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Abstract: Collecting valid information from electronic sources to detect the potential outbreak of
infectious disease is time-consuming and labor-intensive. The automated identification of relevant
information using machine learning is necessary to respond to a potential disease outbreak. A total
of 2864 documents were collected from various websites and subsequently manually categorized
and labeled by two reviewers. Accurate labels for the training and test data were provided based
on a reviewer consensus. Two machine learning algorithms—ConvNet and bidirectional long
short-term memory (BiLSTM)—and two classification methods—DocClass and SenClass—were
used for classifying the documents. The precision, recall, F1, accuracy, and area under the curve
were measured to evaluate the performance of each model. ConvNet yielded higher average, min,
and max accuracies (87.6%, 85.2%, and 91.1%, respectively) than BiLSTM with DocClass, while
BiLSTM performed better than ConvNet with SenClass with average, min, and max accuracies of
92.8%, 92.6%, and 93.3%, respectively. The performance of BiLSTM with SenClass yielded an overall
accuracy of 92.9% in classifying infectious disease occurrences. Machine learning had a compatible
performance with a human expert given a particular text extraction system. This study suggests that
analyzing information from the website using machine learning can achieve significant accuracies in
the presence of abundant articles/documents.

Keywords: machine learning; infectious disease; public health surveillance; online document;
classification

1. Introduction

1.1. Infectious Diseases Public Health Threats

The outbreak of new infectious diseases, such as H7N9, H5N1, Zika, and Ebola, is a serious threat
to human health and life. Some infectious diseases are associated with high mortality and fatality
rates, and no treatment or vaccination is available for some of these diseases [1]. Therefore, disease
monitoring is important to provide a prompt early warning of a potential disease outbreak.

The detection of abnormal disease distributions and the accurate assessment of the risk of disease
outbreak is paramount [2]. Organizations at the national, state, and local levels have developed various
disease surveillance systems to improve public health.
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The prevention and management of infectious disease outbreaks is a growing concern due to the
increased mobility of the population and frequent overseas travel. The Korea Disease Control and
Prevention Agency (KDCA) is working on protecting the homeland from the transmission of infectious
diseases from foreign countries.

One of the efforts that are being undertaken is to collect the outbreak information of the infectious
diseases through credible international bodies and to abstract the core information required to detect
potential disease occurrences. The daily reading or assimilation of a broad range and a large number
of reports is labor-intensive, introduces variability between reviewers, and is hard to scale readily for
large datasets. Thus, the automated identification of relevant information is the first step toward an
effective response to a potential disease outbreak.

1.2. Online Sources of Infectious Disease Outbreaks

Information sources on the Internet, such as publicly available news media and social media,
have been found to be informative for the early detection of emerging epidemics [3,4]. Over the
years, several Internet-based biosurveillance projects have been launched to identify disease outbreak
information from online articles.

For example, HealthMap was developed as a web-based surveillance tool for aggregating multiple
online sources to monitor the outbreaks and display levels of disease risk on a map [3,5]. The Program
for Monitoring Emerging Diseases (ProMED) is another one of the largest publicly available global
disease reporting systems [6,7]. The Medical Information System (MedISys) monitors ProMED-Mail,
web sites of national public health authorities, and news from around the world. It additionally
monitors trends and determines alert levels for each disease and country by comparing the average
numbers of recent news items to ensure a geographically balanced selection [8].

1.3. Machine Learning for Identifying the Outbreak of an Infectious Disease

Online news articles can provide timely information on disease outbreaks worldwide, though
identifying relevant online articles is challenging due to the vast amount of ever-growing publications
on the Web. Automated text classification using machine learning has been a promising approach to
identifying online news articles relevant to disease outbreaks [9].

Machine learning classifiers, such as naïve Bayes, support vector machine (SVM), and bidirectional
long short-term memory recurrent neural networks, have been applied to detecting online articles
about infectious disease activities [9–14]. While several surveillance systems collect and disseminate
surveillance information from online sources using text extraction, we specifically devised a system for
classifying online documents using natural language processing and machine learning models.

The purpose of this study was to provide a quantitative evaluation of AI in the automated
identification of information related to infectious disease occurrences using online sources.

