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Abstract: For geopolymers (usually composed of unreacted precursor and gel), the compressive
strength is controlled by two factors. The first is the degree of reaction, or, equivalently, the amount
of gel formed, including any calcium silicate hydrate gel in calcium-containing mixtures. The second
factor is the gel composition, generally given by the Si/Al ratio. These two parameters are interrelated
for typical silicate-activated metakaolin geopolymers. By separating out effects of Si/Al ratio and
degree of reaction, this study quantitatively correlates the degree of reaction with the compressive
strength of metakaolin-based geopolymers with and without calcium. Solid-state 29Si nuclear magnetic
resonance (NMR) aided with chemical extractions was used to determine gel amounts and composition
for several geopolymer mixtures. The compressive strength was also measured for each mixture at
7 days. Both the increase of Na/Al ratio in mixtures without calcium and addition of external calcium
increased the degree of reaction, and compressive strength correlated linearly (R2 > 0.88) with the
degree of reaction.
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1. Introduction

Geopolymers are synthesized by activating aluminosilicate precursors with sodium/potassium
hydroxides and/or silicates. Geopolymers have attracted significant research interest [1–3] in the
last two decades. They are, in principle, environmentally friendly and low-emission alternatives to
conventional portland cement, as synthesis can be carried out at room temperature using industrial
wastes such as fly ash, slag, incineration bottom ash, and red mud [2,4,5]. They can exhibit several
attractive and exploitable properties, including high compressive strength, low shrinkage, a wide
range of setting times, high thermal stability, acid resistance, and a potential to immobilize toxic
metals [1,2,4,6–9].

Metakaolin is a simple aluminosilicate precursor material that facilitates understanding of the
composition–structure–property relationships for geopolymers. Unlike fly ashes, it is almost entirely
amorphous and reacts relatively rapidly [10]. During geopolymerization, metakaolin is dissolved
in an alkaline or alkali-silicate solution to release silicon (Si) and aluminum (Al) ions, which then
condense with each other to form aluminosilicate oligomers, building blocks that further condense
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to form the geopolymer gel [2,11]. Also unlike fly ashes and slags, metakaolin geopolymers do
not contain any calcium. For this reason, metakaolin geopolymers provide a convenient system for
systematically studying the influence of calcium on the composition and structure of geopolymers and
on the properties of geopolymer mixtures.

In the absence of calcium, it seems reasonable that the amount of geopolymer gel will be the
parameter most directly influencing the compressive strength (referred to as strength from this
point forward) development. It is also known that higher Si/Al ratio in the geopolymer gel reduces
strength [12]. In geopolymers activated by solutions containing Si in addition to alkali (e.g., Na+ and
K+), such as used in the current study, reaction is slow and Si/Al ratio in the gel is extremely high,
both likely to result in low strength. While both parameters have been studied in detail, a study of the
literature reveals that the effects of the degree of reaction and Si/Al ratio on the strength have so far
not been separately determined. Such separated understanding is critical, especially when exploring
other potential sustainable precursors (e.g., aluminosilicate wastes/minerals with a wide range of
compositions and reactivities) that would alter the degree of reaction and Si/Al ratio of the gel so as to
produce different strength responses.

To control the amount of the gel independently of its Si/Al ratio, the amount of alkali cations in
the solution can be adjusted when designing the mixtures. During gel formation, the alkali cations
balance the charges due to Al incorporation [13]. An insufficient amount of alkali prevents complete
incorporation of Al into the geopolymer framework (i.e., reduces the formation of geopolymer gel).
The incorporation of Al increases with the ratio of M/Al (where M is Na or K) until it reaches a value of
1.0. By adjusting the amount of alkali cations, the degree of reaction can be tailored to determine its
correlation with strength.

