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Abstract
Background: Hereditary hearing loss (HL) is a heterogeneous and most common 
sensory neural disorder. At least, 76 genes have been reported in association with au-
tosomal recessive nonsyndromic HL (ARNSHL). Herein, we subjected two patients 
with bilateral sensorineural HL in two distinct consanguineous Iranian families to 
figure out the underlying genetic factors.
Methods: Physical and sensorineural examinations were performed on the patients. 
Imaging also was applied to unveil any abnormalities in anatomical structures of the 
middle and inner ear. In order to decipher the possible genetic causes of the verified 
GJB2-negative samples, the probands were subjected to whole-exome sequencing 
and, subsequently, Sanger sequencing was applied for variant confirmation.
Results: Clinical examinations showed ARNSHL in the patients. After doing whole 
exome sequencing, two novel variants were identified that were co-segregating with 
HL that were absent in 100 ethnically matched controls. In the first family, a novel ho-
mozygous variant, NM_138691.2: c.530T>C; p.(lle177Thr), in TMC1 gene co-seg-
regated with prelingual ARNSHL. In the second family, NM_022124.6: c.2334G>A; 
p.(Trp778*) was reported as a nonsense variant causing prelingual ARNSHL.
Conclusion: These findings can, in turn, endorse how TMC1 and CDH23 screening is 
critical to detecting HL in Iranian patients. Identifying TMC1 and CDH23 pathogenic 
variants doubtlessly help in the detailed genotypic characterization of HL.
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1  |   INTRODUCTION

According to the World Health Organization, around 466 mil-
lion individuals throughout the world have been calculated to 
suffering from hearing loss (HL) while around 35 million are 
children (Neumann et al., 2019). As the usual sensorineural 
disorder in human beings, HL has an incidence of approx-
imately 1 in 1000 newborns (Morton & Nance, 2006). It is 
known as the second most common disability in Iran after 
different forms of intellectual disability (Najmabadi et al., 
2007). Hereditary HL is a heterogeneous disorder and, so far, 
over 6000 causative variants in approximately 150 indepen-
dent genes have been identified (Carpena & Lee, 2018).

In most congenital cases of HL, genetic causes take a center 
stage, and nonsyndromic HL (NSHL) is responsible for almost 
80% of inherited deafness (genetic-based HL) (Nakanishi et al., 
2014). Considering the Hereditary Hearing Loss Database 
(http://hered​itary​heari​ngloss.org) (Yan & Liu, 2008), 119 
genes have been identified in association with NSHL. Eight of 
those, including COL11A2 (OMIM:120290), GJB2 (OMIM: 
121011), GJB6 (OMIM: 604418), MYO6 (OMIM: 600970), 
MYO7A (OMIM: 276903), TBC1D24 (OMIM: 613577), 
TECTA (OMIM: 602574), and TMC1 (OMIM: 606706), are 
implicated in both autosomal recessive (ARNSHL) and auto-
somal dominant nonsyndromic HL (ADNSHL) (Wang et al., 
2018). Congenital or prelingual severe-to-profound HL is evi-
dent in ARNSHL (Kawashima et al., 2015).

According to worldwide case-studies, impairment of 
the TMC1 gene is considered as one of the main causes of 
ARNSHL (Ballesteros & Swartz, 2020). Furthermore, mu-
tations in TMC1 make individuals susceptible to autosomal 
dominant (DFNA36) and recessive (DFNB7/B11) NSHL 
(Lin et al., 2014). Recently, eight mutations in TMC1 have 
been detected in Iranian patients (affected with ARNSHL) 
(Sadeghian et al., 2019) (Table 1). Though many of the iden-
tified mutations are rare in the Iranian population, estima-
tions suggest that 3%–8% of inherited HL can be imputed to 
TMC1 mutations (Sloan-Heggen et al., 2016).

The CDH23 gene encodes a protein of 3354 amino acids 
with a single transmembrane domain and 27 cadherin re-
peats. During late embryonic or early postnatal develop-
ment, the CDH23 protein is imperative for establishing and 
maintaining the proper organization of the stereocilia bundle 
of hair cells in the cochlea and the vestibule (Zhang et al., 
2020). Not surprisingly, mutations in CDH23 are responsible 
for Usher syndrome 1D (OMIM: 601067) and also ARNSHL 
(Mizutari et al., 2015). It seems that CDH23 mutations are 
highly prevalent in patients with congenital high-frequency 
sporadic or recessively inherited HL, so the patients merit 
genetic analysis (Mizutari et al., 2015).