2. Materials and Methods

2.1. Data Sources

This study was conducted by collecting data on the occurrence of infectious diseases from global
websites, which were specified by the KDCA as important sources of public health information
(Table 1).

We collected resources containing the names of 100 major infectious diseases. Five websites,
including WHO-DON, WHO-IHR, WHO-AFRO, NCDC, and SAMOH, among the 10 sources yielded
data that were mostly related to infectious disease occurrences, whereas ProMED and WHO-News
contained several documents unrelated to disease occurrences. In order to select relevant documents,
sources containing major infectious disease names were preferentially selected using the search function
provided in the websites and the Google site designation search and then reviewed manually.
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Table 1. List of websites for data collection.

Website URL

CIDRAP http://www.cidrap.umn.edu/
HealthMap https://www.healthmap.org/
Medisys https://medisys.newsbrief.eu/
NCDC https://ncdc.gov.ng
ProMED http://www.promedmail.org/
SAMOH https://www.moh.gov.sa/en/CCC/
WHO-AFRO http://www.afro.who.int/health-topics/disease-outbreaks/outbreaks-and-other-emergencies-updates
WHO-DON https://www.who.int/csr/don/en
WHO-IHR https://apps.who.int/ihr/eventinformation
WHO-News https://www.who.int/news-room

2.2. Data Preprocessing

A total of 2864 documents were collected using a web crawler. The documents were parsed into
the title, body text, and metadata. The body text was then divided into sentences and normalized by
unifying the publishing date format and deleting whitespace, newlines, comments, and superscripts.

Since we collected the information related to the current (at the time of publication) infectious
disease occurrence, sources related to the past occurrence, general disease information, study results of
infectious diseases, or the measures of treatments and prevention of infectious diseases were excluded.

The information about the occurrence of the infectious disease included the nature of the disease,
the time of onset, the place of occurrence, and the person involved. Thus, the essential elements of a
sentence for machine learning include the disease, person, event, place, and time. Disease refers to
the name of the disease, diagnosis, or the pathogen causing the infectious disease, including bacteria,
viruses, or fungi. Person refers to a subject affected by the disease. The event refers to the status of the
person, such as suspected, probable, confirmed, infected, or dead. Place refers to the country, state or
province, city, county, or location where the disease occurred. Time refers to the date and duration of
the occurrence of the infectious disease.

2.3. Building the Gold Standard

Two research assistants read the title and the body text to identify the sources containing valid
information regarding the occurrence of the target infectious diseases. Each reviewer independently
labeled sources for inclusion if they carried information related to infectious disease occurrences, and
excluded sources lacking such information. They were blinded to the label generated by the other
reviewer. Conflicts were resolved by a medical doctor. Accurate labels for the training and test data
were provided based on reviewer consensus.

2.4. Deep Learning Models

Determining the occurrence of infectious diseases in sources is a binary classification. We used
two popular deep learning neural network models, namely, a character-level convolutional neural
network (CNN) called ConvNet [15] and a word-level bidirectional long short-term memory (BiLSTM).

ConvNet treats each document as a sequence of characters, which is passed into six convolution
and max-pooling layers and three fully connected layers to determine the probability that the document
belongs to a positive class. This model learns rapidly and with reasonable performance compared to
word-level models since it does not require a pre-trained embedded word.

Conversely, BiLSTM treats each document as a sequence of words, which is passed into two layers
of a bidirectional LSTM, each of which is followed by dropout (0.5) and then the two fully connected
layers to determine the probability that the report belongs to a positive class. To ensure reasonable
performance, this model requires pre-trained word embedding vectors, which leads to slower learning
compared to character-level models. We used 300D fasttext [16] for word embedding because it reduces
the out-of-vocabulary (OOV) problem.

http://www.cidrap.umn.edu/
https://www.healthmap.org/
https://medisys.newsbrief.eu/
https://ncdc.gov.ng
http://www.promedmail.org/
https://www.moh.gov.sa/en/CCC/
http://www.afro.who.int/health-topics/disease-outbreaks/outbreaks-and-other-emergencies-updates
https://www.who.int/csr/don/en
https://apps.who.int/ihr/eventinformation
https://www.who.int/news-room
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Using these two algorithms, we developed two classification methods, DocClass and SenClass,
which represent document-level learning and sentence-level learning, respectively. DocClass classifies
the document by using the entire document as input, and SenClass receives the document sentence
as input, and classifies the sentence first, followed by the document. Figure 1 displays the basic
framework of the model.
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Figure 1. The two machine learning algorithms and classification methods used in the infectious
disease occurrence detection experiments. BiLSTM: bidirectional long short-term memory.