In the presence of calcium, calcium aluminosilicate hydrate (C-A-S-H) is present in addition to the
geopolymer gel and unreacted precursor [14–17], though calcium ions have also been shown recently to
occupy the charge-balancing sites in the structure of geopolymer gel [18]. Unlike the two-dimensional
chain-like calcium silicate hydrate (C-S-H) or the somewhat more polymerized but still essentially
chain-like C-A-S-H, the structure of geopolymer gel in the presence of Ca is a three-dimensional
network [19]. The degree of reaction (equivalently, the amount of C-A-S-H and geopolymer gel relative
to the entire mixture) can be reasonably expected to affect strength, but this effect has not been studied
with varying amounts of Ca. In a previous study, the higher strength due to the addition of Ca was
tentatively attributed to filling of voids within the geopolymer gel by C-A-S-H gel [20]. In another
study [21], decreased strength in Ca-geopolymers cured at elevated temperature was attributed to
insufficient development of three-dimensional geopolymer gel, while increased strength of the same
mixtures cured at room temperature was attributed to enhanced dissolution of the precursor and the
additional precipitation of C-A-S-H. Such increased strength with calcium was also reported for fly
ash/slag geopolymers in a recent study [22]. However, neither study quantified the degree of reaction
in their mixtures. In our previous study of metakaolin geopolymers before and around setting [15],
we demonstrated that dissolution of metakaolin and setting of the mixtures were enhanced by calcium
hydroxide (Ca(OH)2). Here we hypothesize that the addition of calcium also promotes the degree of
reaction at later ages and further increases the strength.

The objectives of this study are to quantitatively correlate the degree of reaction with the strength
for metakaolin geopolymers with and without calcium. Though a generally linear correlation between
degree of reaction and strength has been well established for ordinary portland cements [23,24] and
some attempts have been made to understand the strength as a function of multiple mixture parameters
in geopolymers [25,26], the current study is the first to correlate strength with degree of reaction
independently of other confounding factors. The mixtures were designed such that the effects of
degree of reaction could be considered independently of the gel Si/Al ratio. The degree of reaction and
composition of the gel were characterized using solid-state 29Si NMR spectroscopy [15,27]. The NMR
spectra shown here were presented in the thesis of the second author [28] but were reanalyzed here
to quantify the degree of reaction. The quantification was validated by chemical extractions [15].
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The correlation of degree of reaction with strength provides guidance at a fundamental level to design
mixtures with optimized mechanical performance. The effects of calcium on the degree of reaction
provide insight into Ca-containing geopolymers—the reaction products and their structures—including
hybrid geopolymer–portland cements.

2. Materials and Methods

To design geopolymer mixtures with different reaction extent and gel composition, Na/Al ratios
and calcium contents were varied as summarized in Table 1. Mixtures 1–4 do not contain any Ca.
By varying the Na/Al ratios, specimens with different amounts of gel (corresponding to differing degree
of reaction) were synthesized. The Si/Al ratios of these mixtures varied from 1.1 to 1.5, a range much
narrower than that studied by Williams et al. [29] so as to minimize the effects of the gel Si/Al ratio on
mechanical strength. Different amounts of Ca were added in Mixtures 4–7, with Ca/Si ratios up to 0.15.

Table 1. Compositions of mixtures

Mixture Number Na/Al Si/Al H2O/Na2O Ca/Si

1 0.54 1.10 20 0
2 0.59 1.20 20 0
3 0.64 1.30 20 0
4 0.74 1.50 20 0
5 0.74 1.50 20 0.05
6 0.74 1.50 20 0.10
7 0.74 1.50 20 0.15

Geopolymer mixtures were synthesized using metakaolin (MetaMax®, BASF, Ludwigshafen,
Germany) as the precursor. The average particle size of metakaolin is 1.3µm based on the manufacturer’s
data. The XRD and XRF results shown separately [28] indicate that the metakaolin is amorphous and
contains around 44 wt % of Al2O3 and 53 wt % of SiO2. The activating solution was prepared using a
sodium silicate solution (29.02 wt % SiO2, 9.00 wt % Na2O and 61.98 wt % H2O, Fisher, Waltham, MA,
USA) and reagent-grade sodium hydroxide (Fisher, Waltham, MA, USA).

During mixing, the activating solution and the metakaolin were first stored at room temperature
(~23 ◦C) for 24 h. For mixtures containing Ca, the desired amount of calcium hydroxide was first
mixed with the metakaolin precursor. The precursor (with or without calcium hydroxide) was then
mixed with the activating solution in a HobartTM (N50) paddle mixer using the following protocol:
mixed at a low speed for 2.5 min, then stopped for 1.0 min and scraped paste off the sides of the bowl,
and finally mixed for another 2.5 min at a high speed.

Immediately after mixing, specimens were placed in two layers in plastic cube molds,
50 × 50 × 50 mm. Each specimen was then vibrated for around 30 s to achieve adequate consolidation.
Specimens were stored in a curing room at 25 ◦C and 100% relative humidity for around 3 h and then
heated at 60 ◦C and ambient humidity and pressure for 2 h. After this heat treatment, they were put
back in the curing room until around 24 h after mixing, when they were demolded. The demolded
specimens were kept in the curing room until testing.

