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Abstract

Human physiology and pathology arise from the coordinated interactions of diverse single cells. 

However, analyzing single cells has been limited by the low sensitivity and throughput of 

analytical methods. DNA sequencing has recently made such analysis feasible for nucleic acids, 

but single-cell protein analysis remains limited. Mass-spectrometry is the most powerful method 

for protein analysis, but its application to single cells faces three major challenges: Efficiently 

delivering proteins/peptides to MS detectors, identifying their sequences, and scaling the analysis 

to many thousands of single cells. These challenges have motivated corresponding solutions, 

including SCoPE-design multiplexing and clean, automated, and miniaturized sample preparation. 

Synergistically applied, these solutions enable quantifying thousands of proteins across many 

single cells and establish a solid foundation for further advances. Building upon this foundation, 

the SCoPE concept will enable analyzing subcellular organelles and post-translational 

modifications while increases in multiplexing capabilities will increase the throughput and 

decrease cost.

Introduction

Mass spectrometry (MS) allows quantitative protein analysis at large scale [1, 2]. Yet when 

applied to populations of cells, such as those comprising tissues, MS measurements usually 

average out the differences between the diverse cell types comprising the tissues. These 

average protein abundances in a tissue cannot be used to reliably infer protein levels in each 

of the cells comprising the tissue. This problem is well recognized and has motivated the 

development of numerous approaches for reducing the confounding effects of averaging 

across cell types [3–6].

Averaging artifacts may be partially mitigated by first isolating cells from each type based 

on molecular markers and then separately analyzing groups of cells from each cell type [7, 

8]. This simple approach assumes that (i) we have good molecular markers for each cell type 
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and (ii) that the cells isolated based on a set of markers are not functionally diverse. Both 

assumptions are frequently violated. First, the molecular markers may not be known, maybe 

difficult to measure (e.g., because of lack of good antibodies), or the markers needed to 

separate multiple subpopulations may be too numerous to be feasible to separate all 

subpopulations. Second, bulk analysis of the isolated cells cannot test their homogeneity. We 

may assume that the isolated cells are homogeneous, but this assumption cannot be 

evaluated and falsified by bulk analysis of the isolated cells. Consider, for example, profiling 

immune cells. B and T lymphocytes can be isolated from blood samples using well-defined 

markers (e.g., CD3 for T-cells and CD19 for B-cells), but heterogeneity within each isolated 

subpopulation will be obscured by measuring the average RNA and protein abundances in 

the subpopulations [8, 9]. The heterogeneity of the isolated cells only becomes apparent 

through single-cell analysis. Indeed, single-cell analyses have recently demonstrated the 

existence of multiple states within T-cell sub-populations, although these states rarely have 

well-defined markers to enable efficient FACS isolation and downstream bulk analysis [6, 

10]. Bulk analysis of isolated cells is particularly limited when cellular states do not fall into 

discrete subpopulations but rather define continuous cycles [11, 12] or gradients, as found to 

be the case with macrophages differentiated in the absence of polarizing cytokines [13].

These limitations of bulk analysis can be relaxed by performing single-cell analysis. Indeed, 

single-cell analysis by RNA sequencing has began to trace cell lineages and to find 

physiologically relevant differences within cells that were considered homogeneous [10, 9], 

14. Despite this exciting progress, RNA levels are insufficient to characterize and understand 

biological functions arising from post-transcriptional regulation, which is wide spread in 

human tissues [15]. RNA measurements do not reflect protein degradation, protein 

interactions (such as complex formation), post-translational modifications and re-

localization (such as transcription factors localizing to the nucleus or mTOR localizing to 

the lysosomal surface) [16]. These post-transcriptional mechanisms are better characterized 

by direct measurements of proteins in single cells.

For the last two decades, such single-cell protein measurements have relied on antibody-

based methods [4]. These methods have made major contributions, but they remain rather 

limited by antibody availability and specificity and by the number of proteins that can be 

analyzed simultaneously [4, 16]. These limitations can be overcome by emerging mass-

spectrometry (MS) methods. Below we review the challenges for MS methods and 

approaches that have provided productive solutions in the last few years. While single-cell 

protein analysis is the focus, by many of the challenges and solutions are applicable to other 

types of single-cell MS analysis, such as single-cell metabolite analysis [14].

