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Abstract: Assessing the health condition has a wide range of applications in healthcare, military,
aerospace, and industrial fields. Nevertheless, traditional feature-engineered techniques involve
manual feature extraction, which are too cumbersome to adapt to the changes caused by the
development of sensor network technology. Recently, deep-learning-based methods have achieved
initial success in health-condition assessment research, but insufficient considerations for problems
such as class skewness, noisy segments, and result interpretability make it difficult to apply them
to real-world applications. In this paper, we propose a K-margin-based Interpretable Learning
approach for health-condition assessment. In detail, a skewness-aware RCR-Net model is employed
to handle problems of class skewness. Furthermore, we present a diagnosis model based on K-margin
to automatically handle noisy segments by naturally exploiting expected consistency among the
segments associated with each record. Additionally, a knowledge-directed interpretation method
is presented to learn domain knowledge-level features automatically without the help of human
experts which can be used as an interpretable decision-making basis. Finally, through experimental
validation in the field of both medical and aerospace, the proposed method has a better generality and
high efficiency with 0.7974 and 0.8005 F; scores, which outperform all state-of-the-art deep learning
methods for health-condition assessment task by 3.30% and 2.99%, respectively.

Keywords: noise; class skewness; model interpretability; deep learning; health-condition assessment

1. Introduction

Assessing the health condition of complex systems has been an exciting research area for a long
time. It has a wide range of applications in healthcare, military, aerospace, and industrial fields.
For instance, in the field of aerospace, the structural safety state of an aircraft could be assessed by
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detecting whether there is any structural damage, and thus the maintenance of the aircraft could be
arranged reasonably before a plane crash happened because of the structural damage which is invisible
to the human eye.

Based on the time-series data recorded by various sensors in the course of the operation of
complex systems, machine learning methods can be applied to learn effective characteristics which are
associated with health-condition assessment; thereafter, they can be used for detecting and assessing
the health condition of the complex systems.

Health-condition assessors can be divided into two categories including feature-engineered
methods and deep-learning-based methods. Before the process of feature-engineered methods,
a pre-processing phase is required to get the domain handcraft features from the health-condition
monitoring data. Although extracting effective features is difficult and time-consuming, many excellent
works have proposed various features and achieved good performance [1-8]. For instance,
Bornn et al. [9] used a support vector machine (SVM) combined with an autoregressive (AR) model
for structural damage detection, and used signal reconstruction and residual estimation to locate the
unhealthy ones. Carrara et al. [10] use extracted features to classify the cardiac disease by logistic
regression, k-Nearest Neighbors, and random forests. A Bayesian-based approach is employed for
health-condition assessment of bridge expansion joints [11].

Nevertheless, these kinds of methods highly rely on the domain expertise of users, as they
have to manually extract features, which are the key to making the model distinguish between
different health conditions, from the dataset before using the model. Consequently, it is difficult to
propose a general framework for the health-condition assessment using traditional feature-engineered
methods. Moreover, with the development of sensor network technology, time-series records
generated by various sensors of complex systems are bursting in data volume, expanding in
data dimensions, and decreasing in data value density. However, traditional feature-engineered
techniques, which involve time-consuming manual feature extraction, are too cumbersome to adapt to
such changes.

Recently, deep-learning-based methods like Convolutional Neural Network (CNN) [12-16],
Recurrent Neural Network (RNN) [17-20], Convolutional Recurrent Neural Network (CRNN) [21-23],
and Residual Neural Networks (Res-Net) [24,25] have achieved initial success in health-condition
assessment research by extracting features automatically. For example, CNN is employed for the
automatic classification of electroencephalographic signals to diagnose the disease of Alzheimer’s [26]
and structural health monitoring of tall buildings subject to wind loads [27], while a CRNN-based
approach is presented as a diagnostic tool for the classification of abnormal ECG signals [28].

Although the evaluation accuracy has been greatly improved compared with traditional
methods [29-31], when facing problems in real-world applications, deep-learning-based health-
condition assessment methods have insufficient considerations for problems such as class skewness,
noisy segments, and result interpretability. These problems make it difficult to apply their success to
real-world applications.

e Class skewness: As unhealthy conditions (e.g., diseases) occur rarely, the existence of class
imbalance in health-condition monitoring records is inevitable. Classifying imbalanced data
is a challenging problem [32]. Directly applying a machine learning algorithm may result in
poor performance on the minority classes, as they are prone to ignore the subtle influence on the
accuracy of an algorithm [33].

o Noisy segments: Most methods employ noise elimination approaches (e.g., grey spectral noise
estimation [34], Dense Neural Network + spectrum-based noise elimination [35], CNN + Kalman
filter [27], Encoder-Decoder [36], etc.) to denoise health-condition monitoring data, but they
cannot deal with all of the noisy segments effectively, as the noisy segments refer to not only
signal noise, but also the segments containing noisy labels. Taking a real-world electrocardiograph
(ECG) record which is shown in Figure 1 as an example, its reference health-condition label
given by cardiologists is ‘Atrial Fibrillation’. However, it may still contain some other types of
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segments (e.g., Normal sinus rhythm, etc.). Different from the irregular changes of the amplitude
of segments with signal noises in the frequency domain or non-periodic variation in the time
domain, only very subtle key differences in the segments that contain noisy labels can be found.
For example, as shown in Figure 1, the morphological features of segments containing the noisy
label of ‘Normal sinus rhythm” are very similar to that containing only the ground-truth label
of “Atrial fibrillation’, except that a ‘P wave’ only appears in the waveform of segments that
contain the noisy label of ‘Normal sinus rhythm’. However, the traditional noise elimination
methods cannot effectively deal with these segments with noisy labels which are very similar
to that containing only reference labels in morphological features. Furthermore, in the field of
health-condition assessment, the accuracy of the model may be greatly reduced when a monitoring
record contains too many noises, and thus it may lead to sudden death, air crash, and other tragic
events due to the misdiagnosis. Therefore, in addition to accurate health-condition detection from
the good-quality monitoring data, automatic recognition of low-quality noisy signals is required
as well to remind domain experts to intervene in time. Nevertheless, the use of noise elimination
methods may affect the accuracy of the detection of low-quality noisy signals, as it may cause
changes or losses of features representing the quality of the monitoring signal itself.