All tests were carried out at 7 days after mixing. Compressive strengths were measured in
accordance with ASTM C109 [30] using a ForneyTM compression testing machine with a loading rate
of 900–1800 N/s at ambient temperature (22 ± 1 ◦C). In preparation for 29Si NMR testing, samples were
ground and then solvent-exchanged to remove water and thereby stop reaction [31].

Solid-state 29Si NMR tests were conducted using a Varian Unity Inova spectrometer with magnetic
field of 7.04 T at a resonance frequency of 59.6 MHz and a 4-mm probe. Recycle delay and number
of scans were 30 s and 2048, respectively. The amount of the geopolymer gel and its Si/Al ratio were
calculated based on intensities of the deconvoluted peaks in the spectra.

Certain chemical extractions were performed to aid in assigning NMR peaks. For non-Ca mixtures,
HCl extractions were conducted to remove geopolymer gel [32,33], using 1:20 volume ratio (i.e., 1 part
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37 wt % HCl and 20 parts H2O). For Ca-mixtures, salicylic acid (HOC6H4COOH) in methanol (SAM)
extractions [32,34–36] were carried out to remove the C-A-S-H and then HCl extractions used to remove
geopolymer gel, as illustrated in Figure 1.
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Figure 1. Flowchart of salicylic acid/methanol (SAM) and hydrochloric acid (HCl) extractions to
selectively remove calcium silicate hydrate (C) and geopolymer gel (G) from calcium geopolymer that
contains C, G and metakaolin (M).

3. Results

3.1. Non-Ca Mixtures

3.1.1. Degree of Reaction and Gel Composition

The solid-state 29Si NMR spectra of the non-Ca mixtures were deconvoluted and the peaks
were assigned. Figure 2 shows typical spectra. In the HCl residue (which contains only unreacted
metakaolin [15]), the two peaks, −93 ppm and −107 ppm, are assigned to unreacted metakaolin. In the
unextracted sample, the two metakaolin peaks exhibited the same width and relative intensity as
those in the spectrum of the HCl residue. The remaining peaks were assigned to the geopolymer gel.
The widths and positions of these peaks were kept consistent with those observed in deconvolution
of a mature geopolymer, with fine adjustments to obtain good fitting. The resulting computed and
measured spectra agreed well, though some low-intensity minor peaks (e.g., those between −65 and
−75 ppm) are neglected and can account for about 5% of the total intensity. These deconvoluted peaks
assigned to geopolymer gel were further assigned to Q4(nAl) (n = 0~4) sites [15,37].

Based on these assignments, the amount of each phase in terms of Si mol% was estimated.
The degree of reaction was computed as Si mol% in the product with respect to that in the entire sample
(i.e., the product phases and unreacted metakaolin), as defined by Equation (1):

Degree o f reaction =
Moles o f Si in product phases

Moles o f total Si in sample
(1)

The degree of reaction was found to be strongly linearly correlated with the Na/Al ratio of the
mixture, as shown in Figure 3. However, as the relationship is based on only a few points, the degree
of the correlation should not be overstated.
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Also, based on the peak assignments, the Si/Al ratio of the geopolymer gel was estimated using
Equation (2) [37]:

Si/Al =
∑4

n=0
ISi(nAl)/

∑4

n=0

n
4

ISi(nAl) (2)
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where ISi(nAl) is the intensity of each Q4(nAl) peak. Additionally, the Si/Al ratio of the unreacted
metakaolin in these mixtures was calculated from the overall Si molar percent and the Si/Al ratio of
geopolymer gel by considering that the summed Si/Al of these two phases is equal to the overall Si/Al
ratio of the mixture. These results are summarized in Table 2.

Table 2. Amount and composition of geopolymer gel and unreacted metakaolin in the non-Ca mixtures
as determined using NMR.

Mix No.
Mixture Design Geopolymer Gel Unreacted Metakaolin

Na/Al Si/Al Si/Al Si, mol% Si/Al Si, mol%

1 0.54 1.1 1.4 42.3 0.95 57.7
2 0.59 1.2 1.64 49.9 0.95 50.1
3 0.64 1.3 1.77 54.7 0.98 45.3
4 0.74 1.5 1.69 65.1 1.22 34.9

3.1.2. Relationships with Compressive Strength

The 7-day compressive strength was plotted versus the degree of reaction (Si mol %) in Figure 4a.
While the strength is generally low and error bars (half of the standard deviation of the mean on each
side) are relatively high, the compressive strength increased, in a more or less linear manner, as the
degree of reaction increased. While the R2 for the fitted equation y = 0.25x− 4.7 was found to be 0.88,
this correlation is based only on limited data. Additional data points would provide more confidence
in this relationship.