To train ConvNet and BiLSTM, the length of various documents must be fixed. Considering
the constraint of hardware memory and the length distribution of the training data, the number of
characters in the document was set to 10,000 in Conv-Net, and the number of words was set to 800 in
BiLSTM for DocClass. In the case of SenClass, the number of characters in a sentence was set to 3200 in
ConvNet, and the word limit was set to 128 in BiLSTM. Longer texts were truncated and shorter texts
were padded. Furthermore, we set the learning rate to (0.001, 0.001) and batch size to (64, 128) for
ConvNet and BiLSTM when we trained the two models. The structures of the two models are shown
in Figures 2 and 3, respectively.



Int. J. Environ. Res. Public Health 2020, 17, 9467 5 of 13

Int. J. Environ. Res. Public Health 2020, 17, x 5 of 13 

 

for ConvNet and BiLSTM when we trained the two models. The structures of the two models are 
shown in Figures 2 and 3, respectively. 

 
Figure 2. The ConvNet model structure for two classification methods, DocClass and SenClass. CNN: 
convolutional neural network. 

 
Figure 3. The BiLSTM model structure for two classification methods, DocClass and SenClass. 

2.5. Experimental Setup and Evaluation 

The 2864 documents were randomly divided into 80% for training and 10% for validation. The 
remaining 10% was used for the model evaluation. The training data were used in model training, 
the validation data for performance evaluation during training, and the test data for the prediction 
and performance evaluation. The accuracy of the learning curve was investigated according to data 
size to determine the appropriateness of the training data size. 

The statistical tests used to validate the performance of the proposed models were the area under 
the curve (AUC), accuracy, precision, recall, and the F1 score. AUC measures the effects of all possible 
classification thresholds and a numerical representation of the performance of the binary classifier, 
while the receiver operating characteristic (ROC) is the visual representation of the performance of 
the binary classifier. 

Precision refers to the percentage of results that are relevant and recall refers to the percentage 
of total relevant results that are correctly classified by the algorithm. The F1 score represents the 

Figure 2. The ConvNet model structure for two classification methods, DocClass and SenClass. CNN:
convolutional neural network.

Int. J. Environ. Res. Public Health 2020, 17, x 5 of 13 

 

for ConvNet and BiLSTM when we trained the two models. The structures of the two models are 
shown in Figures 2 and 3, respectively. 

 
Figure 2. The ConvNet model structure for two classification methods, DocClass and SenClass. CNN: 
convolutional neural network. 

 
Figure 3. The BiLSTM model structure for two classification methods, DocClass and SenClass. 

2.5. Experimental Setup and Evaluation 

The 2864 documents were randomly divided into 80% for training and 10% for validation. The 
remaining 10% was used for the model evaluation. The training data were used in model training, 
the validation data for performance evaluation during training, and the test data for the prediction 
and performance evaluation. The accuracy of the learning curve was investigated according to data 
size to determine the appropriateness of the training data size. 

The statistical tests used to validate the performance of the proposed models were the area under 
the curve (AUC), accuracy, precision, recall, and the F1 score. AUC measures the effects of all possible 
classification thresholds and a numerical representation of the performance of the binary classifier, 
while the receiver operating characteristic (ROC) is the visual representation of the performance of 
the binary classifier. 

Precision refers to the percentage of results that are relevant and recall refers to the percentage 
of total relevant results that are correctly classified by the algorithm. The F1 score represents the 

Figure 3. The BiLSTM model structure for two classification methods, DocClass and SenClass.

