Skip to main content
. 2020 Dec 19;22(12):1436. doi: 10.3390/e22121436

Table 6.

Precision, recall and F1 scores of the classifiers trained on base synthetic data with Set A of features. For each classifier, the testing set consists of 12,000 trajectories per diffusion mode—that is, 36,000 in total. All classifiers were built on base data set with Set A of features.

Method Variant Measure Normal Diffusion Subdiffusion Superdiffusion Total/Average
RF           Precision 0.929 0.973 0.970 0.957
with D Recall 0.944 0.966 0.962 0.957
F1 0.936 0.969 0.966 0.957
Precision 0.922 0.971 0.971 0.955
no D Recall 0.943 0.963 0.958 0.955
F1 0.933 0.967 0.964 0.955
GB           Precision 0.928 0.972 0.970 0.956
with D Recall 0.942 0.966 0.961 0.956
F1 0.935 0.969 0.965 0.956
Precision 0.925 0.970 0.969 0.955
no D Recall 0.940 0.964 0.960 0.955
F1 0.932 0.967 0.965 0.955