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Abstract

The purpose of this work is to validate the application of a deep learning-based method for pelvic 

synthetic CT (sCT) generation that can be used for prostate proton beam therapy treatment 

planning. We propose to integrate dense block minimization into 3D cycle-consistent generative 

adversarial networks (cycleGAN) framework to effectively learn the nonlinear mapping between 

MRI and CT pairs. A cohort of 17 patients with co-registered CT and MR pairs were used to test 

the deep learning-based sCT generation method by leave-one-out cross-validation. Image quality 

between the sCT and CT images, gamma analysis passing rate, dose-volume metrics, distal range 

displacement, and the individual pencil beam Bragg peak shift between sCT- and CT-based proton 

plans were evaluated. The average mean absolute error (MAE) was 51.32 ± 16.91 HU. The 

relative differences of the statistics of the PTV dose-volume histogram (DVH) metrics in between 

sCT and CT were generally less than 1%. Mean values of dose difference, absolute dose difference 

(in percent of the prescribed dose) were −0.07% ± 0.07% and 0.23% ± 0.08%. Mean gamma 

analysis pass rate of 1 mm/1%, 2 mm/2%, 3 mm/3% criteria with 10% dose threshold were 

92.39% ± 5.97%, 97.95% ± 2.95% and 98.97% ± 1.62% respectively. The median, mean and 

standard deviation of absolute maximum range differences were 0.09 cm and 0.23 ± 0.25 cm. The 

median and mean Bragg peak shifts among the 17 patients were 0.09 cm and 0.18 ± 0.07 cm. The 

image similarity, dosimetric and distal range agreement between sCT and original CT suggests the 

feasibility of further development of an MRI-only workflow for prostate proton radiotherapy.
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1. Introduction

Prostate cancer is the most commonly diagnosed cancer in men (Siegel et al 2019). 

Radiation therapy is a common treatment modality chosen by around 25% of prostate cancer 

patients in the United States (Cooperberg et al 2010). During the last a few decades, 
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radiation planning and delivery techniques have improved treatment outcomes by escalating 

the dose to the prostate without exceeding the tolerance dose of healthy tissues (Thariat et al 
2012). The recent adoption of proton beam therapy, more specifically, pencil beam scanning 

(PBS), allows proton beams to be delivered spot-by-spot, with flexible intensity, position 

and penetration depth. The steep dose gradient at the end of the proton beam path allows the 

delivery of a high dose to the target while sparing the structures on the distal side. While 

proton dose prediction is more accurately calculated by the stopping power ratio rather than 

the Hounsfield unit (HU), current proton treatment planning still depends on computed 

tomography (CT) as stopping power cannot be directly measured. At present, all treatment 

planning systems (TPSs) relate HU values to relative stopping power for dose calculation 

(Grant et al 2014). In addition, the CT HU values provide the electron density information 

necessary to generate digitally reconstructed radiograph (DRR) for planning design and 

daily patient setup. Poor soft tissue contrast is a major limitation of CT. Delineation of 

clinical target volumes (CTVs) remains a weak link in radiotherapy. This is especially 

important for modern radiation techniques such as PBS, as this error has a direct impact on 

treatment outcome. In the application of prostate contouring, the poor soft tissue contrast 

between the prostate, rectum and pelvic floor muscles on CT can attribute to on average a 

30% overestimation of the prostate volume (Gao et al 2007). To precisely and robustly 

delineate target structures and organs at risk (OARs), magnetic resonance imaging (MRI) is 

often registered to the planning CT. T2-weighted MRI is currently the best modality to 

depict the anatomy of the prostate and periprostatic tissue, which leads to a significant 

reduction in both prostate volume and inter-observer variation over CT-based delineation 

(Salembier et al 2018). However, a new level of complexity and uncertainty is inherent in the 

MR-CT pair registration process. Because MR and CT images are acquired separately, 

registration errors are common, which can introduce a 2–5 mm uncertainty (Edmund and 

Nyholm 2017). At the site of the pelvis, an uncertainty of 2 mm was reported (Roberson et 
al 2005). Unlike small errors in treatment delivery and setup, which are occurred daily in a 

random fashion, uncertainties or errors introduced during the treatment planning process are 

more likely to be systematic and persist throughout the treatment course. Therefore, they 

harbor a huge potential for adversely affecting tumor control and/or normal tissue sparing. 

The need for stringent congruence between planning and treatment target to minimize the 

suboptimal treatment outcome is urgent. MRI-only treatment planning has become more 

popular because it does not have the aforementioned limitations as CT images and 

unavoidable registration uncertainty between MR and CT images. Moreover, MR-guided 

radiotherapy has been studied for advantages of motion correction (Lagendijk et al 2014, 

Kontaxis et al 2017, Oborn et al 2017), so the MRI images could be also used to synthesize 

CT images for potential on-line treatment planning. The benefit of MRI-only treatment 

workflow is obvious: besides more accurate target and normal tissue delineation, it can also 

spare the patient from CT radiation doses, which are particularly concerning for pediatric 

patients who are more sensitive to the effects of radiation exposure and for patients 

undergoing adaptive radiotherapy where multiple cone-beam CTs (CBCTs) are acquired 

(Pileggi et al 2018). Great attention must be paid to put the application of CT to rest, 

however, because the MR signals are not explicitly associated with HU values. Therefore, to 

replace CT, a major task in an MRI-only treatment workflow is the generation of synthetic 
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CT (sCT) images that can be used as CT surrogates for dose calculation and DRR 

generation.