The great genotypic and phenotypic heterogeneity of HL 
make it too challenging to genuinely identify the underlying 
genetic factor and also do the clinical diagnosis of the affected 

individuals. However, the whole-exome sequencing (WES) 
technique, is often performed as a robust cutting edge technique 
to detect the underlying mutations in ARNSHL as a heteroge-
neous disease. Using this technique, performed on two patients 
affected by prelingual ARNSHL in two distinct consanguine-
ous Iranian families, we identified two novel variants: a novel 
homozygous variant, NM_138691.2: c.530T>C; p.(lle177Thr), 
in exon 10 of the TMC1 gene which may alter the function 
of TMC1 protein, and also NM_022124.6: c.2334G>A; 
p.(Trp778*) in CDH23 as a novel nonsense variant in the sec-
ond family. According to the report of the American College 
of Medical Genetics and Genomics (ACMG)-AMP vari-
ant interpretation guideline (Green et al., 2013), c.530T>C; 
p.(lle177Thr) was determined “likely pathogenic,” while 
c.2334G>A; p.(Trp778*) considered as the “Pathogenic vari-
ant.” We also put forth enough in silico evidence endorsing 
their contribution to the pathogenesis of NSHL. Nonetheless, 
before applying any genetic consultation, we strongly suggest 
doing functional analyses.

2  |   METHODS

2.1  |  Editorial policies and ethical 
considerations

The study protocol was approved by the local medical ethics 
committee of Tarbiat Modares University, Tehran, Iran. All 
participants/legal guardians provided  the written, informed 
consent before enrollment. They also were informed that all 
derived data would be used only for scientific not for com-
mercial purposes. All clinical information and the medi-
cal histories were collected at the Department of Medical 
Genetics, DeNA laboratory and Rasad Pathobiology & 
Genetics laboratory, Tehran, Iran.

2.2  |  Patients and clinical evaluations

Two inbred four-generation families were ascertained from the 
Tehran province of Iran. Regarding the first family (Figure 1a), 
the proband (III.1) was a 7-year-old female, a congenital deaf-
mute, while her consanguineous parents/grandparents were 
normal in auditory and verbal functions. She was suffering a 
profound HL without any syndromic manifestations. In the sec-
ond family (Figure 1b), the proband was a 9-year-old male with 
prelingual HL. Similarly, his parents were also normal.

2.3  |  Whole-exome and sanger sequencing

The standard phenol-chloroform method (Chomczynski 
& Sacchi, 1987) was used to isolate genomic DNA from 

http://hereditaryhearingloss.org
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blood samples. At the first step, samples were screened 
for GJB2 mutations using Sanger sequencing (Parzefall 
et al., 2017), all were GJB2-negative. Then, the verified 
GJB2-negative samples (probands) were subjected to WES 
at Centogene AG (Rostock, Germany) using the Illumina 
HiSeq4000 platform (Illumina, Inc., San Diego, CA, USA) 
to achieve an average coverage depth of ~100×. The list 
of tested genes is accessible in (DiStefano et al., 2019). 
All information about WES is put forward in Supporting 
Information S1.

Samples from all available family members were sub-
jected to Sanger sequencing to show whether the potential ho-
mozygous variants in the causative gene, TMC1 and CDH23, 
co-segregate with HL or not. Primers surrounding the re-
gion of the identified variant were designed using Primer3.0 
(Untergasser et al., 2007) (Supporting Information S1) and 
PCR was performed in a standard condition. To detect any 

alternation in DNA sequences, Sequencher 4.7 (Gene Codes 
Corporation, MI, USA) was utilized.

