Skip to main content
. 2020 Dec 14;11:590529. doi: 10.3389/fpls.2020.590529

TABLE 2.

Performance comparison of various ML techniques on the full features for prediction of soybean charcoal rot disease.

Method TP FP TN FN Accuracy Sensitivity Specificity Precision NPV F1 score MCC AUC
LR-L1 1153 47 1149 51 95.92 ± 8.32 95.75 ± 8.74 96.08 ± 7.93 96.01 ± 8.05 95.84 ± 8.60 95.88 ± 8.39 91.84 ± 16.63 97.37 ± 5.82
LR-L2 1143 57 1151 49 95.58 ± 9.00 95.92 ± 8.90 95.25 ± 9.16 95.31 ± 9.11 95.87 ± 8.90 95.61 ± 8.99 91.18 ± 17.99 97.05 ± 6.58
MLP 1139 61 1138 62 94.88 ± 9.58 94.83 ± 10.66 94.92 ± 8.51 94.72 ± 8.97 95.06 ± 10.16 94.77 ± 9.83 89.76 ± 19.14 96.69 ± 7.39
RF 1143 57 1147 53 95.42 ± 9.64 95.58 ± 9.27 95.25 ± 10.01 95.34 ± 9.80 95.50 ± 9.47 95.46 ± 9.54 90.83 ± 19.28 97.20 ± 6.35
GBT 1168 32 1155 45 96.79 ± 6.49 96.25 ± 7.88 97.33 ± 5.16 97.16 ± 5.55 96.49 ± 7.29 96.68 ± 6.75 93.62 ± 12.90 98.42 ± 3.42
SVM 1150 50 1155 45 96.04 ± 7.55 96.25 ± 7.88 95.83 ± 7.26 95.81 ± 7.36 96.29 ± 7.76 96.03 ± 7.61 92.09 ± 15.10 97.86 ± 4.65