Currently available methods to produce sCT broadly fall into the following three categories: 

segmentation-based (Hsu et al 2013, Korhonen et al 2014, Juttukonda et al 2015, Ladefoged 

et al 2015, Bredfeldt et al 2017), atlas-based (Dowling et al 2012, 2015, Gudur et al 2014, 

Uh et al 2014, Sjölund et al 2015, Arabi et al 2016, Burgos et al 2017) and machine 

learning-based methods (Lei et al, Li et al 2014, Huynh et al 2016, Han, 2017, Nie et al 
2017, Bayisa et al 2018, Emami et al 2018, Xiang et al 2018, Yang et al 2019). Although 

widely varied in approach and algorithm, the general idea is to use mathematical models 

based on pre-acquired MR-CT pairs to predict the new sCT from incoming MR images. (1) 

Segmentation-based methods usually assign single bulk densities to tissue classes delineated 

from either a CT or an MR image (Guerreiro et al 2017). Fuzzy C-means algorithms 

(Bredfeldt et al 2017) provide ways for automatic segmentation of MR images into 

predetermined classes. Subject-specific bone density can be obtained by using a second-

order polynomial model (Korhonen et al 2014) or through the R2* signal derived from the 

ultra-short echo time (UTE) images (Ladefoged et al 2015). (2) Atlas-based methods can use 

a single template or a database of co-registered MR and CT atlas pairs. First, the atlas MR 

images are deformably registered to the new MR images, and the same transformations are 

then applied to the corresponding atlas CT images. The HU information from the deformed 

atlas CT images can thereafter be transformed into the new incoming MR images (Dowling 

et al 2012). If multi-atlases are used, the atlas CT numbers can be fused to generate the final 

sCT (Dowling et al 2015, Burgos et al 2017). (3) Machine learning methods can directly 

learn MR-to-CT intensity mapping from the training MR-CT pairs. The detailed review of 

machine learning-based methods is given in the next paragraph. In general, there are two 

separate stages: training and prediction. Once the training is completed, a new sCT can be 

predicted in a short amount of time when a new MR is fed in. Compared to the learning-

based method, segmentation-based methods are limited by the requirement of manually 

contouring or predetermine segmentation classes, and atlas-based methods are limited by 

computationally expensive and the strong dependence on the accuracy of the registration, 

limiting their application only to stationary anatomic regions (Andreasen et al 2016b). The 

drawbacks of current machine learning-based methods include discontinuous prediction 

results across slices due to the use of 2D model (Largent et al 2018), the often limited 

number of training samples available (Shen et al 2017), and the difficulty of obtaining MR 

and CT training pairs with the exactly same organ shape and location, which could degrade 

the prediction accuracy.

Learning-based methods can be mainly categorized into dictionary learning-based methods 

(Torrado-Carvajal et al 2016, Lei et al 2018b), random forests (Huynh et al 2016, Andreasen 

et al 2016a, Lei et al 2018a) and deep-learning-based methods (Nie et al 2016, 2017, 2018, 

Han 2017, Wolterink et al 2017, Emami et al 2018, Xiang et al 2018). The key difference 

between deep-learning and random forest/dictionary learning-based methods is that the 

former can automatically learn useful features of the data, eliminating the need for 

handcrafted features such as Haar-like, discrete cosine transform (DCT) and least absolute 

shrinkage and selection operator (LASSO) used in random forest methods (Huynh et al 
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2016) and dictionary learning (Xiang et al 2018). In the domain of deep-learning-based sCT 

generation, Liu et al used convolutional neural networks (CNNs) to generate a PET 

attenuation correction map from the corresponding MR image (Liu et al 2018). Nie et al 
proposed to train a patch-based relationship from an MR to a CT image by using 3D fully 

convolution neural network (FCN) (Nie et al 2016). In comparison to the patch-based 

method, Han et al applied the 2D FCN to learn an image-based mapping (Han 2017). One of 

the main limitations of the CNN-based methods is that even slight voxel-wise misalignment 

of MR-CT pairs may lead to blurred results (Wolterink et al 2017). Generative adversarial 

networks (GANs) have been introduced to improve the quality of the sCT. These models 

incorporate an adversarial loss term in addition to the conventional synthesis layers, aiming 

to produce more realistic CT data (Nie et al 2017, 2018, Emami et al 2018). While being a 

clear improvement over CNN-based method, GAN-based methods still suffer from 

misregistration, resulting in deteriorated sCT accuracy.

More recently, cycleGAN was proposed to deal with the unpaired training data (Zhu et al 
2017). Wolterink et al (2017) showed that the use of cycleGAN can mitigate the sensitivity 

of training model to MR-CT misalignment. Their work was applied to 2D images without 

the use of the gradient consistency loss. Hiasa et al (2018) used 2D cycleGAN and gradient 

consistency loss. Wang et al (2018) applied deformation-invariant cycleGAN method by 

using deformable convolutional layers and new cycle-consistency losses. But the network is 

still based on 2D transverse plane that would lose some spatial and structural information. 

Recently, we have proposed 3D dense cycleGAN based networks to generate sCT from 

routine anatomical MR images (Lei et al 2019). Dense Blocks (Huang et al 2017) were used 

for better contextual and structural feature extraction. This work aimed to apply this method 

to generate pelvic sCT for patients with prostate cancer and evaluate the dosimetric accuracy 

of these sCTs in proton treatment planning. In prostate cancer PBS planning, the typical 

beam arrangement requires traversing the bony structures such as femoral head, pubic 

symphysis and ischial tuberosity. This requires high bone HU accuracy of the sCT, however, 

bones are ambiguous on MR images which make the MRto-CT prediction difficult. 

