Table 18.
Precision, recall and F1 scores for classifiers trained on data with different values of the cutoff c. Set A of features was used. All results are rounded to three decimal digits. For each data set, the support of the testing set is 12,000 trajectories per diffusion mode, giving 36,000 in total.
c Value | Measure | Normal Diffusion | Subdiffusion | Superdiffusion | Total/Average |
---|---|---|---|---|---|
Precision | 0.835 | 0.972 | 0.974 | 0.927 | |
Recall | 0.950 | 0.910 | 0.900 | 0.920 | |
F1 | 0.889 | 0.940 | 0.936 | 0.921 | |
Precision | 0.842 | 0.975 | 0.972 | 0.930 | |
Recall | 0.952 | 0.915 | 0.906 | 0.924 | |
F1 | 0.894 | 0.944 | 0.938 | 0.925 | |
Precision | 0.850 | 0.976 | 0.976 | 0.934 | |
Recall | 0.955 | 0.918 | 0.913 | 0.929 | |
F1 | 0.900 | 0.946 | 0.943 | 0.930 | |
Precision | 0.929 | 0.973 | 0.970 | 0.957 | |
Recall | 0.944 | 0.966 | 0.962 | 0.957 | |
F1 | 0.936 | 0.969 | 0.966 | 0.957 |