o Interpretability of prediction results: Most existing deep-learning-based methods are often
regarded as black-box models, as they can only output a specific diagnosis result without
necessary interpretability. Nevertheless, in the real-life scenario of health-condition assessment,
to realize “why” is, for the most part, more important. To explain the results of Deep Neural
Network (DNN) models, most methods use the attention mechanism to highlight segments of
an input record which are strongly associated with the model prediction and consider them as
an explanation of prediction results [37,38], while others measure the role of each feature in the
prediction process [39,40]. However, these kinds of highlighted segments and exploration of
feature effects can only provide auxiliary information, which cannot be a decision-making basis
actually, as they cannot provide domain technological proofs. For instance, to achieve a sound
balance between the best commercial and safety decision-making carefully, airlines may require
detailed technological information on why the flight plan of an aircraft has to be suspended
immediately. Thus, interpretable explanations of the model must be technological proofs with
admissive knowledge which can be widely accepted by domain experts.

An ECG instance recorded when the atrial fibrillation (AF) of a patient occurs Noisy segments

Figure 1. An example of a health-condition monitoring record with noisy segments whose label is
Atrial Fibrillation.

Accordingly, there is a definite need for accurate, general, and interpretable health-condition
monitoring solutions that can automatically deal with class skewness and noisy segments
without changing or losing features representing the quality of the monitoring signal itself.
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In this paper, we propose a K-margin-based intErpretable 1EarNing (KEEN) for interpretable
health-condition assessment.

o  We first employ a skewness-aware RCR-Net model to establish a general deep learning model,
which can automatically obtain the features and handle problems of class skewness in a wide
range of health-condition monitoring data.

e A diagnosis model based on K-margin is presented to automatically focus on the most essential
segments associated with a monitoring record, and tackle noisy segments by using the expected
consistency among the segments which are related to the same record. The classification of
each monitoring record can be identified by selecting the most likely label of the relevant top-K
augmented segments.

e A knowledge-directed interpretation method is proposed to learn how to extract features that
can be regarded as important domain knowledge without the help of human experts from the
time-series data automatically. As a result, one can use these domain knowledge-level features as
an interpretable decision-making basis.

e  Thorough experiments are carried out on Atrial Fibrillation Monitoring dataset [41] and Structural
Damage Monitoring Dataset [42]. The experimental results demonstrate that the proposed method
with 0.7974 and 0.8005 F; scores, respectively, which outperform all state-of-the-art deep learning
methods for health-condition assessment tasks by 3.30% and 5.71%.

2. Methods

2.1. Problem Definition and General Framework

Health-condition assessment is the task of automatically classifying a health-condition monitoring
data into one of health-condition classes. Formally, we denote the training datasetas D = {X, Y, Z}
where X = {x(1,x@, . x(N)} are labelled health-condition monitoring sequence inputs,
Y = {yM,y@, ..., y(N)} the corresponding label set, Z = {z(1),z(?), ..., z(N)} the set of corresponding
domain knowledge attribute set, each domain knowledge attribute set Z0) = {z(i)l,z(i)z, .. .,z(i)F }
has F domain knowledge attributes and N the total number of training data. ~Moreover,
each health-condition monitoring record x() has L monitoring channels x = {x(i)l, 02 x(i>L} and
each channel is a time-series x())! = {xgi)l, xgi)l, .1

Given the unlabelled testing dataset Dy = {X} where X = {x(1),x®?), ..., x(N)} are unlabelled
health-condition monitoring sequence inputs, the goal of the health-condition assessment is to learn
a predictive model which takes unlabelled health-condition monitoring sequence x(/) as input and
outputs the prediction of its domain knowledge attributes 2() and its prediction of health-condition
class §() € C where C = {cy,¢c2,...,cp} is a set of M different health-condition classes.

As research results based on deep learning have achieved remarkable success in health-condition
assessment tasks recently, which can naturally integrate and extract hierarchical features, the DNN
model is used as the basic classifier. Moreover, to automatically extract features from CNN and capture
long-term trends from RNN, we use a residual convolution recurrent neural network (RCR-Net),
as shown in Figure 2.

Nevertheless, a RCR-Net model still cannot be directly applied for reliably detecting and
assessing health conditions from monitoring data with noise and class imbalance. On the one hand,
the class imbalance and semantical ambiguities caused by noisy segments may lead to poor and even
unacceptable quality of DNN models. On the other hand, a proper explanation of the health-condition
assessment result is required to support reliable decision-making.

A K-margin-based interpretable learning method is presented to solve the above difficulties.
Specifically, a skewness-aware RCR-Net approach (Section 2.2) is presented to alleviate the problem
of class imbalance. In addition, to tackle noise, a K-margin based diagnosis model (Section 2.3) is
proposed, which can automatically focus on the most important segments and involve only part of
the labeled segments in the skewness-aware RCR-Net learning process. Finally, a knowledge-directed
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diagnosis interpretation model is employed to extract features that can be regarded as important
domain knowledge. The framework of our model is shown in Figure 2.
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Figure 2. The framework of the k-margin-based interpretable model.
2.2. Skewness-Aware RCR-Net

To alleviate the problems of the lack of well-labelled data and class imbalance, a skewness-aware
RCR-Net model is proposed to deal with these problems. First, a skewness-aware data augmentation
is employed to generate more short-term segments from the long-term monitoring records. After that,
a multi-view RCR-Net model is presented to establish a general deep learning model for capturing
features automatically from the health-condition monitoring data.