Therefore, the quality of the sCT in terms of HU accuracy can be rigorously evaluated by 

pelvic proton treatment planning. In this work, together with the commonly applied imaging 

endpoints, dosimetric endpoints, and the newly adopted distal range endpoint, we introduced 

the individual pencil beam Bragg peak shift analysis to fully evaluate the feasibility of MRI-

only proton treatment planning using our 3D dense cycleGAN networks.

2. Materials and methods

2.1. Image acquisition and registration

17 prostate cancer patients who were treated with photon radiotherapy at a single academic 

center were randomly selected. Image data were extracted under an IRB-approved protocol. 

Routine treatment-planning pelvic CT and diagnostic MR scans were acquired. CT scans 

were acquired on a Siemens (Erlangen, Germany) SOMATOM Definition AS with a voxel 

size of 0.98 mm × 0.98 mm × 2 mm. T2-weighted MRIs were acquired on Siemens Avanto 

1.5T scanner with a voxel size of 1 mm × 1 mm × 2 mm. The MR and CT were acquired at 

different time intervals, ranging from one day to two months. During the acquisition, the 
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patients were in supine position and knee rest was used to minimize rotation of pelvis. The 

MR images were aligned to the corresponding CT images using the rigid registration method 

in Velocity AI 3.2.1 (Varian Medical Systems, Inc. Palo Alto, USA). The registered MR 

images were then resampled to obtain the same field-of-view and voxel size as the CT 

images. The resampled MR and CT pairs were used as the training dataset for our deep-

learning-based algorithm.

2.2. sCT generation

We recently proposed a novel MR to sCT generation method (Lei et al 2019). The reader can 

find more specific information in Lei et al’s paper. The methodologies are briefly reviewed 

below. For the cohort of 17 prostate cancer patients, we used leave-one-out cross-validation. 

3D cycleGAN that contains nine dense blocks (Huang et al 2017) was used in the generator 

to capture both structural and textural information and to cope with local mismatches 

between MR and CT images. A novel compound loss function was further employed to 

effectively differentiate the structure boundaries with HU variations and to retain the 

sharpness of the sCT image. Figure 1 shows the schematic flowchart of the proposed dense 

cycleGAN network for MRI-based sCT generation. The networks can be broken into two 

stages: training (shown on the upper) and synthesizing (shown on the bottom). In the 

generator architecture, the feature map first undergoes two down-sampling convolutional 

layers to be downsized, then it passes nine dense blocks, after which it goes through two 

deconvolutional layers and a tanh layer to enable an end-to-end mapping. In the dense-block 

structure, concatenated information of the input and the feature map from previous 

convolutional layer is brought forward to the next convolutional layer to produce a different 

feature map; in this way, both low- and high-frequency information can be learned. In the 

discriminator architecture, the feature map undergoes three down-sampling convolutional 

layers followed by a sigmoid layer to binarize the output. This output is regarded as the 

distribution of the input. During training, the patches from training MR and CT images are 

extracted and go through the generator networks to produce the corresponding synthetic 

images. The synthetic images patches then go through the opposite generators to produce the 

corresponding cycle images. The generator’s training objective is to produce synthetic/cycle 

images that are similar to the real images, while the discriminator’s training objective is to 

differentiate the synthetic/cycle images from the real images. After the training finished, an 

incoming MR image is fed into the well-trained MRI to CT model to produce the 

corresponding sCT image.

The accuracies of both the generator and discriminator networks are directly dependent on 

the design of their corresponding loss functions. The generator loss function in this study 

consists of two losses: one is the adversarial loss to distinguish real images from synthetic 

images; the other is the distance loss to measure the distance between real and synthetic 

images or between real and cycle images. Distance loss consists of lp-norm and the gradient 

difference (GD) between the two images. The lp-norm (p = 1.5) distancewas used to 

overcome the limitations of the l1-norm and l2-norm distance loss such as misclassification 

by mean absolute distance (MAD) and blurry images by mean squared distance (MSD) 

(Michael et al 2015).

Liu et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2020 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We used patch (64 × 64 × 64) with overlap (18 × 18 × 18) as input. The metrics were 

computed within the whole image field-of-view. Each patient’s MRI/CT data will have more 

than 6144 patches. The model was trained and tested on an NVIDIA Tesla V100 with 32 GB 

memory with a batch size of 5. The training was stopped after 150 000 iterations. Training 

the model took around 15 h, and sCT generation for one test patient took about 2 min.

2.3. Evaluation strategies

2.3.1. Image quality—To quantify the image quality of the sCT, three commonly used 

metrics were applied: mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and 

normalized cross-correlation (NCC). MAE represents the overall HU discrepancies between 

sCT and the reference CT images. PSNR measures if the sCT is a evenly or sparsely 

distributed prediction. NCC is a measure of similarity between CT and sCT as a function of 

the displacement. The three metrics are defined as:

MAE = ICT − IsCT

PSNR = 10log10
Q2

ICT − ISCT 2
2/C

NCC = 1
C ∑

x, y, z

ICT(x, y, z) − μCT IsCT(x, y, z) − μsCT
σCTσsCT

where ICT is the HU value of the CT image, IsCT is the HU value of the sCT image, Q is the 

maximal HU value between ICT and IsCT, and C is the number of voxels in the image. μCT 

and μsCT are the mean of CT and sCT image. σCT and σsCT are the standard deviation of CT 

and sCT image. In general, a better sCT image has lower MAE, and higher PSNR and NCC 

values.

