Skip to main content
. 2020 Dec 18;9(12):1897. doi: 10.3390/foods9121897

Table 2.

Theoretical calculations (assuming that all droplets have the same size within each emulsified system) of some physical characteristics of the prepared (O/W) fish nanoemulsions in the absence of compounds.

Nanoemulsions Emulsions
ΦO 1.0 1.0 1.0 4.0 4.0 4.0
102 ΦI 0.5 1.0 2.0 0.5 1.0 2.0
ζ-potential (mV) −18.1 −14.2 −13.5 −22.6 nd * nd *
106 d (m) 0.304 0.231 0.166 4.71 3.12 2.73
1012 Sdroplet (m2) 0.29 0.17 0.09 69.7 30.6 23.4
1020 Vdroplet (m3) 1.47 0.65 0.24 5468 1589 1065
10−12 Nd 68 155 418 0.73 2.52 3.76
Stotal (m2) 19.7 26.0 36.1 5.1 7.7 8.8
102 mT80 available / m2 of S (g) 0.25 0.39 0.55 9.81 1.30 2.28
102 mT80, droplet (g) 0.52 0.68 0.95 0.13 0.20 0.23
102 mT80, excess (g) −0.02 0.32 1.05 0.37 0.80 1.80

ΦO = oil volume per 100 g of emulsion; ΦI = surfactant volume fraction; d = droplet diameter; Vdroplet = volume of one droplet; Sdroplet = droplet surface; Nd = total number of droplets; Stotal = surface of all droplets; mT80, droplet = mol of surfactant required for saturation per 100g of emulsion (calculated by employing an interfacial coverage at saturation of Γ∞ = 2 × 10−6 (mol m−2); mT80,excess = excess mol of Tween 80 remaining in the aqueous phase; mT80 available, mol of Tween 80 used. * nd—no determined.