2.5. Experimental Setup and Evaluation

The 2864 documents were randomly divided into 80% for training and 10% for validation.
The remaining 10% was used for the model evaluation. The training data were used in model training,
the validation data for performance evaluation during training, and the test data for the prediction and
performance evaluation. The accuracy of the learning curve was investigated according to data size to
determine the appropriateness of the training data size.

The statistical tests used to validate the performance of the proposed models were the area under
the curve (AUC), accuracy, precision, recall, and the F1 score. AUC measures the effects of all possible
classification thresholds and a numerical representation of the performance of the binary classifier,
while the receiver operating characteristic (ROC) is the visual representation of the performance of the
binary classifier.

Precision refers to the percentage of results that are relevant and recall refers to the percentage of
total relevant results that are correctly classified by the algorithm. The F1 score represents the balance
between the precision and recall scores. The F1 score is based on both the precision and recall of
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classification, and hence, is considered as a weighted average of the model precision and recall, with
maximum and minimum values of 1 and 0, respectively.

3. Results

3.1. Manual Review of Documents

The number of documents collected for constructing a training dataset for each site is presented
in Table 2. At the time of document collection, a total of 2864 documents retrieved from 10 websites
were manually reviewed and classified into infectious disease occurrence and non-occurrence. Of the
2864 reports reviewed, 2083 (72.7%) were classified as relevant (disease occurrence) and 781 (27.3%)
as irrelevant.

Table 2. Gold standard for identifying infectious disease occurrences.

Sources No. of Documents
Gold Standard

Inclusion Exclusion Ratio

CIDRAP 51 50 1 98%
HealthMap 4 3 1 75%
MedISys 22 20 2 91%
NCDC 30 13 17 43%
ProMED 159 159 0 100%
SAMOH 97 97 0 100%
WHO-AFRO 1000 939 61 94%
WHO-DON 116 106 10 91%
WHO-IHR 385 152 233 39%
WHO-News 1000 544 456 54%

Total 2864 2083 781 73%

3.2. Performance Evaluation

The data originated from various sources and accordingly yielded different classification ratios,
which were maintained when splitting the data into training, validation, and test categories, as shown
in Table 3. The baseline accuracy of the test data was 73% when all the documents were classified as
positive, i.e., they included an infectious disease occurrence. Regarding this experiment, we present the
performance of two methods via document classification learning (DocClass) and sentence classification
learning (SenClass). Accordingly, we trained two deep learning models (ConvNet and BiLSTM) with a
mini-batch size = (32, 64, 128) and up to 100 epochs (using early stopping with patience = 40, 80) using
training and validation data. We evaluated the models using test data.

The evaluation results are presented in Table 4. Due to the randomness of the deep learning
models, we ran each experiment five times and obtained the average, standard deviation, maximum,
and minimum accuracy values. In the case of DocClass being used on all documents, the ConvNet
yielded a higher average, minimum, and maximum accuracies (88%, 85%, and 91%, respectively) than
BiLSTM (84%, 83%, and 85%, respectively), while BiLSTM was a little more stable due to its smaller
standard deviation.
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Table 3. Training, validation, and test data.

Source Total
Training Validation Test

Count Inclusion Exclusion Ratio Count Inclusion Exclusion Ratio Count Inclusion Exclusion Ratio

CIDRAP 51 41 40 1 98% 5 5 0 100% 5 5 0 100%
HealthMap 4 4 3 1 75% 0 0 0 0% 0 0 0 0%
Medisys 22 18 16 2 89% 2 2 0 100% 2 2 0 100%
SAMOH 30 24 12 12 43% 3 0 3 0% 3 1 2 33%
NCDC 159 127 127 0 100% 16 16 0 100% 16 16 0 100%
WHO-AFRO 97 79 79 0 100% 9 9 0 100% 9 9 0 100%
WHO-DON 1000 800 752 48 94% 100 92 8 92% 100 95 5 95%
WHO-IHR 116 94 86 8 91% 11 10 1 91% 11 10 1 91%
WHO-News 385 309 124 185 40% 38 14 24 37% 38 14 24 37%
ProMED 1000 800 435 365 54% 100 54 46 54% 100 55 45 55%

Total 2864 2296 1674 622 73% 284 202 82 71% 284 207 77 73%
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Table 4. The accuracy of the deep learning models for detecting infectious disease occurrences.