To evaluate the geometric displacement of the bone contour between CT and sCT images, 

we calculated Dice similarity coefficient (DSC), Hausdorff distance 95% (HD95), mean 

surface distance (MSD), and the residual mean square distance (RMSD). A displacement is 

associated with low DSC, HD, MSD and RMSD scores. For the bone area, HU > 300 was 

set as the threshold. Dilation was performed, followed by erosion to get a smooth boundary. 

Bone MAE was also calculated.

Compared to CT, MR images have more structural information and contrast in soft tissue 

regions and less at the bone and air interfaces. The traditional MR-to-CT synthesizing model 

is thus at risk of generating erroneous predictions and blurred images due to this un-

constrained issue of many-to-one and one-to-many mapping. CycleGAN can deal with these 

issues by incorporating an additional CT-to-MR projection to approach one-to-one MR to 

CT mapping. This method is therefore able to produce sCT images with clearer tissue 

boundaries with varying HU intensities. For quantitative analysis of how our method was not 

sensible for local mismatch, we compared the proposed method, and the method without 
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using cycle strategy. Spatial nonuniformity (SNU) was calculated in the selected regions of 

interest (ROIs). SNU is defined as follows:

SNU =
HUmax − HUmin

1000 × 100% .

HUmax and HUmin are the averaged maximum and the minimum intensity of several ROIs. 

These ROIs were selected in the sCT image at the bony structure. The higher the SNU, the 

higher contrast and clearer bony structure of the sCT.

To compare to the state-of-art algorithms, we performed the sCT generation using Han’s 

deep convolution neural network (DCNN) (Han 2017, Arabi et al 2018) using the same 

patient cohort. Similar to Han’s study, the sagittal plane was set as the input patch. GAN 

based method was also evaluated. Two-tailed paired t-test was performed to calculate the p-

value between our proposed and DCNN/GAN methods in terms of MAE, PSNR and NCC 

for body outline and MAE, DSC, HD95, and SNU for bone mask.

2.3.2. Dosimetric analysis—The cohort of prostate patients was treated with photon 

radiotherapy. The original planning CT images and associated structures were transferred to 

RayStation (RaySearch Laboratories, Stockholm, Sweden) TPS (version 8A). sCT images 

were then uploaded for dose comparison. Pencil beam scanning proton therapy was used as 

the treatment technique. An experienced dosimetrist performed the planning using Monte 

Carlo (v4.2) dose calculation engine. The prescribed dose and beam arrangement were 

carefully chosen to be representative of real clinical scenarios. Depending on the PTV 

geometry, two-beam and three-beam arrangements were selected with a total dose of either 

4500 or 7920 cGy.

After the original CT images planning doses were generated, the evaluation dose 

calculations were performed on the sCT images with the same beam settings. Given the 

purpose of acquiring MR images in this patient cohort was to help target volume delineation, 

the derived sCT images only included the area directly adjacent to the prostate. The sCT 

thus have fewer axial slices than the longer CTs that are necessary for conventional 

treatment planning. The limited bore size of the MRI scanner also had a limited field of view 

(FOV), which results in lateral tissue truncation in the pelvis. To make the OAR comparison 

feasible, the surrounding tissues which fell outside the MRI FOV were adopted from the 

original CT to construct the complete volume of the patient to match the dimensions of the 

original CT.

The differences between the sCT and CT dose statistics were retrieved from RayStation. The 

following metrics were extracted: PTV dose-volume histogram (DVH) metrics including 

D98%, Dmean and Dmax; OAR rectum DVH metrics including V40 Gy, V60 Gy, V65 Gy, 

V70 Gy, and V75 Gy; penile bulb and seminal vesicle DVH metrics including Dmean, Dmax 

and D50%; bladder DVH metrics including V40 Gy, V65 Gy, D25%, D50%; together with 

femoral head DVH metric D10%. To evaluate the plane dose consistency of the CT and sCT, 

the dose DICOM files were exported from RayStation to MyQA (IBA Dosimetry, 

Germany). Mean dose difference, mean absolute dose difference and gamma analysis with 
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1%/1 mm, 2%/2 mm and 3%/3 mm criteria with 10% dose threshold were performed in 

coronal, transversal and sagittal planes that intersect with the treatment isocenter.

2.3.3. Distal range analysis—The depth-doses of both CT- and sCT-based plans were 

retrieved from RayStation TPS. This was chosen using the beam-line direction that crosses 

the isocenter, which is most likely to have the broadest spread out Bragg peak (SOBP) 

crossing the PTV. In this study, the proton beam range was defined at the distal depth where 

80% (R80) of the SOBP plateau dose was located. The plateau dose was determined by 

averaging the values of the central 80% of the SOBP plateau. If single field optimization 

(SFO) was used in treatment planning, the individual beam SOBP was usually flat so R80 

can be determined directly. For two patients, however, multiple field optimization (MFO) 

was applied such that there was no plateau dose region of the individual beams that can be 

used to calculate R80. The summed plan SOBP plateau doses were retrieved to determine the 

R80. The range difference and relative range difference between planning CT and sCT were 

calculated by:

Range difference = R80sCT − R80CT

Relative range difference = R80_sCT − R80 CT /R80_CT × 100%

and compared with the Harvard Massachusetts General Hospital (MGH) uncertainty 

criterion (Paganetti, 2012):

Uncertainty < 3.5%R80_CT + 1 mm .