Challenges to single-cell mass-spectrometry analysis

Protein analysis by MS generally includes sample preparation, peptide/protein separation 

(usually by liquid chromatography or capillary electrophoresis), ionization, and tandem MS 

analysis. These steps have been reviewed in-depth by Ref. [1, 2, 17], and Ref. [17] also 

provides an excellent description of data interpretation and downstream analysis. Each of 

these steps brings challenges for analyzing very small samples, such as single-cell proteome.
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Most proteins are present at thousands of copies per cell while mass-spectrometry detectors 

can detect and quantify hundreds of ion copies per MS scan, even a single ion copy [18, 19]. 

Thus, the sensitivity of detectors is generally not the major limitation. Rather, the major 

challenges are (i) delivering proteins to the MS detectors, (ii) identifying the sequence of 

peptide or protein ions, and (iii) analyzing proteins from many thousands of single cells at 

affordable cost, see Figure 1. These challenges have shaped the approaches to single-cell MS 

analysis for the last three decades. This review summarizes successful strategies for 

overcoming the challenges, starting with a short overview of early efforts, and focusing on 

recent advances that have established the foundation for quantitative analysis of proteins at 

single-cell resolution.

Early approaches to ultrasensitive mass-spectrometry analysis

The first challenge, delivering proteins from small samples to MS detectors, was initially 

approached by employing Matrix-Assisted Laser Desorption/Ionization (MALDI) as a 

means to ionizing peptides and proteins. MALDI allows to ionize proteins with minimal 

sample handling and surface exposure. Thus, MALDI helps to minimize losses and to 

deliver ions to the MS detectors, usually time-of-flight (TOF) detectors. Using MALDI-TOF 

approaches, multiple groups were able to detect proteins from single cells in the 1990s [20, 

21]; Ref [22] offers detailed review. However, MALDI approaches usually do not separate 

peptides in time and only a few of the detected ions can be sequenced. Thus, single-cell 

protein analysis by MALDI has been limited by the second challenge, determining the 

amino acid sequence. Furthermore, the variability in MALDI ionization undermines 

quantification accuracy.

The other major approach to ionizing proteins and peptides, electrospray ionization (ESI), is 

more amenable to sequencing detected ions since it is more readily coupled to peptide 

separation methods [2]. However, sample handling and separation prior to ESI may result in 

more sample losses. Nonetheless, ESI has also been used since 1990s for analyzing 

abundant proteins in small samples. Indeed, hemoglobin was detected in samples comprised 

of a few erythrocytes [23] or a single erythrocyte [24]. Yet these methods did not generalize 

to analyzing many proteins in typical mammalian cells: Hemoglobin is present at 300 

million copies per erythrocyte, about 6,000 fold more abundant that the median abundance 

protein in a typical mammalian cell, such as a fibroblast [25].

An important early advance in ultrasensitive MS analysis via ESI was the use of capillary 

electrophoresis (CE) [23, 26]. CE allows using small sample volumes, and thus may enhance 

sample delivery to MS detectors (challenge one in Figure 1). Therefore, CE has been an 

effective means for separation and sensitive analysis of both proteins and metabolites in very 

small samples. As discussed below, CE-MS analysis continues to drive progress in single-

cell proteomics [27, 28, 29].

Synergistic approaches advancing single-cell proteomics

Multiple recent advances have made major contributions to overcoming the challenges to 

singe-cell MS analysis, namely to improve the delivery of proteins, to enhance sequence 

determination, and to increase throughput, Figure 1. These advances combine synergistically 
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to enable quantitative analysis of thousands of proteins across many single cells [30, 16], 31. 

To systematically review these advances, they are grouped into the categories displayed in 

Figure 1 and discussed below.