Models Measures
All Documents ProMED and WHO-News Documents Only (Hard)

BiLSTM ConvNet BiLSTM ConvNet

DocClass

Run#1 0.827465 0.866197 0.717391 0.673913
Run#2 0.838028 0.852113 0.702899 0.681159
Run#3 0.852113 0.873239 0.717391 0.760870
Run#4 0.834507 0.911972 0.702899 0.782609
Run#5 0.845070 0.876761 0.717391 0.695652

Average 0.839437 0.876056 0.711594 0.718841
Std Dev 0.009514 0.022186 0.007938 0.049520

Min 0.827465 0.852113 0.702899 0.673913
Max 0.852113 0.911972 0.717391 0.782609

SenClass

Run#1 0.926056 0.894366 0.869718 0.830986
Run#2 0.933099 0.901409 0.862676 0.788732
Run#3 0.926056 0.880282 0.901409 0.806338
Run#4 0.933099 0.883803 0.894366 0.852113
Run#5 0.926056 0.911972 0.880282 0.855634

Average 0.928873 0.894366 0.881690 0.826761
Std Dev 0.003857 0.012937 0.016251 0.028972

Min 0.926056 0.880282 0.862676 0.788732
Max 0.933099 0.911972 0.901409 0.855634

The average accuracies of both models were significantly higher than the baseline accuracy of 73%.
BiLSTM required additional training data compared with ConvNet to learn the sequence sufficiently.
The used training data were not large enough, which might have decreased the accuracy of BiLSTM
compared with ConvNet when using DocClass on all documents. However, in the case of using
SenClass on all documents, BiLSTM yielded higher average, minimum, and maximum accuracies
(93%, 93%, and 93%, respectively) than ConvNet (89%, 88%, and 91%, respectively), while BiLSTM
was more stable since it has a smaller standard deviation. The performance of SenClass was better for
both deep learning models than DocClass for all documents because the SenClass method contained
more training datasets than the DocClass for adequate learning of the sequence.

The data contained very different ratios of inclusion by sources, and especially the data from
ProMED and WHO-News were the hardest to classify. Thus, we additionally performed the same
experiments with data derived from these two sources, and the results are presented in the right
column of Table 4. The baseline accuracy of the data derived from ProMED and WHO-News was about
50%, whereas the deep learning models resulted in an accuracy of 71–72% (DocClass) and 83–88%
(SenClass) on average, which was much higher than the baseline.

In the case of SenClass, when data were few and hard to classify, BiLSTM resulted in higher
accuracy than ConvNet, while it still retained higher stability. These properties appeared to be due
to the characteristics of the two models. ConvNet can use collocation within a short context but
has difficulty in managing word sequences with long-term dependencies, while BiLSTM can detect
long-term dependencies since it is a sequence-based model.

All the documents from the hardest sources, i.e., ProMED and WHO-News, carried some of the
essential elements, i.e., at least infectious disease names, indicating disease occurrence. However, only
about half of the documents contained appropriate sequences of words corresponding to the essential
elements and were classified as an infectious disease occurrence.

In many of the sequences of words, the occurrence of essential elements was not limited to a short
context, which might increase the failure of ConvNet to correctly classify documents from the hardest
sources. Conversely, BiLSTM facilitated the detection of long-term dependencies between the essential
elements since it deals with the whole sequence of words in documents.

All performance results for the deep learning models are listed in Table 5. The performance
of BiLSTM with SenClass yielded an overall accuracy of 92.9% when classifying infectious disease
occurrences. The precision, recall, and F1 measure were also strongly similar to accuracy because the
task involved binary classification and we used the learning policy called early stopping in which the



Int. J. Environ. Res. Public Health 2020, 17, 9467 9 of 13

model stopped learning when it achieved the highest F1; the highest precision and recall usually occur
at the same point.

Table 5. Comparison of ConvNet and BiLSTM based on the precision, recall, F1, accuracy, and area
under the curve (AUC) measurements.