2.3.4. Individual pencil beam Bragg peak shift—For the 17 prostate patients, the 

number of pencil beam spots used for their treatment plans ranged from 1317 to 13 525, 

depending on the number of beams, the size of the patient as well as the volume of the PTV. 

In RayStation, we retrieved the location of each spot’s Bragg peak, where the proton pencil 

beam deposited most of its energy. The Bragg peak shift between CT and sCT was 

calculated by the following equation:

Spot shift = X − X′ 2 + Y − Y ′ 2 + Z − Z′ 22
.

Where X, Y, Z and X′, Y′, Z′ represent each individual pencil beam Bragg peak DICOM 

coordinates obtained from the plans generated on the original CT and the sCT respectively.

2.3.5. Correlation evaluation between the imaging and proton treatment plan 
endpoints—To evaluate the correlations between the imaging endpoints (MAE, PSNR and 

NCC) and the treatment plan endpoints (gamma analysis pass rate in coronal plane with 1 

mm/1% criteria, distal range difference and Bragg peak spot shift), correlation coefficient 

analysis was carried out. A good quality sCT image is associated with small MAE, large 

PSNR, NCC, high gamma analysis passing rate, small distal range difference, and small 
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Bragg peak spot shift. If an endpoint is correlated with another, it is supposed to have a 

correlation coefficient value close to 1 or −1.

3. Results

3.1. Image quality

Figure 2 shows the MAE, PSNR and NCC for each patient of this cohort. The mean 

(±standard deviation, abbreviation: SD) MAE, PSNR and NCC are 51.32 ± 16.91 HU, 24.2 

± 2.46 dB, and 0.94 ± 0.03 respectively.

The original MR and CT images as well as the sCT images generated by our proposed 

algorithm were compared side-by-side (figure 3). Relative large HU differences can be seen 

at the tissue-air, bone-tissue, and air-tissue interfaces due to the non-ideal MR-CT pair 

registration. Overall, the images show small HU differences and similar HU profiles across 

regions with sharp HU changes.

Some discrepancies can be seen at the bony structures. The MAE of bone was 104.89 ± 

21.39 HU. The mean DSC, HD, MSC and RMSD for the cohort were 0.85 ± 0.05, 4.22 ± 

1.02, 0.61 ± 0.19, 1.77 ± 0.38, respectively.

3.2. Comparison with state-of-art method

Our proposed method outperforms Han’s DCNN and GAN-based method in terms of MAE, 

PSNR and NCC for body outline and MAE, DSC, HD95, and SNU for bone mask (table 1). 

Significant differences (P < 0.05) were founded between ours and the other two methods.

Figure 4 demonstrates examples of how the ROIs were selected in the sCT images at the 

bony structure. Due to the local mismatch, the sCT images generated by GAN have blurred 

estimations at the boundaries of bony structures, whereas our proposed method can maintain 

similar and sharp bony boundaries comparable to the original CT images. Similar SNU were 

found between the sCT generated by cycleGAN (70.64% ± 14.15%) and the original CT 

(75.88% ± 9.43%), while SNU is much smaller for the sCTs generated by GAN (50.74% ± 

22.92%) and DCNN (58.71% ± 20.99%).

3.3. Dosimetric comparison

Figure 5 exhibits the dose difference (expressed as percent of the prescribed dose) of two 

representative patients. The voxel dose differences were generally much less than 10% 

except at the distal edge of the beams. Due to the relative difficulty of accurately predicting 

bone regions from MR images, and the sensitivity of proton dose calculations to HU 

variation, the large bony structures in the beam direction appear to be the largest source of 

dose inconsistency. The spot Bragg peaks falling into these representative planes were 

included in the CT and sCT-based dose map in figure 5. Though slight Bragg peak shifts of 

some individual spots can be observed with careful examination, in general, the spot 

locations in sCT-based dose maps agree with those in the CT-based dose maps.

Table 2 tabulates the mean (±SD) and range of voxel-wise dose differences, absolute dose 

differences (in percent of the prescribed dose) and gamma analysis with 10% dose threshold 
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in each of the 3 planes that intersect with the isocenter. Mean dose difference, and absolute 

dose difference (in percent of the prescribed dose) among the 17 patients were −0.07% ± 

0.07% and 0.23% ± 0.08%. Total mean gamma analysis pass rates at 1 mm/1%, 2 mm/2%, 3 

mm/3% criteria with 10% dose threshold were 92.39% ± 5.97%, 97.95% ± 2.95% and 

98.97% ± 1.62%, respectively. Figure 6 shows the boxplot of the gamma analysis in the 

three planes.

Figure 7 shows the box plot of relative DVH differences (in percent of the CT-based DVH 

value) for PTV and OARs. The PTV dose-volume metrics were generally less than 1%, 

except for one patient (p08) whose Dmax difference was 1.5%. Penile bulb, femoral head 

and seminal vesicle DVHs were relatively consistent between CT- and sCT-based plans, with 

differences much less than 5%. Discrepancies greater than 5% were observed for the rectal 

(from p10 and p12) and bladder (from p10, p15 and p16) DVHs in select patients. Small 

rectal volumes received 70 and 75 Gy on the original CT, therefore a minimal absolute 

difference can result in large relative differences. Large discrepancies in bladder DVH 

metrics can be caused by differences in organ filling between MR and CT images and 

variations in femoral head HU that lead to beam overshooting.

