Table 2.
Nanoemulsions | Emulsions | |||||
---|---|---|---|---|---|---|
ΦO | 1.0 | 1.0 | 1.0 | 4.0 | 4.0 | 4.0 |
102 ΦI | 0.5 | 1.0 | 2.0 | 0.5 | 1.0 | 2.0 |
ζ-potential (mV) | −18.1 | −14.2 | −13.5 | −22.6 | nd * | nd * |
106 d (m) | 0.304 | 0.231 | 0.166 | 4.71 | 3.12 | 2.73 |
1012 Sdroplet (m2) | 0.29 | 0.17 | 0.09 | 69.7 | 30.6 | 23.4 |
1020 Vdroplet (m3) | 1.47 | 0.65 | 0.24 | 5468 | 1589 | 1065 |
10−12 Nd | 68 | 155 | 418 | 0.73 | 2.52 | 3.76 |
Stotal (m2) | 19.7 | 26.0 | 36.1 | 5.1 | 7.7 | 8.8 |
102 mT80 available / m2 of S (g) | 0.25 | 0.39 | 0.55 | 9.81 | 1.30 | 2.28 |
102 mT80, droplet (g) | 0.52 | 0.68 | 0.95 | 0.13 | 0.20 | 0.23 |
102 mT80, excess (g) | −0.02 | 0.32 | 1.05 | 0.37 | 0.80 | 1.80 |
ΦO = oil volume per 100 g of emulsion; ΦI = surfactant volume fraction; d = droplet diameter; Vdroplet = volume of one droplet; Sdroplet = droplet surface; Nd = total number of droplets; Stotal = surface of all droplets; mT80, droplet = mol of surfactant required for saturation per 100g of emulsion (calculated by employing an interfacial coverage at saturation of Γ∞ = 2 × 10−6 (mol m−2); mT80,excess = excess mol of Tween 80 remaining in the aqueous phase; mT80 available, mol of Tween 80 used. * nd—no determined.