Models Sources Machine Learning Precision Recall F1 Accuracy AUC

DocClass
All documents

ConvNet 0.885276 0.876056 0.878662 0.876056 0.9506
BiLSTM 0.836505 0.839437 0.836018 0.839437 0.8829

ProMED and
WHO-News only (hard)

ConvNet 0.731487 0.718841 0.715217 0.718841 0.8318
BiLSTM 0.714365 0.711594 0.710630 0.711594 0.7652

SenClass
All documents

ConvNet 0.898752 0.894366 0.895760 0.894366 0.9491
BiLSTM 0.929231 0.928873 0.928864 0.928873 0.9706

ProMED and
WHO-News only (hard)

ConvNet 0.864100 0.826761 0.834486 0.826761 0.9568
BiLSTM 0.887245 0.881690 0.883484 0.881690 0.9547

Figure 4 shows the corresponding ROC curves when using DocClass and SenClass with the two
models with all test documents (ConvNet-All and BiLSTM-All) and the hard test documents from
hard sources (ConvNet-Hard and BiLSTM-Hard). In the case of using DocClass on all test and hard
test documents, ConvNet was substantially better than BiLSTM in the left-upper corner. In the case
of using SenClass on all test documents, BiLSTM was better than ConvNet in the left-upper corner.
However, BiLSTM was similar to ConvNet in the case of using SenClass on hard test documents.
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using SenClass for ConvNet and BiLSTM models.

We compared the BiLSTM-based SenClass with three baseline machine learning classifiers, namely,
Gaussian naïve Bayes, linear SVM, and random forest. Similar to SenClass, these three baseline methods
also classify documents by classifying sentences. Table 6 shows that the BiLSTM-based SenClass
outperformed the three baseline methods in core measures (accuracy, F1, and AUC). The three baseline
methods extract feature vectors based on TF-IDF (Term Frequency-Inverse Document Frequency)
through pre-processing, such as tokenization, stopword removal, and stemming for each sentence.
We used cross-validation and a grid search to tune the hyperparameters of the three baseline methods
and train the models. Therefore, the three baseline methods merged the training and validation data
and used the merged data for training. In particular, due to the high computational cost of the linear
SVM according to the number of sentence samples compared to other models, only 10% of merged
data were used for training.
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Table 6. Comparison of SenClass and the three baseline methods based on the precision, recall, F1,
accuracy, and AUC measurements.

Machine Learning Sources Precision Recall F1 Accuracy AUC

Gaussian Naïve Bayes All documents 0.884259 0.922705 0.903073 0.855634 0.8476
Linear SVM All documents 0.862661 0.971014 0.913636 0.866197 0.9391
Random Forest All documents 0.987805 0.782609 0.873315 0.834507 0.9605
SenClass_BiLSTM All documents 0.929231 0.928873 0.928864 0.928873 0.9706

3.3. Learning Curve Analysis

To determine whether the size of the training dataset was adequate, we drew a learning curve for
the accuracy according to the increase in the size of the training data, as shown in Figure 5. We trained
ConvNet using 20%, 40%, 60%, 80%, and 100% of the training data from all sources and calculated the
accuracy of the two methods using the test data. We maintained the document ratio from each source
in all subsets of the training data.
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The accuracy of DocClass still increased even though the increased ratio declined after 40% of the
training data was used. The accuracy of SenClass, however, was not significantly affected by the size of
the training dataset. However, the lowest-performing accuracy of SenClass was similar to the highest
degree of accuracy when using DocClass. In addition, the accuracy of SenClass increased slightly.

We found that the character-based ConvNet classifier of DocClass performed reasonably well,
with an 87.6% accuracy and a 95.1% AUC, but often failed to correctly classify documents from the
hardest sources. The ConvNet classifier using SenClass performed well, with an 89.4% accuracy and a
94.9% AUC, and showed higher accuracy and AUC than DocClass, even from the hardest sources.

BiLSTM using SenClass showed potential for document classification from the hardest sources.
We also observed very low standard deviations (SDs) for the performance measures in the BiLSTM
using both DocClass and SenClass, which suggests that BiLSTM was more stable and less sensitive to
the initial parameter setting when training using the classification of documents containing references
regarding infectious disease occurrences.