2.4  |  Three-dimensional structure modeling

To evaluate any possible impacts of p.(lle177Thr) and 
p.(Trp778*) on the protein structures (including stability 
and folding), the protein domains were analyzed employing 
ScanProsite (Gattiker et al., 2002) and ClustalW (Thompson 
et al., 2003) was used to recruit sequence alignments of the 
human TMC1 and CDH23 proteins. We also used a BLAST 
sequence search to find the closest sequence similarity to the 
domains of TMC1. Finally, we used the template nhTMEM16 
structure (Ballesteros et al., 2018) (Protein Data Bank ID: 
4WIS) and Human Cadherin-23 EC6-8 (PDB: 5TFM) to 
build favorite models. The three-dimensional structure of the 

F I G U R E  1   (a) pedigree information showing variation spectrum ofTMC1in the family 1. (+): c.530T>C; (−): wild-type allele. (b) pedigree 
of family 2 indicates a patient with theCDH23variant. In this figure, (+): c.2334G>A. The asterisk (*) shows the samples that were selected for 
performing whole-exome sequencing. In these figures, white symbols: unaffected; red symbols: affected; squares: men; circles: females; parallel 
lines: consanguineous marriage. (c) The audiogram showed bilateral profound sensorineural hearing loss of the female affected subject in family 
1 (IV.1). (d) The audiogram revealed the profound sensorineural hearing loss of the male proband in family 2 (IV.1). (e) The audiogram of the 
control individual (III.1), who was selected from family 1. Approximately, the same results were obtained for other next of kin in both families. 
The graphs are depicted using audiogram-creator (https://www.heari​ngaid​know.com) according to the original graphs provided by otorinologists. 
Blue crosses and red circles represent the air conduction hearing threshold levels of the left and right ear, respectively

http://www.rcsb.org/pdb/search/structidSearch.do?structureId=5TFM
https://www.hearingaidknow.com
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proteins and also the probable impacts of the variants were 
depicted by PyMOL. We also confirmed the structures using 
the I-TASSER server (Zhang, 2008).

2.5  |  Prediction of single point variation on 
protein stability

We used the I-Mutant2.0 to predict and identify the impact of 
p.(lle177Thr) on protein stability using the TMC1 protein se-
quence. I-Mutant2.0 (Capriotti et al., 2005) is used to assess 
the thermodynamic free energy change upon single-point 
variations in protein sequences. This tool uses the algorithms 
of the Support Vector Machine and the ProTherm database 
(Bava et al., 2004).

2.6  |  Prediction of the effects of the variants 
on protein glycosylation

To predict the possible impacts of p.(lle177Thr) on O-linked 
glycosylation, GlycoEP (http://crdd.osdd.net/ragha​va/gly-
coep) (Chauhan et al., 2013) was applied according to the 
Average Surface Accessibility and Composition profile of 
patterns algorithms. We also used GlycoEP to show any ab-
normality in O-linked or N-linked glycosylation caused by 
p.(Trp778*). GlycoMinestruct (Li et al., 2016) was also uti-
lized to screen and obtain high-confidence predictions for 
glycosylation sites.

2.7  |  Variant pathogenicity

The protein truncation, caused by deletion or indel mutations, 
are potentially pathogenic mutations since they may lead to 

loss of several domains and functionally important regions 
of the protein. This also directly impacts protein functions 
(Gauthier et al., 2011). The novel variant, p.(Trp778*), leads 
to the production of a truncated protein. This begs the ques-
tion whether deleted regions are functionally important, we 
carried out MetaDome and protein conservation analyses 
across species using ConSurf (Glaser et al., 2003) and also 
“2-Way Pseudogene Annotation Set” from UCSC genome 
browser database. MetaDome predicts the tolerance of the 
genetic mutations based on the population variation data 
from ExAC and GnomAD. MetaDome was also applied to 
visualize the genetically intolerant sites/regions that could 
have potentially influenced the proteins function (Wiel 
et al., 2019). Besides, at least four databases were used to 
evaluate the pathogenicity score of the variants to touch upon 
MutationTaster (Schwarz et al., 2010), Provean (Choi & 
Chan, 2015), Polyphen-2 (Adzhubei et al., 2013), and Pmut 
(Ferrer-Costa et al., 2005).