Generally, two predefined parameters are required for the skewness-aware data
augmentation—the length of the sliding windows #’) and the maximum stride threshold ..
For records with rare labels, the dynamic stride . becomes smaller, while, for records with common
labels, it becomes larger. Formally, given the maximum stride threshold of .# and the label set
C = {c1,c2,...,cm}, the dynamic stride of records with labeled C; is given by the following formula:

|records labelled ¢; |

S = [M x 1

max™ ;| |records labelled c; |

Please note that, if the length of a monitoring record is less than the length of the sliding windows
W , a zero-padding approach would be employed to pad it with zeros at the end of it

Additionally, a multi-view RCR-Net is presented to establish a general deep learning model,
which can automatically obtain features for a wide range of health conditions. Specifically, it consists of
33 layers of residual blocks [43], one layer of recurrent block, and one layer of a fully connected block.
The purpose of using residual blocks is to construct a deeper model through the residual connection
between blocks, and automatically extract more effective local morphological-level features. To capture
potential trend-level features in monitoring data, a recurrent layer with Bi-directional Long-Short Term
Memory (Bi-LSTM) cells is employed. Finally, the prediction is made by a fully connected layer and a
softmax layer. The cross-entropy loss of the objective function is calculated to optimize the loss of the
training neural network.
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The high-level architecture of the multi-view RCR-Net is shown in Figure 3. It takes an augmented
segment as input. After that, it splits the augmented segments into [%1 fragments with length of .4/
and outputs the health-condition prediction of the augmented segment.

Softmax

V : Trend Features

s ) s

V1: Local V2: Local Vr: Local

Features Features Featpires
A ¥ i

Augmented segment

B Ry ———

Raw Sequential Data

Figure 3. The high-level architecture of the multi-view RCR-Net model.

2.3. Diagnosis Model Based on K-Margin

Although the improvement of data inadequacy and class imbalance through data augmentation
process is essential to enhancing the performance of the health-condition assessment model,
it inevitably generates “hard” health-condition monitoring segments due to noisy segments.
For example, as shown in Figure 4, the reference label of the 8th-14th augmented segments is “Atrial
Fibrillation” as the reference label of the ECG instance is “‘Atrial Fibrillation’. Nevertheless, the main
ECG signs are “Too noisy to classify’ for the 8th-11th augmented segments and ‘Normal sinus rhythm’
for the 12th-14th augmented segments. Therefore, to filter these noisy segments, we first enhance
the robustness of our model by using a K-margin-based noise filtering approach to compute the
cross-entropy objective function of only a portion of the selected segments. Moreover, a K-margin-based
health-condition Detector is proposed to predict the health condition of a monitoring record according
to the top-K confident segments.

2.3.1. K-Margin-Based Noise Filtering

A minimum uncertainty margin is proposed to select appropriate segments to calculate
cross-entropy. As the prediction of all augmented segments of each health monitoring record can be
obtained by a trained multi-view RCR-Net model, and thus we define the uncertainty margin of ¢-th

(i)

segment x, * for a given monitoring record x() as:
Margin(xi") = PG |”) = (" 1") @

where yAEi) and ﬁgi) are the most probable and second-most probable prediction classes of the record xgi).
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Figure 4. An example of “hard” segments with noisy labels caused by the data augmentation process.

Usually, the trained model has less doubt (that is, more confidence) in distinguishing the two
most probable categories if the uncertainty margin is smaller for a given health monitoring record xgi).
Instead, segments with larger uncertainty margins are more ambiguous. Therefore, the most confident
segment of i-th monitoring record x(") can be defined as:

A = arg min (Margin(xgi))) 3)
D re{12,..,T}
where xgi) is the t-th segment of the record x;. A diagnosis based on minimum uncertainty margin
is a strategy to find the predicted class of a monitoring record with the largest confidence. Similarly,
the most confident label of a record x(?) can be defined as follows:

7 = argmin (PG |x") - P(3"|x") )
3 ref1,2,..,T}

A K-margin-based health-condition label prediction algorithm (K-margin) is presented
(see Algorithm 1) to select top-K most confident segments for training the multi-view RCR-Net.

(i) (i) 1,

Given a health-condition monitoring record x() and its augmented segments x()) = {xgl), Xyl e, Xy

it requires K iterations to output the top-K most confident segments X1(12< and their label Y1(11)< under
trained multi-view RCR-Net model ¢.

Intuitively, the top-K most confident fragments Xl(l;< can be used for the multi-view RCR-Net
training process, instead of the entire segments array x1, to avoid learning features from noise
segments and automatically focus on the most essential part that can represent the characteristics of a
given record. Nevertheless, it is not reliable to use them for the training process when the model is not
reliable yet, since they are selected by the KEEN model. Hence, we calculate the average probability of
predictions for all augmented segments of a record x(!):

1
o, =

L))
(le(yAtl |xtl ) ®)
=

=

where P(}?Ei) |x£i)) is the prediction probability of t-th augmented candidate for a record x(), and T
is the number of augmented candidates for the record x(!). The top-K most confident candidates for
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the given record xgl}< would be used in the model fine-tuning process to achieve higher consistency
among the augmented candidates and reduce the impact of noisy ones when «; > 5. Otherwise,
all the candidates would be used. The reason is that the low average probability of predictions for all
augmented candidates indicates a poor model performance. Therefore, the multi-view RCR-Net model
is not accurate and reliable, a more “hard” sample is required for the training process. Thereafter,

the selected alpha-segments X,,(f') can be defined as follows:

, B i
X0 _ { XéjK, if o; > 05 ©
x\"), otherwise

Consequently, the task of health-condition assessment using our KEEN model can be expressed
as optimizing the cross-entropy objective function:

A (i (i
L(Xr?) = 72 logP(Y:yt |X:X1xt) (7)

Algorithm 1 K-margin(x(®), K, ¢)

Input: A T-segments array x() = { xgi), xéi), cee x(Ti) } of an input health-condition monitoring record

x(), trained multi-view RCR-Net model ¢

Parameter: An integer K

Output: Top-K most confident segments Xl(l;< and their label predictions A1<II><

L ox () %)

2: X1(l}< «— Q, Y1(11)< «— @, k<K

3: whilek > 0 do

4. ng)

5: ]}Sj) + Most confident label predicting by ¢(x'()) using Equation (4)
(

6 x () ¢ x'()\ ) 4 Implementation: remove segment index of " from segment indexes list of

< Most confident segment predicting by o(x'() using Equation (3)

oy, i - v g

9: end while

10: return Xl(f) A1(11)<

4

2.3.2. K-Margin-Based Health-Condition Detector

In order to diagnose the health-condition for the given health-condition monitoring record x(%),
given the training model ®, we convert the label predictions 171(11)< of the top-K most confident segments

into the matrix Yl(’}( e RKXM g follows:

i _ ) 1 ifcp=argmax; iy Y,E,Zj) ®)
0, otherwise
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Furthermore, a K-majority weighted voting algorithm based on the minimum uncertainty margin
is presented to output the most likely label of a given record x(!). The k-majority weighted voting
method is to vote on the classes that the record x(!) may belong to, which can be defined as follows:

K
g = = arg max Z )
c;eC 1

Thus far, by naturally exploiting expected consistency among the segments associated with
each record, our KEEN model can make a diagnosis of a given record x?). It can automatically deal
with noise as only a portion of segments that belong to the same record would be included in the
learning process; thereafter, diagnosis would be made according to the predictions of the most essential
segments as well.

2.4. Knowledge-Directed Interpretation

In the real-life scenario of health-condition assessment, the method of computer-aided diagnosis
requires a high degree of interpretability so that humans can give a reliable conclusion based on the
diagnosis basis.

Recently, some methods try to explain the DNN model by highlighting the most relevant
segments of health-condition monitoring data [38] and exploring feature effects [40] in the prediction
process. Nevertheless, this kind of method cannot provide detailed domain technological-level
information on “why”, as we still do not know the relationship between this kind of explanation and
domain knowledge.

The main goal of knowledge-directed interpretation is to provide an indispensable domain
technological-level information on “why”, and to make the complex reliability of predicting results
well explicable in order to make reliable decisions. Specifically, we integrate domain knowledge into
the training process of the skewness-aware RCR-Net.

The function of knowledge-directed interpretation is similar to the observation process
when domain experts try to classify health-condition monitoring data. When domain experts
diagnose health-condition monitoring records, they first observe the characteristics of these records.
Taking arrhythmia diagnosis as an example, cardiologists usually analyze the ECG record to see
characteristics such as “P waves disappear”, “RR-interval”, etc. After that, using these characteristics
to classify them. Inspired by this, a knowledge-directed interpretation method is proposed to convert
the morphological-level local features, which are automatically extracted from the health-condition
monitoring record, into the knowledge-level features.

The architecture of the knowledge-directed interpretation method is shown in Figure 5.
The health-condition predictor is shown in the orange dashed box, which trains a multi-view
RCR-Net for health-condition classification. The red one is a knowledge-level feature extraction
step, which shares weights with the Residual layer of health-condition predictor, and then replaces the
Bi-LSTM layer and Softmax layer with a Mean square error loss (MSE) layer to form a knowledge-level
feature extractor.

It takes a fragment x

(i)
tq
monitoring recode x(), and outputs the prediction of its knowledge-level features 2

of a segment xgi) which is augmented from a health-condition
g;). Subsequently,
we concatenate all knowledge-level features of the fragments which belong to the same segment xgl) to
get the combined features.
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Figure 5. The architecture of a knowledge-directed interpretation method.

Formally, given extracted features Zt {2% P ,25;)} corresponding to one segment xfi),

5(1)
tq

aggregation operation of 2
denoted as:

where each 2,7 € RF, and 25) € R7*F. The aggregated features are computed by column-wise

(i) (i)

tg- Then, the f-th knowledge-level feature of a segment x;~ can be

g = pp({al) | xf) e x')) (10)
where §¢(+) is an aggregation operation. Usually, pooling operation (e.g., sum, max, average, etc.) [44]
can be used to aggregate these features. As each of the knowledge-level features varies very much in
nature, it requires aggregating them into one unified feature vector according to their own properties.
To name only a few, a Max Pooling operation would be employed as the aggregation operation
for the knowledge-level attribute of “P waves disappear” to determine whether there is “P wave
disappear” in some fragments of a segment. On the contrary, Mean Pooling operation would be better
for the knowledge-level attribute of “ST slope”. Sometimes, other aggregation operations may be
used as well; for example, the calculation of the standard deviation coefficient may be employed for
the knowledge-level attribute of “PR interval” to determine whether the interval is unequal on the
entire record.

Similarly, the f-th knowledge-level feature of a record x(!) can be denoted as:

207 = g2 | 5 € x0)) a

To avoid learning knowledge-level information from noisy segments, the aggregation operation
would be only applied on the selected top-K most confident segments for the given health-condition
monitoring record x() under trained model ¢. We chose the mean square error loss as the empirical loss;
thereafter, we optimize the knowledge-directed interpretation model by gradient descent as follows:

F . .
Y (=" -5 (12)
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In this way, domain technological-level features (e.g., P waves disappear, RR-interval, etc.),
which correspond to domain knowledge that is convincing and understandable to a domain expert,
can be extracted.