The strength was plotted versus the Si/Al ratio of the geopolymer gel in Figure 4b. The strength
increased as Si/Al ratio changed from 1.64 to 1.69 and then decreased as the ratio increased further.
These results do not reliably indicate a correlation between strength and Si/Al, mainly because the
change in Si/Al ratio is extremely small. However, it is known that maximum strength usually occurs
at an intermediate Si/Al ratio [12], typically around 1.90, a higher value than those observed here.
It should be noted that Mixture 1 was excluded in both figures, as the samples were poorly consolidated
as a result of extremely low workability. The strength of this mixture was considered unreliable for
comparison. The low workability is likely related to the rapid geopolymerization due to the low Si/Al
(1.1), which accelerates geopolymerization, and the low alkalinity (H2O/Na2O = 20), which minimizes
any re-dissolution of gels [38,39].
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Thus, it is seen that strength increased linearly with increasing degree of reaction and independently
of gel composition. In general, degree of reaction and Si/Al of the geopolymer gel are linked in
silicate-activated geopolymers, and their effects on strength have not been separated in previous
studies [29]. Unlike earlier studies, in the current study we successfully separated the degree of reaction
from the gel composition and so could explore its correlation with strength.

3.2. Ca Mixtures

3.2.1. Degree of Reaction and Gel Composition

The 29Si NMR spectra for mixtures containing calcium were deconvoluted as shown in
Figure 5 for the solvent-exchanged mixture with Ca/Si 0.15 and its chemical extraction residues.
The solvent-exchanged residue was extracted using SAM to remove the C-A-S-H, and the resulting
residue was further extracted using HCl to remove the geopolymer gel, as detailed in Figure 1.
To begin, the spectrum of the HCl residue was deconvoluted to two peaks, which were both assigned
to metakaolin, expected to be the only phase remaining after the extractions [15]. In the spectrum of
the SAM residue, peaks with the same width, position, and relative intensity were assigned to the
unreacted metakaolin, and the remaining peaks were assigned to geopolymer gel. These gel peaks
were similar to those assigned to geopolymer gel in the non-Ca specimens, with similar widths and
positions. Additional peaks in the unextracted residue were assigned to C-A-S-H, according to spectra
of synthesized C-A-S-H [40]. When these peaks were introduced to the deconvolution, with fine
adjustments to achieve good fitting, the computed and measured spectra agreed well.

Based on these deconvolutions, the amount and the composition of each phase were analyzed.
The molar percentages of C-A-S-H, geopolymer gel, and metakaolin were estimated to be 45.8%, 34.2%,
and 20.0%, respectively. The five geopolymer peaks were assigned to Q4(nAl) (n = 0~4) sites, as noted
in Figure 5b. The Si/Al of the geopolymer gel was calculated to be 1.85, somewhat higher than the 1.61
estimated for the corresponding non-Ca mixture (i.e., Mixture 4), a difference likely resulting from
formation of a calcium modified gel that was extracted during the SAM treatment. By comparing the
Si/Al of the gel with the bulk ratio, the Si/Al in the C-A-S-H was estimated to be 1.50. This ratio is lower
than 5.0, the lower boundary of Si/Al observed in conventional C-A-S-H gel with chain structures [41],
but it is within the range 1.2 to 10.0 for a calcium modified geopolymer gel, i.e., (Ca, Na)-A-S-H, with a
three-dimensional structure [42], suggesting this SAM-extracted phase could be a calcium-modified
geopolymer gel. This conclusion could not be drawn directly from peak positions in the spectrum in
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Figure 5c, because the Q4 peaks (associated with three-dimensional structures), if any, would overlap
with the low-Q peaks (associated with chain structures) [43]. At any rate, such a calcium-modified
geopolymer gel, if present, appears to have been dissolved together with any conventional C-A-S-H
with chain structures during the SAM extraction. Such dissolution would explain the difference in the
estimated Si/Al of the geopolymer gel between the Ca and the non-Ca mixtures noted above. To avoid
such SAM-extraction related uncertainties, the degree of reaction for Ca-mixtures was examined below
by a direct deconvolution of NMR spectra that separates unreacted metakaolin versus reaction products
(i.e., C-A-S-H and geopolymer gels).
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Figure 5. Deconvolution of the 29Si NMR spectra of (a) HCl residue, (b) SAM residue, and (c)
specimen before chemical extractions for the Ca-mixture with Ca/Si of 0.15 and Si/Al of 1.5. The sum of
deconvoluted peaks (silver) is close to the experimental spectrum (black).