3  |   RESULTS

3.1  |  Clinical presentation

To obtain the medical histories, we used a comprehensive 
questionnaire addressing the following issues: exposure 
medication, noise, ototoxic, and TORCH (toxoplasma, 
rubella, cytomegalovirus, herpes simplex), degree of HL, 
age of onset, the symmetry of HL, utilization of hearing 
aids, presence of tinnitus and vertigo, pathological changes 
in the ear, and also other pertinent clinical manifestations 
(Newton et al., 2001). Further investigations revealed that 
neither patients nor parents had a positive history of con-
tinuous exposure to deleterious noise, serious infection 
(e.g. TORCH), or even ototoxic drugs. Audiological tests 

T A B L E  2   Characterization of the audiometric data for the three family members including the patient and her parents

Family Pedigree Gender

Age 
at test 
(years)

Age of 
onset

Use of 
aminoglycoside

PTA, dB HL

Type of 
HL Other symptoms

Right 
ear

Left 
ear

Family 1 III.1 Female 7 Congenital No >94.75a  >100 Profound Moderate 
Intellectual 
Disability

II.1 Female 28 NA No Normalb  Normal NA Not Observed

II.2 Male 32 NA No Normal Normal NA Not Observed

Family 2 III.1 Female 28 NA No Normal Normal NA Not Observed

III.2 Male 36 NA No Normal Normal NA Not Observed

IV.1 Male 9 Congenital No >100 >100 Profound The patient is 
asymptomatic

aFor this proband, 4-PTA (4-frequency pure tone average (0.5, 1, 2, and 4 kHz)) was used. 
bNormal: <25 dB. 
Abbreviation: NA, not appropriate.

http://crdd.osdd.net/raghava/glycoep
http://crdd.osdd.net/raghava/glycoep
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were executed to categorize HL as mild (20–40 dB HL), 
moderate (41–70 dB HL), severe (71–95 dB HL), or pro-
found (>95 dB HL) (Shinagawa et al., 2020). These assess-
ments were executed in a standard anechoic chamber with 
a pure-tone audiometer at frequencies ranging from 250 to 
4000 Hz (Bayat et al., 2019). Imaging investigations, for 
example, computed tomography (CT) scans and magnetic 
resonance imaging (MRI), did not reveal any abnormalities 
in anatomical structures of middle and inner parts of the ear 
in each patient. Some of the important clinical findings are 
summarized in Table 2.

3.1.1  |  Family 1

The proband (a 7-year-old female; III.1) was delivered full-
term, although, her mother previously experienced an abor-
tion in 8 weeks. The proband (Figure 1a) was subjected to 
common audiological assessments including auditory brain-
stem response (ABR), distortion production otoacoustic 
emissions (DPOAE), and also multiple auditory steady-state 
evoked responses (ASSR). Using a 4-pure tone audiometry 
(4-PTA) test, the patient showed a bilateral profound HL at 
all frequencies from 500 to 4000 Hz (Figure 1c).

Further clinical assessments did not show any abnormality 
in the proband's cardiovascular, endocrine, skin, and particu-
larly visual organs. Hence, the syndromic HL was excluded. 
Other auxiliary symptoms were detected and also observed 
in the proband (III.1), for example, moderate and intellectual 
disability. No hearing symptoms (pertinent- or non-perti-
nent) were identified in each parent (II.1 and II.2). Her par-
ents had a consanguineous marriage, suggesting ARNSHL in 

the offspring. No HL history was identified in three previous 
generations of the family or even in their next of kin.

3.1.2  |  Family 2

The proband was a 9-year-old Iranian male who had prelin-
gual HL (Figure 1b). As the different mutations of CDH23 
had been reported in association with Usher syndrome, in 
order to exclude the germane phenotypes, the patient ex-
amined meticulously. For example, fundus examinations 
did not show any macular changes in both eyes. To obtain 
medical history, the aforementioned questionnaire was also 
used. Also, no other visual complaints such as night blind-
ness, visual field loss, and decrease in central vision were 
detected. PTA test subsequently confirmed the presence of 
sensorineural HL, while his parents tested negatively for HL 
(Figure 1d,e). Imaging investigations did not show any ab-
normalities in anatomical structures of each middle and inner 
ear. Cochlear implantation was performed on the patient at 
the age of 6 years.