3. Experiments

3.1. Dataset

We carry out experiments on two datasets:

e  Atrial Fibrillation Monitoring Dataset [41]: 8528 ECG monitoring records, which last from 9 s to
slightly more than 60 s, is contained. All ECG records were sampled as 300 Hz and they have been
band pass filtered by the AliveCor device. However, there are still many signal noises contained in
this dataset. To filter the low-quality monitoring signals, all monitoring records which contain too
many signal noises would be classified into a category called “Too noisy to classify”. Moreover,
all health conditions that are abnormal but not an atrial fibrillation (e.g., junctional arrhythmia,
ventricular arrhythmia, etc.) are considered as a single category, that is, other rhythms. As a result,
these records are divided into four categories of health conditions: (1) Normal sinus rhythm N
(contains 5050 records, accounting for about 59.22%), (2) Atrial Fibrillation A (contains 738 records,
accounting for about 8.65%), (3) Other rhythm O (contains 2456 records, accounting for about
28.80%), and (4) Too noisy to classify P (contains 284 records, accounting for about 3.33%).

e  Aircraft Monitoring Dataset [42]: The aircraft structural damage monitoring dataset contains 808
labeled structural damage testing records lasting about 1 s sampling with 10 MHz. Each record has
two channels—the baseline channel and monitoring channel. The data of the baseline channel were
collected before the four-point bending test for composite laminates and impact test for stiffened
plate were carried out. In addition, the data of the monitoring channel were collected during
the four-point bending test and impact test. These records are classified as 2 health-condition
class: (1) Normal N (contains 538 records, accounting for about 66.58%), (2) Structural damage D
(contains 270 records, accounting for about 33.42%).

3.2. Performance Measurements

Several common metrics (Precision and Recall) are used to measure the model performance by
evaluating the proximity of the predicted labels to the referenced labels given by domain experts:

o Precision = 3 ). 021 Yiegijy)—c} T =
_ 1 yvM ) ﬂ(y(i):y(i))
o Recall = 3 Yo Yie iy =} Tigi=cy
In addition, the following F; evaluation measurements are employed for the Atrial Fibrillation
Monitoring dataset:

e F scores of each class: Denoted as I for normal sinus rthythm, F; 4 for AF, F for other rhythm,
F;p for noise. Detailed definitions can be found in [41].
e Avera E - |, — Bnthathothe
ges of Fy scores: Fy T .
Similarly, the following F; evaluation measurements are employed for the Aircraft
Monitoring Dataset by using the counting rules shown in Table 1:

e Fj scores of Normal class: Fiy = Z;f"z
n

e F scores of Structural Damage class: Fip = Zéf‘b

Fn+Fp
2

o Averages of Fy scores: Fi =
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Table 1. Counting rules for the numbers of the variables used in the F; evaluation measurements for
Structural Damage Monitoring Dataset.

Predicted Class
Normal(N)  Structural Damage(D) Total
Normal(N) Ny Ny YN
Reference Class  Structural Damage(D) Dy, Dy YD
Total Yn Yd

3.3. Implementation Details

The above performance measurements are used to evaluate the effectiveness of various
state-of-the-art DNN methods and reported average results by running a 5-fold cross validation.
Furthermore, the knowledge-level attributes (P wave disappear, P wave amplitude, QRS complex
amplitude, QRS duration, T wave amplitude, and PR interval, and ST slope) are extracted from
the Atrial Fibrillation Monitoring dataset using the ECGPUWAVE [45] on each fragment and the
knowledge-level attributes of each segment and record are generated by aggregation operations to train
the knowledge-directed interpretation model. Similarly, the knowledge-level attributes (Peak-to-peak
amplitude [46], Pearson correlation coefficient [47], and Signal energy [48]) are extracted from the
Aircraft Monitoring Dataset.

For the training dataset, the parameter value of %' and max stride threshold ./ is set to be
6000 and 500 for skewness-aware data augmentation, respectively—while, for the testing dataset,
as their labels are unknown, a sliding window with a window size # = 6000 would still be used
for generating the segments, but its stride would be set to a default value of 300. In addition,
the parameter values of K and .4 are set to be 3 and 300, respectively, for training the KEEN (without
knowledge-directed interpretation) model and KEEN+ (including knowledge-directed interpretation)
model (See Section 2.3) which are implemented on Tensorflow r1.4 using Python 3.6.2.

3.4. Comparing with Other Methods

The following state-of-the-art deep neural network methods (their shape of input and output
are similar to the Atrial Fibrillation Monitoring dataset and Aircraft Monitoring Dataset to avoid the
changes of model architecture) are compared with the proposed methods:

e CNN uses a variation of multilayer perceptrons to automatically extract features. Recently,
Sodmann et al. [49] constructed CNN architecture for health-condition assessment without
manually extracted features.

e RNN can automatically extract the time-domain trend features by allowing it to exhibit
temporal dynamic behavior. It is used as the major classifier for health-condition assessment in
Faust et al. [20].

e CRNN takes advantage of convolutional neural networks (CNNs) for local feature extraction
and recurrent neural networks (RNNs) for temporal summarization of the extracted features.
The CRNN model is employed in Liu et al. [22] for detecting the unhealthy condition of myocardial
infarction (MI).

e  ResNet can build very deep networks through modules called residual layers, which can avoid
higher errors rate due to naively adding CNN layers [43]. In Hannun et al. [24], it is employed
for cardiac health-condition assessment, and the accuracy is comparable to or higher than that
of cardiologists.
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4. Results Discussion

4.1. Effect of Application in the Field of Medical Health

To validate the accuracy of the proposed methods in the medical field, the Atrial Fibrillation
Monitoring dataset, which contains ECG records sampled from 8528 selected patients in
real-world scenarios, is used for evaluating the effectiveness of our methods for the task of atrial
fibrillation diagnosis.