3.4. Range evaluation

We compared the proton beam range between the CT- and sCT-based plans (figure 8). The 

largest absolute range difference (0.75 cm) was found in patient P10 with maximum proton 

energy of 209.6 MeV. The median and mean absolute range differences were 0.085 cm and 

0.234 ± 0.252 cm. Based on the MGH range uncertainty criteria, all beam ranges were 

within the tolerance level (figure 8, bottom left).

3.5. Individual pencil beam Bragg peak shift

We evaluated the pencil beam Bragg peak shift of two representative cases and the statistics 

for each patient (figure 9). The largest shift, 3.16 cm, was found in patient P09. The shift 

occurred at the rectum, due to the MRI-CT mismatch of the tissue-air interface. The median 

and mean Bragg peak shifts among the 17 patients were 0.09 cm and 0.18 ± 0.07 cm.

3.6. Correlation among imaging and proton treatment plan endpoints

Table 3 lists the correlation coefficients for each two of the endpoints in imaging and 

treatment plan evaluations. The imaging endpoints are not well correlated to each other and 

to the treatment plan endpoints. For example, MAE is supposed to be positively related to 

spot shift, range difference and negatively related gamma analysis pass rate (i.e. the lower 

the MAE, the smaller the spot shift and range difference, and the higher the gamma pass 

rate), but we found contrary results in this study. On the other hand, better associations can 

be found between the spot shift and range difference (0.81), as well as between spot shift 

and gamma analysis pass rate (−0.79).

4. Discussion

This work sought to evaluate the feasibility of MRI-only prostate proton treatment planning 

by applying a dense cycleGAN model to generate sCTs (Lei et al 2019). Side-by-side 
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imaging comparisons revealed good agreement. The overall average MAE, PSNR and NCC 

of the sCT were 51.32 ± 16.91 HU, 24.2 ± 2.46 dB, and 0.93 ± 0.03, respectively. A 

comparative study of six synthetic CT generation algorithms done by Arabi et al presents the 

mean MAEs ranging from 32.7 ± 7.9 HU to 52.1 ± 11.1 HU, with the lowest MAE obtained 

using DCNN (Han 2017). In this study, we also performed sCT generation using DCNN 

with our patient cohort, and the mean MAE was 58.98 ± 18.64 HU. The different patient 

cohorts could contribute to the mean MAE differences between the sCTs generated by 

DCNN method with our patient cohort (58.98 ± 18.64 HU) and the patient cohort used in the 

comparative study (32.7 ± 7.9 HU). The specific parameters that we used to duplicate Han’s 

algorithm might be different. Overall, the mean MAE achieved in this study comparable to 

the state-of-art methods. As shown in table 3, there are little correlations between MAE/

PSNR/NCC to range difference/Bragg peak spot shift/gamma pass rate. Proton treatment 

planning has the capability of tightly conforming the dose distribution to the target with 

better normal tissue sparing over photon-based plans. Therefore it is sensitive to the local 

HU accuracy in the beam-line direction rather than full-scale imaging endpoints. This 

suggests that a comprehensive evaluation of the CT- and sCT-based treatment plans need to 

be performed to validate the sCT generation method for further clinical development.

In the application of prostate proton beam therapy, since most of the beams must cross large 

bony structures before reaching the target, accurate bone HU value predictions are of 

paramount importance. However, the bone prediction is particularly challenging in sCT 

generation due to the nature of its appearance on MR images. In this study, we calculated the 

mean bone MAE and compared it with the other methods. Ours was 104.89 ± 21.39 HU, 

compared to 141.05 ± 26.85 HU from DCNN and 129.86 ± 27.63 HU from GAN. Ours is 

better but large discrepancies still exit that may due to the misalignment between CT and 

sCT and the limitation of the network. One advantage of the machine learning-based 

algorithm over the segmentation- and the atlas-based algorithm is that the former has the 

potential to learn patient specific HU differences across the bone rather than assigning a bulk 

identical density or HU values from the atlas CT images. However, the effectiveness of 

learning depends how well the networks are designed. In figure 3 we presented the HU 

profiles to demonstrate that our method can successfully predict the HU variations across 

bones and other organs. The side-by-side plane dose comparison shown in figure 5 showed 

an overall good dosimetric agreement. However, discrepancies can still be seen at the distal 

range due to the range shift caused by non-ideal bone HU prediction and local mismatch. 

The underestimation of bone HU could be caused by the truncated normal distribution, 

which is a common issue of the deep-learning algorithms. Normalization is required for the 

deep-learning algorithm to maintain the stability of the architecture. In our network, we used 

99.9% maximum HU value as the largest HU and 5% minimum HU value as the smallest 

HU value. This procedure will slightly shorten the range of sCT HU values, which causes 

HU underestimation of the bone region.

Gamma analyses in coronal, sagittal and transverse dose planes were performed. The mean 

values of 2D 1 mm/1%, 2 mm/2%, 3 mm/3% criteria in the three planes were 92.39% ± 

5.97%, 97.95% ± 2.95% and 98.97% ± 1.62%, respectively. The results were comparable to 

the pelvis proton study done by Maspero et al (2017) and Koivula et al (2016). In Maspero 

et al’s study, a bulk-assigned commercially available vendor solution was used. Adapted 
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bone HU values were used to minimize the proton range differences initially found in the 

default software solution. A retrospective study on ten prostate patients showed an average 

3D 2 mm/2% gamma pass rate of 98.4%. In Koivula et al’s study, a segmentation based 

(dual model HU conversion technique) was used. A retrospective study on ten prostate 

patients showed an average 3D 1 mm/1%, 2 mm/2%, 3 mm/3% gamma pass rate of 95%, 

98.6% and 99.6%. Our results were a bit worse may due to different methods, different 

datasets, beam arrangements, and 2D versus 3D gamma analysis.