3.2  |  Molecular findings

WES was applied according to previous studies (Binaafar 
et al., 2020). The mean depth of coverage was around 100× 
and approximately 97% of targeted regions were covered 
(Supporting Information S1). Among the total number of 
variants, we focused on non-synonymous, splice variants, 
and also coding Indels. By assuming autosomal recessive 
mode of inheritance, heterozygous variants were excluded 

F I G U R E  2   (a) Chromatograms show nucleotide sequences ofTMC1in the regions of c.530T>C which is found in family 1. Het: heterozygote. 
(b) mutation analysis ofCDH23gene: the chromatogram shows the nucleotide alternation caused by a novel nonsense variant in exon 22 
ofCDH23(c.2334G>A) in family 2. Affected amino acids are indicated by red color
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and all previously identified SNPs with MAF ≥1% were fil-
tered out using publicly available data of ExAC (Karczewski 
et al., 2017), Exon Sequencing Projects (ESP), the Genome 
Aggregation Database (gnomAD) (https://gnomad.broad​
insti​tute.org/), Human Gene Mutation Database (HGMD) 
(Stenson et al., 2003), and Iranome (Fattahi et al., 2019). 
Consequently, variant functionality was applied using SIFT, 
Pmut, Provean, MutationsTaster, and Polyphen-2. As an es-
sential filtering step, variants were sorted out according to 
the identified associated genes with NSHL. Finally, two 

novel variants including c.530T>C; p.(lle177Thr) in TMC1 
(Family 1) and also c.2334G>A; p.(Trp778*) in the CDH23 
gene (Family 2) were identified as the most possible causa-
tive variants (Figure 2a,b).

Evolutionary conservation of the detected region harbor-
ing the variants was analyzed by aligning the amino acids and 
nucleotide sequences from several species using the ConSurf, 
UCSC database (Karolchik et al., 2003) and MetaDome. It 
was shown that the affected regions in TMC1 and CDH23 
were highly intolerable (Figure 3a,b). Eventually, we 

F I G U R E  3   (a) the tolerance landscape depicts a missense over the synonymous ratio calculated as a sliding window over the entirety of the 
protein. The missense variation is annotated from the gnomAD data set and the landscape provides some indication of regions that are intolerant 
to missense variation. In this TMC1 tolerance landscape, the region harboring the novel missense variant can be seen as intolerant if compared 
with other parts in this protein. Nucleotide alignment showing high conservation of the codon residue which encodes Ile 177. The ConSurf server 
was applied to estimate conservation scores for the amino acid residue substituted by the missense variant. Scores ranged from 1 to 9, where 
a score of 9 represented a highly conserved residue (Glaser et al.,2003). ConSurf demonstrates evolutionary conservation profiles for proteins 
of unknown/known structure in the PDB according to the phylogenetic relations. (b) MetaDome database was used to identify the intolerant 
regions (surrounding the c.2334G>A variant). As depicted, the novel variant is located in a highly intolerant region. Data derived from nucleotide 
alignment and ConSurf show that the c.2334G or Trp778 is highly conserved

https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
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reclassified the novel variant of TMC1 using ACMG-AMP 
guidelines (http://winte​rvar.wglab.org) (Green et al., 2013) 
into the “Likely Pathogenic” group, while the nonsense vari-
ant in CDH23 was categorized as “Pathogenic” variant. For 
detailed filtering steps and the number of variants in each 
step, refer to Table S1.

In summary, the novel variants were not reported in 
dbSNP147, 1000 genome project, ESP, ExAC (Karczewski 
et al., 2017), HGMD®, ClinVar (Landrum et al., 2016), and 
Deafness Variation Database (Azaiez et al., 2018). Using a 
local database (i.e. Iranome), the allele frequency of both 
variants was checked in at least 100 people with the same 
ethnicity. Sequencing of the surrounding regions of variants 
in TMC1 and also CDH23 genes using available family mem-
bers verified that the variant co-segregated with ARNSHL 
phenotype in the families (Figure 2a,b; Table 3).

4  |   DISCUSSION

Hearing loss (HL) is a heterogeneous disease with more than 
150 known genes, which often show overlapped phenotypes 
in patients (Razmara et al., 2018). In this study, according to 
guidelines released by the ACMG for HL (Oza et al., 2018), 
the screening of GJB2 mutations was initially performed, but 
no variant was identified in both families under research. In 
the next step, WES was performed and this successfully re-
sulted in the identification of two novel variants in TMC1 
(Family 1) and CDH23 (Family 2) co-segregated with HL.