4.1.1. Effectiveness of Atrial Fibrillation Diagnosis

It is clear from the diagrams in Figure 6a that the precision, recall, and F; scores of the KEEN and
KEEN+ are better than all the state-of-the-art deep learning methods in the task of atrial fibrillation
diagnosis. The methods of CNN, RNN, RCNN, and RESNET are not effective, mainly due to the high
noise contamination in this data set, and such methods do not deal with the problem of noisy segments.
The method of ResNet works better mainly because of deeper networks. However, it is limited by the
ability of model expression of the first three methods to build very deep networks, which may lead to
the information loss and feature loss.

EICNN ERNN CRNN ResNet EIKEEN MKEEN+

0.8200

0.7700 I I
KEEN+
KEEN
0.7200 ‘ ResNet
CRNN
| RNN
CNN
F1

0.6700

Precision  Recall

ECNN ERNN CRNN ResNet EIKEEN BEKEEN+ F1 Precision Recall

(a) On the Atrial Fibrillation Monitoring dataset. (b) On the Aircraft Monitoring dataset.

Figure 6. The result of Precision, Recall, F1 scores.

Additionally, the F; scores on the Atrial Fibrillation Monitoring dataset are demonstrated in
Table 2. We can see that it is an effective method to improve prediction performance by automatically
focusing on the most essential segments, as the F; scores of KEEN and KEEN+ are 0.8125 and 0.7974
respectively, which are 5.26-12.08% and 3.30-10.00% higher than other DNN methods. Remarkably,
compared to other DNN methods, the prediction performance of our methods are improved
significantly for detecting the low-quality records (“Too Noisy To Classify”). This is partly due
to the improvement of class skewness (as the skewness-driven dynamic augmentation makes the
proportion of records with different labels closer to each other, that is, the training records of “Too
Noisy To Classify” increase greatly), and the improvement of noisy segments problem (as our method
would be more attentive to the most important segments and avoid learning features from noise
segments for all records, which could reduce, to some extent, the misclassification of “Too Noisy To
Classify” records).

Moreover, the confusion matrix of the model predictions on the test dataset of Atrial Fibrillation
Monitoring dataset is shown in Figure 7a. Mistakes made by models are almost understandable.
To give just a few examples, many “Too Noisy To Classify” records are confused with “Other Rhythm”
records which makes sense given that it can be subtle to detect “Other Rhythm” records, especially
when their ECG morphologies are similar or when noise is present. In addition, it makes sense to
confuse “Other Rhythm” records and “Normal Sinus Rhythm” ones, as it is difficult to distinguish
among them sometimes, even for cardiologists.
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Table 2. Comparing our method with other deep learning methods on the Atrial Fibrillation
Monitoring dataset.

Method FnN Fa Fo Fp K
CNN 09123 0.8140 0.7097 0.4636 0.7249
RNN 09187 0.8100 0.7834 0.4829 0.7488

RCNN 09190 0.8221 0.7319 0.5676 0.7602

ResNet 09056 0.8431 0.7415 0.5873 0.7719
KEEN 0.9061 0.8712 0.7166 0.7561 0.8125

KEEN+ 0.9053 0.8704 0.7142 0.6995 0.7974

4
0.8 0.8
Ng i
< 06 ¢ 0.6
O ]
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"D 2 0.4
e 04 F :
2o
Y =
=
02 0.2
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N A 0
Predicted labels

(@) On the Atrial Fibrillation Monitoring dataset.

Predicted labels

(b) On the Aircraft Monitoring dataset.
Figure 7. Confusion matrix of KEEN.

4.1.2. Interpretation Results of Atrial Fibrillation Diagnosis

To show the interpretation results, we first evaluate the average error of all the knowledge-level
attributes used in the experiments in Table 3. We can see that the average errors of all knowledge-level
features are very small. Apart from quantitative analysis, we list two interpretation examples in
Figure 8 to better understand how an interpretation model works. Each example contains one segment
of the ECG record shown in Figure 1; the knowledge-level features generated by the KEEN+, thereafter,
output them for the fragments, segments, and the ECG record (i.e., the final output of knowledge-level
features are generated by aggregation operations to combine all the knowledge-level features of the
segments which belong to the same ECG records into one unified feature vector).

Reference label of ECG segment: A
Predicted label of ECG segment: A

Irregular PR interval

Reference label of ECG segment: A
Predicted label of ECG segment: N \

Knowledge-level information
prediction of the ECG record

Knowledge-level information
prediction of the ECG record

Noisy segment ><

Knowledge-level features | Predition

Knowledge-level information

P wave disappear
.zith unormal amplitude

P wave disappear 09581
P wave amplitude 06912
QRS complex amplitude | 0.1264
QRS duration 01184
T wave amplitude 0.0966
PR interval | 0.6248
ST slope | 0.0057

prediction of the segment

Knowledge-level information

prediction of the fragment

(a) The first interpretation example.

Normal P wave
with normal amplitude

Knowledge-level features | Predition

P wave disappear 00013
P wave amplitude 00976
QRS complex amplitude | 0.1259

QRS duration 01272
T wave amplitude 01093
PR interval 0.1906
ST slope 0.0082

Knowledge-level information
prediction of the segment

Knowledge-level information

prediction of the fragment

(b) The second interpretation example.

Figure 8. Case studies of prediction interpretation on the Atrial Fibrillation Monitoring dataset.
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Table 3. Error analysis of knowledge-level features on the Atrial Fibrillation Monitoring dataset.