Clinically important PTV and OAR DVHs were also evaluated. Large discrepancies were 

observed for the rectum and bladder DVH metrics. A major reason for the disagreement was 

because the MR and CT images were not acquired simultaneously, therefore natural 

differences in organ filling status led to geometry inconsistencies. In addition, the rectal 

volumes receiving 70 and 75 Gy were small, such that a small difference can result in a 

relatively large relative difference. The bone HU inaccuracy also contributed to the 

difference in bladder dose.

Range evaluation was performed by retrieving the line dose along the beam-line direction 

that crossed the isocenter. The median absolute range difference was 0.085 cm. The Pileggi 

et al brain study (Pileggi et al 2018) reported a median value of 0.05 cm and the Maspero et 
al pelvis study (Maspero et al 2017) reported a mean median of 0.01 cm. Since the median 

absolute range difference is generally much higher than the median range difference, we 

were unable to perform inter-comparison among the different studies. Nonetheless, as shown 

in figure 8, all beam range displacements from this study were acceptable by the MGH range 

uncertainty criteria (Paganetti 2012).

Individual pencil beam Bragg peak shifts were evaluated. The advantage of this method is its 

sensitivity to the displacement of individual beams. We can use the X, Y, Z coordinate 

information to locate where the shift occurred and evaluate its dosimetric impact based on 

spot weighting. In contrast to the 2D gamma analysis and range shift analyses, which are 

highly user-dependent on the plane, dose threshold and dose-line selection, the box plot of 

Bragg peak shift synthesizes a more complete picture of the performance of the sCT.

One limitation of this study is the constrained field-of-view (FOV) that the MRI scanner can 

provide homogeneous magnetic field. Tissue truncation happens that cannot cover the whole 

pelvic region. To make the OAR comparison feasible, tissues which fell outside the MRI 

FOV were adopted from the original CT in order to construct the complete volume. As can 

be seen in the transverse view in figure 5, this issue affected less than 10% of the volume of 

the sCT and the majority of the bony structures in the sCT images were generated based on 

MR images. Therefore, the agreement between dose distributions mainly demonstrated the 

HU agreement between different image information sources. Indeed, the implementation of 

an MRI-only treatment planning workflow depends on a large FOV fully encompasses the 

body. As large-bore MR scanners have already been used in many clinics and will be more 

prevalent in the future, the concern of body truncation will be eliminated.

Another limitation is that only 17 patients were used in this study. Relatively small training 

dataset and large imaging volume are regarded as limitations of the application of machine 
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learning in medical imaging. 17MR-CT training pairs with leave-one-out cross-validation 

can predict good result but results are supposed to be better by increasing training pairs. 

However, we think a standardized procedure to take care the issue of MR distortion, a better 

and faster way to perform the MR scanning to minimize the patient motion induced artifact, 

and a combined ‘in-one-day’ CT and MR scan are more important in terms of the prediction 

accuracy enhancement.

A common issue inherent to MRI-only treatment planning is image distortion. Its effect on 

highly conformal treatment such as prostate proton therapy can be significant (Seibert et al 
2016, Wang et al 2013). Although not currently included as part of a standard package, 

many manufacturers have supplied solutions to correct these distortions (Jovicich et al 2006, 

Doran et al 2005, Baldwin et al 2007) and a standard guideline is under development 

(American Association of Physicists in Medicine Task Group No. 117). Together with the 

increased prevalence of commercially-available MRI simulators (Devic 2012) and 

development of novel MRI image guidance (Oborn et al 2017), high precision in target 

definition is the future for proton therapy. Precise target delineation is ineffective without 

accurate alignment of the target at the treatment site. To avoid potentially large source of 

uncertainty from CT-MR registration, the unprecedented proton dose conformity supports 

the need for MRI-only treatment process.

5. Conclusion and future directions

We applied a novel learning-based approach to integrating dense-block into cycleGAN to 

synthesize pelvic sCT images from routine MR images (Lei et al 2019) for potential MRI-

only prostate proton therapy. The proposed method demonstrated a comparable level of 

precision in reliably generating sCT images for dose calculation, which supports further 

development of MRI-only treatment planning. Unlike photon therapy, the accuracy of proton 

dose calculation is highly dependent on stopping power rather than HU values. Therefore, 

the future directions of MRI-only proton treatment planning include prediction of the 

stopping power map based on the MR images and generating elemental concentration maps 

that can be used for Monte Carlo simulations.
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Figure 1. 
Schematic flowchart of the proposed dense cycleGAN network for MRI-based sCT 

generation. The networks can be broken into two stages: training (shown on the upper) and 

synthesizing (shown on the bottom). During training, the patches from training MR and CT 

images are extracted and go through the generator networks to produce the corresponding 

synthetic images. The synthetic images patches then go through the opposite generator to 

produce the corresponding cycle images. The generator’s training objective is to produce 

synthetic/cycle images that are similar to the real images, while the discriminator’s training 

objective is to differentiate the synthetic/cycle images from the real images. Back-

propagation is applied in both networks to enhance the performance of both the generators 

and discriminators, which ultimately result in optimal sCT prediction. The accuracies of 

both generator and discriminator network are directly dependent on the design of their 

corresponding loss functions. A novel compound loss function was employed in the 

generator network to better differentiate different structures, as well as to retain sCT 

sharpness. After the training finished, an incoming MR image is fed into the well-trained 

MRI to CT model to produce the corresponding sCT image.
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Figure 2. 
MAE, PSNR and NCC for each patient.
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Figure 3. 
From left to right: MR image, CT image, sCT image, HU difference image between CT and 

sCT images, plot profile of red line in CT and sCT images of a representative patient. (a)–(c) 

Represent the transverse, sagittal and coronal views of a representative patient (P09) ‘s 

pelvic images.
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Figure 4. 
A comparison of the proposed method and GAN. (a1) is CT image shown in axial plane. 