The TMC1 has 24 exons (Kawashima et al., 2015) and 
its encoded protein involves 760 amino acids with 6 trans-
membrane domains along with an intracellular N-terminal 
domain, three extracellular loops, two intracellular loops, and 
a short intracellular C-terminal domain (Jiang et al., 2018) 
(Figure 4a). The exact structure and function of TMC1 are 
uncertain but proposed structures show that the protein can 
potentially function as a transporter or a channel. It also has a 
similarity to the α-subunit of voltage-dependent K+ channels 
and mediates K+ homeostasis in the inner ear (Santos et al., 
2005) (Figure 4a). The mechanotransduction channel in inner 
ear hair cells of vertebrates converts mechanical stimuli of 
sound, gravity, and head accelerations into electrical signals 
(Lin et al., 2014). The auditory or vestibular nerves transmit 
these signals into the central nervous system for perception 
of sound, this process is known as mechanoelectrical trans-
duction (MET).

The homozygous c.530T>C substitution was identified in 
exon 10 of the TMC1 gene. This variant causes isoleucine 
(Ile) substitution to threonine (Thr) at codon 177 which is 
located within the long intracellular N-terminus of TMC1 
protein (Figure 4a). The alignment of amino acid and nucleo-
tide sequences of different species indicated that this variant 
is located in a highly conserved region of TMC1 protein. By T
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circumventing data from predicting tools for glycosylation, 
we showed that the substitution cannot make a new site of 
O-linked glycosylation in protein (Score: −1.24; Figure S1), 
whereas, a prediction based on I-Mutant2.0 showed that this 
substitution may decrease protein stability (DDG: −2.62). 
Variant pathogenicity showed that the substitution is a dis-
ease-causing alternation (Table 3). The data are consistent 
with previous investigations showing that double Tmc1/2 
knockout mice suffer from severe auditory and vestibular 
deficits, and also thoroughly lack normal mechanotransduc-
tion currents in auditory and vestibular hair cells (Kawashima 
et al., 2015). Certainly, mutations in the TMC1 gene at the 
DFNB7/11 locus are one of the common causes of ARNSHL. 
Also, it seems that DFNB7/11 HL shows a significant allelic 
heterogeneity among Iranian populations that have been stud-
ied (Table 1).

Herein, by using WES, Sanger sequencing, and co-seg-
regation analysis, a novel nonsense variant, NM_022124.6: 
c.2334G>A; p.(Trp778*), was successfully identified in 
the CDH23 gene (Figure 4b). Using conservational analysis, 
we showed that the affected residue is in a highly conserved 
region. Cadherin 23 plays an important role as a calcium-de-
pendent cell-cell adhesion glycoprotein (Zhang et al., 2017). 
This novel nonsense variant potentially makes truncated 

protein. There are two fates for mRNAs containing premature 
termination codons (PTCs): nonsense-mediated mRNA decay 
(NMD) (Maquat, 2004) or translation to truncated proteins. 
The former one is an evolutionarily conserved quality control 
pathway in eukaryotic cells that is responsible for inspecting 
mRNA for any possible errors, so eliminating any error-con-
taining transcripts and controlling the amount of nonmutated 
transcript in the transcriptome. Therefore, NMD results in 
loss-of-function allele (Khajavi et al., 2006). Second, transla-
tion to truncated protein can also put the proteins on the brink 
of instability or even inactivation, depending on how many 
residues are deleted. Regardless of two possible mechanisms, 
we believe that the CDH23 protein containing p.(Trp778*) 
will be a malfunctioned or an inactive protein.

TMC1 and CDH23 are implicated in mechanotransduc-
tion complex in mouse hair cells (Müller, 2008; Pan et al., 
2013) (Figure 5a), though how they interact with other 
components of the complex is shrouded in mystery. The 
molecular identity of the MET channel remains unknown 
but there are studies cogently showing that TMC proteins 
(TMC1 and TMC2) are pore-forming subunits of the hair 
cells MET channels (Fettiplace, 2016; Kawashima et al., 
2015; Kurima et al., 2015). Studies using the Zebrafish 
model showed that Tmc1 is capable of binding to the 

