Skip to main content
. 2020 Dec 19;22(12):1436. doi: 10.3390/e22121436

Table 9.

Detailed performance comparison of random forest classifiers based on three sets of features, built on the base data set. Metrics are calculated on the test data. All results are rounded to three decimal digits. For each classifier, the test set consists of 12,000 trajectories per diffusion mode—that is, 36,000 in total.

Set of Features Measure Normal Diffusion Subdiffusion Superdiffusion Total/Average
Precision 0.929 0.973 0.970 0.957
Set A Recall 0.944 0.966 0.962 0.957
F1 0.936 0.969 0.966 0.957
Precision 0.910 0.970 0.963 0.948
Set B Recall 0.934 0.957 0.950 0.947
F1 0.922 0.964 0.956 0.947
Precision 0.912 0.969 0.966 0.949
Set C Recall 0.935 0.958 0.951 0.948
F1 0.923 0.963 0.959 0.948