(a2) Shows the MR image. (a3) Shows the sCT generated by GAN. (a4) Shows the sCT 

generated by the proposed cycleGAN method. (b1-b4) show the same sequence images as 

(a1)–(a4). The selected ROIs are the red rectangles.
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Figure 5. 
From left to right: transverse, coronal and sagittal views. Two representative patients were 

used to demonstrate the dose differences between plans calculated on original CT and sCT. 

The dose profiles were retrieved from the three different views that intersect with the 

isocenter. The individual spot Bragg peak location (green ‘O’ or ‘×’ markers, different marks 

were used in TPS to present different spot weighting) were included in the dose map. The 

MRI FOV was marked with orange lines. In the dose difference map, the body (in green 

line) and PTV contours (in red line) together with the reference dose (grey scaled CT-based 

dose map) as background were added to represent the location of dose discrepancy.
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Figure 6. 
Gamma pass rates for 3 criteria: 1 mm/1%, 2 mm/2%, and 3 mm/3% with 10% dose 

threshold in coronal, sagittal and transverse planes. The central orange line indicates the 

median value, and the borders of the box represent the 25th and 75th percentiles. The 

outliers are plotted by the black ‘O’ marker.
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Figure 7. 
Box plot of the relative DVH difference between sCT and CT for the PTV and OARs (in 

percent of the DVH value from the CT-based plan). The central orange line indicates the 

median value, and the borders of the box represent the 25th and 75th percentiles. The 

outliers are plotted by the black ‘O’ marker.
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Figure 8. 
Range comparison between CT- and sCT-based plans. Top: CT and sCT beam ranges of 

each patient. Bottom left: the distribution of the range differences as a function of the actual 

range value from the plan calculated on the original CT. The upper and lower limits were 

obtained from the MGH range uncertainty criteria. Bottom right: box plot of absolute range 

difference.
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Figure 9. 
Box plot of the spot Bragg peak shift statistics of each patient. The central orange line 

indicates the median value, and the borders of the box represent the 25th and 75th 

percentiles. The outliers are plotted by the black ‘O’ marker.
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Table 1.

Numerical comparison between DCNN, GAN and the proposed cycleGAN method.

Metrics within body outline Metrics within bone mask

Method MAE (HU) PSNR (dB) NCC MAE (HU) DSC HD95 (mm) SNU (%)

DCNN 58.98 ± 18.64 23.74 ± 2.96 0.928 ± 0.045 117.53 ± 19.08 0.81 ± 0.06 4.85 ± 1.47 58.71 ± 20.99

GAN 74.66 ± 19.96 22.07 ± 2.72 0.877 ± 0.053 125.33 ± 23.24 0.81 ± 0.06 4.71 ± 1.40 50.74 ± 22.92

Proposed 51.32 ± 16.91 24.20 ± 2.46 0.936 ± 0.031 104.89 ± 21.39 0.85 ± 0.05 4.22 ± 1.02 70.64 ± 14.15

P-value DCNN versus 
proposed

  0.009   0.011 0.013 <0.001 <0.001 0.005 <0.001

P-value GAN versus 
proposed

<0.001   0.002 0.002 <0.001 <0.001 0.017 <0.001
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Table 2.

Mean (±SD) and range of voxel-wise absolute dose difference and mean (±SD) and range of Gamma pass 

rates for 1 mm/1%, 2 mm/2% and 3 mm/3% criteria.

Coronal Transversal Sagittal Total%

Mean dose difference (%)

Mean(±SD) −0.13 (0.23) −0.04 (0.16) −0.02 (0.09) −0.07 (0.07)

Range −0.68–0.07 −0.34–0.25 −0.36–0.09 −0.68–0.25

Mean absolute dose difference (%)

Mean(±SD)   0.32 (0.26)   0.24 (0.12)   0.12 (0.12)   0.23 (0.08)

Range   0.08–0.94   0.11–0.50   0.04–0.55   0.04–0.94

Gamma 1 mm/1% (%)

Mean(±SD) 91.88 (5.81) 92.73 (5.40) 92.54 (6.71) 92.39 (5.97)

Range 80.2–98.6 84.9–98.5 69.9–97.8 69.9–98.6

Gamma 2 mm/2% (%)

Mean(±SD) 97.18 (3.63) 97.24 (3.46) 99.42 (1.74) 97.95 (2.95)

Range 88.5–100 91.4–100 92.7–100 88.5–100

Gamma 3 mm/3% (%)

Mean(±SD) 98.47 (2.19) 98.55 (2.21) 99.89(0.46) 98.97 (1.62)

Range 92.9–100 94.1–100 98.1–100 92.9–100
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Table 3.

Correlation between imaging and treatment plan endpoints.

PSNR NCC Spot shift Range difference Gamma pass rate

MAE −0.35 −0.30 −0.65 −0.58   0.54

PSNR   0.30   0.06   0.37   0.03

NCC −0.24   0.00   0.03

spot shift   0.81 −0.79

range difference −0.62
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