Knowledge-Level Features  Average Error

P wave disappear 0.3918
P wave amplitude 0.0540
QRS complex amplitude 0.009
QRS duration 0.021
T wave amplitude 0.042
PR interval 0.196
ST slope 0.017

In the first example, the reference label and the predicted label of the first input ECG segment
are both “A” as shown in Figure 8a. Moreover, the knowledge-level information predicted on both
fragment and segment reveal characteristics of Atrial Fibrillation (e.g., high probability of P wave
disappear, high value of standard deviation coefficient on P wave amplitude, and PR interval which
reflect irregular changes of them between different fragments of an ECG segment, etc.). Consequently,
the KEEN+ can automatically predict this important domain knowledge-level information, which could
be provided as the domain technological decision-making basis, for the whole ECG record without the
help of domain experts. Moreover, the KEEN+ could help cardiologists to accurately locate the ECG
fragments when cardiac arrhythmia happens by analyzing the abnormal knowledge-level information
(e.g., P wave disappear) of each fragment.

As another example, the reference label and the predicted label of the second input ECG segment
are “A” and “N”, respectively. Some knowledge-level information (e.g., normal P wave with normal
amplitude), which agree with the clinical symptoms of Normal Sinus Rhythm other than Atrial
Fibrillation and indicate that the second input ECG segment is a noisy segment, can be obtained on the
fragments and segment of the input ECG segment as shown in Figure 8b. As a matter of fact, these noisy
segments should be avoided when using aggregation operations to generate the knowledge-level
information for an ECG record, which is exactly the goal of this work. This problem is well addressed
by the KEEN+ model, since aggregation operation would be only applied on the selected top-K most
confident segments for the given ECG record, and therefore output a more consistent and accurate
knowledge-level information.

4.2. Effect of Application in the Field of Aircraft Structural Health

We evaluate the effect of application in the field of aircraft structural health on the Aircraft
Monitoring dataset, which is collected by the piezoelectric sensor networks on real aircraft parts.

4.2.1. Effectiveness of Aircraft Structural Damage Detection

The precision, recall, and F; results are shown in Figure 6b. We can see that the proposed
KEEN and KEEN+ method with 0.8012 and 0.8005 F; scores outperform all of the most advanced
deep learning methods for the task of aircraft structural damage detection by 2.99-10.71% and
2.99-10.62%, respectively.

Figure 7b shows the confusion matrix of the model predictions on the test dataset of the Aircraft
Monitoring dataset. Obviously, quite a few records of “Structural Damage” are confused with “Normal”
ones, which is mainly because some invisible cracks to the human eye are really very difficult to
distinguish from the normal ones in the aircraft structural health-condition monitoring records.

4.2.2. Interpretation Results of Aircraft Structural Damage Detection

The results of average error rates of the knowledge-level attributes used in the experiments are
shown in Table 4, and we can see that the average errors of all knowledge-level features are very
small as well. Similarly, we list two interpretation examples in Figure 9 to better understand how an
interpretation model works in the task of aircraft structural damage detection. Each example contains
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one segment of an aircraft monitoring record, and each segment has two input channels—the baseline
signal channel x;, and the monitoring signal channel x,.

Table 4. Error analysis of knowledge-level features on the Aircraft Monitoring dataset.

Knowledge-Level Features

Average Error

Peak-to-peak amplitude
Pearson correlation coefficient
Signal energy

0.0124
0.1397
0.0024

Baseline Singnal

High correlation coefficient:

Baseline Singnal

Reference label of airplane monitoring segment: N
Predicted label of airplane monitoring segment: N

Knowledge-level
information
prediction of

monitoring record

Monitoring Singnal |

Knowledge-level features Predition
Peakto-peak amplitude. 00157

Knowledge level features Predition
Peak-to-peak amplitude. 0.01276

Signal energy 0.8694 Signal cnergy 02386

Reference label of airplane monitoring segment: D
Predicted label of airplane monitoring segment: D

Knowledge-level

Monitoring Singnal

WV

More energetic changes

Predition
0.0156
| ~1020989.4236
15801

Predition

001552
4026419018
04510

information

Knowledge-level information
prediction of the segment

Knowledge-level information
prediction of the fragment

(a) The first interpretation example.

prediction of
monitoring record

Knowledge-level information
prediction of the segment

Knowledge-level information
prediction of the fragment

(b) The second interpretation example.

Figure 9. Case studies of prediction interpretation on the Aircraft Monitoring dataset.

The reference label and predicted label of the input aircraft monitoring segment shown in the first
example are both “N”, while the reference label and predicted label are both “D” in the second example.
Compared with the second example as shown in Figure 9b, the amplitude of monitoring signal in
the first example (as shown in Figure 9a) decreases significantly, which is much more similar to the
baseline signal, while the second one shows an even stronger amplitude variation which reflects higher
signal energetic changes. The results indicate that the second example has a much lower Pearson
correlation coefficient (measuring the correlation of amplitude variations between baseline signal and
the monitoring signal) and higher signal energy (measuring the changes of energy), which meets the
diagnostic criteria in aircraft structural damage.

4.3. Analysis of the Influence of Hyper-Parameters

To evaluate the effect of different hyper-parameter settings on the performance of our method,
four main hyper-parameters (threshold K, window size %', maximum stride threshold .#, and length
of each fragment .4") are further evaluated.