With varying Ca amounts, the degree of reaction varied. Figure 6 shows the superimposed 29Si
NMR spectra of the geopolymer specimens with different Ca amounts. The peak at about −107 ppm is
in each case assigned to metakaolin. In this figure, the relative intensity in this region decreased as
Ca/Si increased, indicating less unreacted metakaolin with higher Ca amounts.
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Figure 6. 29Si NMR spectra of geopolymers at 7 days with different amounts of Ca.

In order to quantify the observations, the unreacted metakaolin in terms of molar percentage of Si
was calculated by estimating the intensity of the two metakaolin peaks relative to each whole spectrum
(Figure 7). The degree of reaction was enhanced with Ca (at 7 days, as clearly seen in Figure 6 and
quantified in Figure 7) and is consistent with the early-age results during geopolymerization [15,21].
As discussed in our previous study [15], and supported by other studies [44,45], at higher Si
concentration, Al released from metakaolin would be more likely to contact and condense with
Si species to form a precipitate on the surface of metakaolin particles that limits further dissolution.
Because Ca reduces the concentration of Si, this surface precipitate is less likely to form when calcium
is present.
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Figure 7. Degree of reaction from 29Si NMR analysis for geopolymers with different Ca/Si ratios at
7 days.

3.2.2. Relationships with Compressive Strength

With Ca there are two reaction products, geopolymer gel and C-A-S-H, both of which are expected
to contribute to strength, though not necessarily to the same degree. Compressive strength was plotted
versus the degree of reaction for mixtures with different amounts of Ca in Figure 8. The geopolymer
strength is substantially increased with addition of calcium, likely reflecting the enhanced degree of
reaction with addition of calcium (see Figure 7). Mixtures with Ca/Si 0.10 and lower show a strong linear
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relationship between compressive strength and the amount of unreacted metakaolin. The correlation
coefficient (R2) for this relationship is greater than 0.99, higher than that for the non-Ca mixtures above.
It should be noted that the relationships are based only on limited data. The mixture with Ca/Si of 0.15
showed a low workability, which is believed to cause its extremely low compressive strength, so it was
not included in the regression analysis. The low workability was associated with very rapid hardening,
a phenomenon consistent with our and others’ previous studies [14,15,21].
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Figure 8. Compressive strength versus degree of reaction for geopolymers with different Ca/Si ratios at
7 days.

One thing to be noted is that the slope of strength versus degree of reaction was much higher
for the calcium mixtures (i.e., 1.2) in Figure 8 than for the non-calcium mixtures (i.e., 0.25) in
Figure 4. Such difference suggests the presence of calcium-rich gel (i.e., C-A-S-H and calcium-modified
geopolymer gel) produced strength more efficiently than the non-calcium geopolymer gel. This higher
efficiency could be attributed to a higher Si/Al ratio of the geopolymer gel induced by calcium,
as discussed in Section 3.2.1, since a higher Si/Al ratio of the gel generally exhibits a higher strength [12].
Additionally, the porosity could be reduced when the geopolymer gel and calcium-rich gel coexist [20].
Another observation that can be made from Figures 4a and 8 is that the best-fit lines do not pass through
the origin, likely reflecting a different structure-strength relationship when the degree of reaction is
extremely low.

4. Conclusions

This study quantified the relationship between degree of reaction and strength for metakaolin
geopolymers with and without Ca, independently of, for the first time, the effects of the gel Si/Al
ratio. Degree of reaction was quantified using solid-state 29Si NMR. The increase of Na/Al ratio
from 0.54 to 0.74 in the geopolymer gel increased the degree of reaction by >20%. Ca in the mixture
(up to Ca/Si of 0.15) increased the degree of reaction by up to around 15%. For both non-Ca and Ca
mixtures, the degree of reaction was correlated with the strength, with R2 > 0.88 for a linear relationship.
Additionally, the combination of C-A-S-H and calcium-modified gel was found to produce strength
more efficiently than mixtures containing only non-calcium geopolymer gel, as the curves of strength
versus degree of reaction exhibited a higher slope for the calcium mixtures (i.e., 1.2) compared to the
non-calcium mixtures (i.e., 0.25).
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