F I G U R E  4   (a) Organization of theTMC1gene (NM_138691.2) and TMC1 protein showing the position of the c.530T>C and p.(Ile177Thr) 
variant (red arrow), respectively. Important novel variants/mutations identified in Iranian populations are also shown (green arrows). The cDNA 
size ofTMC1is around 3.2 Kb. In the figure, TM: transmembrane domain, (+) variant, (−) wild-type allele. A comparison of normal and mutated 
TMC1 predicted structure was applied. The normal and the variation site of p.(Ile177Thr) is emphasized by a highlighted zone and locally 
zoomed. The three-dimensional structure of TMC1 is also colored by the ConSurf evolutionary conservation. (b) genomic and protein structure of 
cadherin-23. The novel nonsense variant is located in exon 22 encoding cadherin domain 8 (shown as red). The affected amino acid is indicated by 
red color. CDH23 consists of 27 extracellular cadherin repeats (shown as violet), a transmembrane (TM) domain (green box), and a cytoplasmic 
domain (C-Ter, yellow box). The three-dimensional structure of CDH23 was also shown and colored according to algorithms of ConSurf to show 
the entire conservation throughout the protein
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C-terminus of Pcdh15a, which in turn is a fundamental 
component of the mechanotransduction complex in audi-
tory and vestibular hair cells (Figure 5b). Corresponding 
amino acids 1–229 of Tmc1 may contribute to protein–pro-
tein interactions (Maeda et al., 2014). Besides, Maeda et al. 
showed that the N-terminus of TMC1, including 1–179 aa, 
also could interact with the cytoplasmic tail of each iso-
form of PCDH15 (Maeda et al., 2014). This interaction 
is restricted to the MET site at the tips of stereocilia and 
does not involve kinociliary links (Kurima et al., 2015). 
In this study, we reported the 9th case of Iranian patients 
affected by ARNSHL who was homozygote for a novel 
missense TMC1 variant. We conjectured that p.(lle177Thr) 
may disrupt/enervate the interaction between TMC1 with 
PCDH15. Thus, we can propose two probably pathological 
mechanisms: impairment of TMC1 which causes ARNSHL 
or decreased activity of PCDH15 which can justify the 
phenotype in the patient. However, these mechanisms 
should be evaluated meticulously in other complemen-
tary studies. Besides, because Cdh23-deficient mice have 
splayed stereocilia, it was suggested that CDH23 is part 
of a transmembrane complex that connects stereocilia into 
a bundle (Siemens et al., 2004) (Figure 5b), as a result, 

any truncating defects in the formation of this complex 
may disrupt stereocilia bundles and cause deafness (Okano 
et al., 2019).

We believe that the findings of this study hopefully 
broaden the horizons toward better understanding the impact 
on patient clinical management, genetic counseling, carrier 
testing, and premarital screening. Further screening is re-
quired to finding out the contribution of this missense variant 
to ARNSHL and also its allele frequency among Iranian HL 
patients. We also recommend doing functional analysis of the 
identified variant in vitro and in vivo.

5  |   CONCLUSIONS

Herein, we described c.530T>C or p.(lle177Thr) as a novel 
variant in the TMC1 gene and also c.2334G>A; p.(Trp778*) 
in the CDH23 gene causing ARNSHL in two distinct Iranian 
families. Detecting additional TMC1 and CDH23 variants 
provides an additional endorsement that mutations in TMC1 
and CDH23 play a pivotal role in the etiology of ARNSHL. 
Our findings indicate that screening for TMC1 and CDH23 
variants may provide appropriate information for diagnosis 

F I G U R E  5   (a) Hair bundles and tip links. The diagram of a hair cell is depicted the hair bundle and the tip-link filaments that connect the 
stereocilia in the direction of their mechanical sensitivity. Cupula is a structure in the vestibular system, providing a sense of spatial orientation. 
(b) Molecules form tip links and putative components of the mechanotransduction channels in hair cells. Cadherin-23 interacts directly with 
protocadherin-15 (Pcdh15) to form the upper and lower parts of tip links. Ush1c and Myosin7a (is not shown) play an important role in connecting 
molecular components of hair cells. LHFPL5, TMIE, and TMC1/2 form MET channel complex and localize at the lower end of tip links near 
Pcdh15 where transduction channels are located. The figure is redrawn from a published paper (Lukacs,2016)
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and counseling in Iranian ARNSHL patients. Moreover, we 
reconfirmed that the solo-WES can properly detect underly-
ing genetic factors contributing to ARNSHL. It can, in turn, 
provides priceless information on genetic counseling and 
personalized health maintenance measures to prevent the 
transmission of HL mutations.
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