- 

lated data for infected class as reported in [38,39] for initial 

ixty eight days from 4th January 2020 to 8th March 2020 as 

6 , 12 , 19 , 25 , 31 , 38 , 44 , 60 , 80 , 131 , 131 , 259 , 467 , 688 , 776 , 1776 , 

460 , 1739 , 1984 , 2101 , 2590 , 2827 , 3233 , 3892 , 3697 , 3151 , 3387 , 

653 , 2984 , 2473 , 2022 , 1820 , 1998 , 1506 , 1278 , 2051 , 1772 , 1891 , 

99 , 894 , 397 , 650 , 415 , 518 , 412 , 439 , 441 , 435 , 579 , 206 , 130 , 120 , 

43 , 146 , 102 , 46 , 45 , 20 , 31 , 26 , 11 , 18 , 27 , 29 , 39 , 39] . The

oncerned parametric values in the model are taken as 

= 0 . 5944 ; d = 0 . 025 ;α = 0 . 535(assumed) ;β = 0 . 0056 ;μ = 

 . 5 ; δ = 0 . 27 ; θ = 0 . 5 ; η = 0 . 0025(assumed) . Where for com-

artments, we use the initial conditions S(0) = 43994 ; I(0) = 

 ; H(0) = 0 ; Q(0) = 1 . We compare the simulated and real data

n Fig. 7 . We rather see a very good agreement between the 

imulated and real data. 

. Conclusion 

We have established a new model by considering the resis- 

ive class together with quarantine class for the transmission dy- 

amics of COVID-19. Exploiting the Lyapunov function theory, we 

ave developed sufficient conditions for global and local stabil- 

ty of the disease free and the endemic equilibria of our model 

n terms of the threshold quantity. We have shown the positiv- 

ty and boundedness of solutions of the model in a feasible re- 

ion. To support and verify our analytical work, we have per- 

ormed numerical simulations. This has been achieved using the 

K4 method by taking some real data of the city Wuhan in 

hina. 

It is well known fact that fractional analysis is a hot area of re- 

earch in the recent time. Fractional calculus has been found very 

ffective in modelling various real world phenomenon. Researchers 

ave focused their attention on studying models of infectious dis- 

ase like HIV, AIDS, etc under fractional order derivatives and inte- 

rals. For more detail we refer [40–44] . Some authors have also ex- 

ended the area to classical and arbitrary order mathematical mod- 

ls of real world problems in physical sciences, see, for instance, 

45,46] . Our next step is to investigate the qualitative and numeri- 

al aspects of our proposed under different fractional order deriva- 

ives. Work on this is in progress and will be reported in a future 

ublication. 
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Fig. 7. Comparison between simulated data and real data for the infected class using the model (1) . 
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