Figure 10a demonstrates the effects of threshold K. The F; score increase when the threshold K
varies within the range of [1, 3], yet they drop when the threshold K is larger than 3. The primary cause
is that the accuracy of the proposed model depends on both the number of segments engaged in the
algorithm and the confidence of their labels. The threshold K not only determines how many segments
of each record participate in the algorithm but also the confidence of each segment involved in the
training process. That is, the higher the reasonable K value, the lower the confidence of predictions
(as we choose K segments from the most confident one to the less confident one). However, a much
higher K value may lead to a decrease in the confidence of segments participating in the learning and
voting phase, and degrade the performance of the proposed model as well.
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(a) Varying threshold K. (b) Varying maximum stride threshold .# (c) Varying windows size % and
and length of each fragment ./". maximum stride threshold .#.

Figure 10. F; score results of KEEN for for different hyper-parameters.

Furthermore, the effects of two main hyper-parameters (maximum stride threshold .# and length
of each fragment .#") are shown in the Figure 10b. When parameters of " and .4” vary within the range
of [500,1000]and [300, 2000] respectively, smaller fragments .#” may benefit the overall performance.
This is probably because it could provide more fragments for a recurrent neural network layer to
capture trend-level features. However, more critical local morphological-level features might be lost in
a ‘too small’ fragment.

In addition, when the hyper-parameters of windows size #" and maximum stride threshold .#
change within the range of [3000,8000]and [300,2000], respectively, as shown on the Figure 10c,
usually the smaller the parameters, the larger the augmented training data, and the better the
performance of the proposed model. Nevertheless, if a “too small” parameter of windows size %" which
could only provide a very narrow view for extracting local morphological-level features, the model
performance might be degraded too.

4.4. Discussion

The K-margin-based intErpretable IEarNing (KEEN) is a general framework for health-condition
assessment, which aims to provide interpretable health-condition detection results on a dataset with
class skewness and noisy segments. The advantages of the proposed method are fourfold:

e It can automatically adapt to the dataset with class skewness (e.g., the Atrial Fibrillation
Monitoring dataset) and improve the model performance on the dataset without class skewness
as well by improving the inadequacy of well-labeled data (e.g., the Aircraft Monitoring Dataset)
using the skewness-aware RCR-Net model.

e  No extra process of signal noise elimination is needed to help the prediction of health conditions
from monitoring data that contains noisy segments (both segments with too many signal noises
and segments with noisy labels).

e Low-quality noisy records can be reliably detected, as our method would not cause the problem
of changes or losses of features representing the quality of the monitoring signal itself.

e Important domain knowledge features can be extracted without the help of human experts
from the time-series data automatically. As a result, KEEN+ can provide an interpretable
decision-making basis or technological proof by using these domain knowledge-level features.

However, it has two disadvantages:

e Itneeds extra computation when filtering the noisy segments. Nevertheless, the computational
cost, which is [%1 x K, is very low compared with the computational cost of DNN methods.
For example, for the experimental settings mentioned in Section 3, the extra computational cost of
each monitoring record is [550] x 3=60.

e The model performance could be influenced by the inaccuracy of the knowledge-level
characteristics extracted from the dataset with high noise contamination. Comparing with the
similar F; scores of KENN and KEEN+ on the Aircraft Monitoring Dataset, the accuracy of
the KEEN+ method is slightly lower than that of the KEEN method on the Atrial Fibrillation
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Monitoring Dataset. This may be mainly because the noise contamination of the Atrial Fibrillation
Monitoring Dataset is much higher, and thus the accuracy of the extracted knowledge-level
characteristics is lower. From a performance perspective, the knowledge-level interpretation
method does lower the model performance to some extent on the dataset with high noise
contamination, but, considering that it can make results more explicable, this performance
degradation is acceptable.

5. Conclusions

In this paper, we propose a KEEN model for health-condition assessment which can automatically
handle the problems of class skewness and noisy segments, and provide knowledge-level
interpretations of the predicted results that can be used as a decision-making basis as well.
Through experimental validation in the field of both medical and aerospace, the proposed method
has a better generality and effectiveness comparing with the state-of-the-art deep learning methods
for health-condition assessment tasks. Moreover, the following conclusions can be drawn from the
test scene:

e  The proposed methods KEEN and KEEN+ with 0.8125 and 0.7974 F; scores, which outperform all
state-of-the-art DNN methods for health-condition assessment tasks by 3.30% and 5.71% on the
Atrial Fibrillation Monitoring dataset with class skewness and noisy segments, indicate that the
proposed methods can automatically adapt to the dataset with class skewness and noisy segments.

o  The KEEN (with 0.8012 F; scores) and KEEN+ (with 0.8005 F; scores) are able to perform 2.99%
better by improving the inadequacy of well-labeled data and filtering the noisy segments on the
Aircraft Monitoring Dataset without class skewness.

e KEEN and KEEN+ show good performance with 0.7561 and 0.6995 F; scores for detecting the
low-quality records (“Too Noisy To Classify”) which outperform other DNN methods by 28.74%
and 19.10% on the Atrial Fibrillation Monitoring dataset.

e  The model interpretation shows improvement in the results compared to other DNN methods,
as KEEN+ can provide domain knowledge-level features as technological proofs for the results of
health-condition assessment.

In future work, it will be important to investigate how the proposed approach could be performed
online (e.g., taking the skewness drift problem into account, how to rapidly update the model with
a new data stream, etc.). Moreover, another possible rewarding avenue of future research is to consider
multi-modality data input and more fine-grained output categories to improve the model performance
and apply it in a more practical situation.
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Abbreviations

The following abbreviations are used in this manuscript:

DNN  Deep Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

CRNN  Convolutional Recurrent Neural Network
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ResNet Residual Neural Networks
Bi-LSTM  Bi-Directional Long-Short Term Memory

RCR-Net  Residual-Convolution-Recurrent Neural Network

K-margin K-Margin-Based Health-Condition Label Prediction Algorithm

KEEN K-Margin-Based Interpretable Learning

MSE Mean Square Error Loss

ECG Electrocardiograph

AF Atrial Fibrillation
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