Skip to main content
. 2020 Dec 14;11:590529. doi: 10.3389/fpls.2020.590529

TABLE 3.

Performance comparison of various ML techniques based on 12 morphological features for prediction of soybean charcoal rot disease.

Method Accuracy Sensitivity Specificity Precision NPV F1 score MCC AUC
LR-L1 95.58 ± 8.51 95.25 ± 10.27 95.92 ± 6.97 95.66 ± 7.59 95.61 ± 9.28 95.41 ± 8.97 91.21 ± 16.92 97.24 ± 5.84
LR-L2 94.96 ± 9.63 94.50 ± 12.51 95.42 ± 7.32 94.99 ± 8.32 95.15 ± 10.55 94.64 ± 10.54 90.03 ± 18.99 96.96 ± 6.40
MLP 94.50 ± 8.64 94.17 ± 12.04 94.83 ± 5.88 94.46 ± 6.57 94.90 ± 10.32 94.17 ± 9.41 89.18 ± 16.98 97.29 ± 5.45
RF 95.46 ± 9.33 95.08 ± 10.33 95.83 ± 8.41 95.64 ± 8.88 95.31 ± 9.73 95.35 ± 9.62 90.93 ± 18.63 97.12 ± 6.35
GBT 96.13 ± 7.64 95.92 ± 8.34 96.33 ± 6.97 96.22 ± 7.22 96.05 ± 8.04 96.06 ± 7.78 92.26 ± 15.27 98.00 ± 4.28
SVM 95.58 ± 7.73 95.67 ± 9.05 95.50 ± 6.53 95.34 ± 6.92 95.88 ± 8.49 95.48 ± 7.99 91.20 ± 15.41 97.46 ± 5.51