Int. J. Environ. Res. Public Health 2020, 17, 9467 11 of 13

4. Discussion

In this pilot study, the feasibility and accuracy of machine learning techniques were determined
using automated natural language processing to classify infectious disease occurrence information
online. It is labor-intensive and time-consuming to collect information regarding infectious disease
outbreaks and to abstract the core information needed to determine the potential disease occurrence.
Thus, an automated classification approach using machine learning to diminish the manual workload
was explored in this study.

4.1. Principal Findings

Our natural language processing (NLP)-based machine learning technique facilitated the
classification of information about infectious disease occurrences from a large volume of online
sources. The healthcare field is an area of application for machine learning since it contains vast data
resources that are difficult to handle manually. The machine learning classifier in this study was not
entirely accurate; however, the accuracy was comparable or superior to other studies in the healthcare
field, which is mainly focused on disease diagnosis [17,18], the prediction of disease risk [19–21], and
the classification of disease [22,23].

The actual accuracy of our classifier is expected to be higher than the study results when applied
in the real world because the news related to infectious disease occurrence is posted on many relevant
websites with similar content. Therefore, even if one document is incorrectly classified on one site, the
possibility that the same document is correctly classified on other sites is high.

Deep learning models are hindered by the need for a large training dataset, and the accuracy of
the algorithm largely depends on the size of the training set based on experience in other domains [24].
The performance of recent studies (i.e., SST-2 [25] and Yelp-2 [26]) in binary text classification [27] was
better than our study. However, SST-2 and Yelp-2 carried a significantly larger number of training data
than our study. Nevertheless, in the case of a task involving infectious disease occurrence classifications,
the results showed that deep learning models can perform well, even with a training dataset comprising
only 2864 labeled documents. Thus, we believe that the performance of the classifier will improve
further with larger datasets since the learning curve of accuracy grew as the size of the training dataset
increased, as shown in Figure 5.

Furthermore, the task was harder than other binary text classifications, such as sentiment analysis
of a review text. Our task data was quite long with each text exceeding 800 words on average and
a 9000-word maximum. Important clue words (essential elements) indicating the occurrence of the
infectious disease usually appeared within one to two sentences, suggesting the need for a different
approach to classifying each sentence first, and then merging the results of each sentence classification
to classify the document, instead of classifying documents directly. Therefore, we developed SenClass
to classify documents by learning in sentence units, where SenClass showed better performance than
DocClass, a document-unit learning classifier.

4.2. Limitations and Future Directions

Some limitations at the current stage need to be addressed in future work. We extracted text
only from the websites, which provided documents in an HTML format, and extracted text through a
pdf reader if documents were provided in a pdf format. When extracting text from a pdf document,
structural information was removed and the strings were extracted in the order they appeared on the
screen. As a result, the original order of words was distorted and the sentence boundary was unclear.
There is a risk of generating a relatively large number of errors in constructing a training dataset.

We only focused on English document sources in this study. However, due to the globalization
and mobility of infectious diseases, some important and timely news, especially related to disease
outbreaks, may be reported in other languages. Future studies should incorporate a multilingual
processing component to deal with important news sources in other languages.
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In the current deep learning experiments, we did not use additional features (entities), such as
disease, person, place, and time, which are essential elements to determine whether a report mentions
an infectious disease outbreak. In a future study, we will plan to first identify such entities from reports
and elucidate the role of the additional features in deep learning models and their performance.

5. Conclusions

We proposed a general framework for building an automated, infectious disease-specific online
document collection and classification system, which is becoming increasingly critical for protecting
public health. Such a framework can automatically gather specific infectious-disease-related documents
from the Web and provide accurate and timely information to health providers.

This study demonstrated the feasibility of using machine learning techniques to identify infectious
disease outbreaks. The artificial intelligence is compatible with the performance of a human expert
given a specific text extraction system. This study suggests that collecting and classifying online
documents using machine learning is substantially accurate in the presence of a plethora of resources
on the Internet.
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