Multiplexing with isobaric carrier

In response to the first and the second challenge shown in Figure 1, we developed Single 

Cell ProtEomics by Mass Spectrometry (SCoPE-MS) [32, 5], 33. SCoPE-MSintroduced an 

isobarically-labeled carrier concept, which is abbreviated below to isobaric carrier. Carrier 

proteins and peptides have long been used for passivating surfaces and reducing adsorbent 

losses. The isobaric carrier approach introduced by SCoPE-MSis different in employing a 

carrier that is labeled by isobaric mass tags and that is used in the MS analysis. Specifically, 

the SCoPE carrier approach employs tandem mass tags [34] to label lowly abundant samples 

of interest (e.g., single-cell proteomes) and a carrier sample (e.g., the proteome of 100 cells), 

and then combines all labeled samples to be analyzed together by liquid chromatography 

tandem mass-spectrometry, Figure 2. The use of TMT ensures that copies of a given peptide 

sequence from the single-cell and bulk samples all have the same mass-to-charge ratio 

during survey scans, so that they are isolated together for fragmentation and MS2 analysis. 

During the fragmentation, the precursor ions generating sample-specific reporter ions whose 

abundances allow for relative quantification [34, 17]. Thus the isobaric carrier approach 

helps to (i) mitigate losses from the small samples (since adsorption losses will 

disproportionately affect the carrier proteome), (ii) increase peptide sequence identification 

(since the carrier proteome will provide peptide fragments), and (iii) increase throughput 

(since multiplex labeling with TMT allows simultaneous analysis of multiple samples). 

Therefore, the isobaric carrier design introduced with SCoPE-MS mitigates the three major 

challenges displayed in Figure 1 [32, 30, 31], 33.

The simplicity and effectiveness of the isobaric carrier design have stimulated its initial 

adoption. Since its introduction in January 2017 [32], multiple groups have used the 

approach for goals including the detection of rare proteoforms [37], phosphorylation [38, 

39], translation measurements [40] and single-cell protein analysis with SCoPE-MS[33, 41–

43]; reveiwed by Ref. [30, 31]. A related approach (TMTcalibrator™) mixed TMT-labeled 

samples from plasma and cell lines to identify markers of microglia activation [44]. Some 

authors used “booster” as a synonym of “isobaric carrier”. Regardless of the term used, the 

concept is the same: The carrier sample helps to reduce losses from the single cells and to 

enhance peptide sequence identification. However, the carrier sample does not amplify or 

boost the single-cell reporter ion intensities. Therefore, it is essential to ensure that the MS 

analysis delivers a sufficient number of ion copies from the single-cell peptides to support 

reliable quantification [5, 13].

The SCoPE design can afford accurate quantification of protein changes across single cells 

(i.e, relative quantification) based on the reporter ions shown in Figure 2 [33, 13, 30, 31], 

41–43. However, the accuracy of comparing the abundances of different proteins is lower. 

This weakness can be overcome by three different approaches. First, principled models, such 

as HIquant, can estimate protein stoichiometries (i.e., compare abundances of different 

proteins) using only relative quantification [45]. Second, spiked-in standards with known 
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absolute quantification can be used to estimate absolute protein abundances, i.e., number of 

protein copies per cell. Then, these absolute estimates can enable comparison of the 

abundances of different proteins and proteoforms [45]. Third, absolute protein abundances 

can be estimated from bulk analysis of the heterogeneous cell populations (e.g., the carrier 

samples), and then these estimates of absolute abundances can be apportioned to the single-

cell samples in correspondence to the relative protein levels measured in single cells.

Clean and automated sample preparation

Bulk samples are typically prepared for MS analysis by lysing the cells in buffers containing 

detergents and other chemicals that if not cleaned may affect adversely enzymatic processes 

(such as protease digestion) and MS analysis. Thus, for optimal results such chemicals 

should be removed. While the losses incurred by these clean-up steps are usually acceptable 

with bulk samples, they are less tolerable with very small samples, such as single 

mammalian cells. Furthermore, these cleanup steps complicate automation, which is an 

essential aspect of maximizing the number of single cells that can be analyzed while 

minimizing the cost and batch effects [5].

Several reports have demonstrated that adaptive focused acoustics (AFA) can extract 

proteins for MS analysis [46, 47], and AFA was a natural method to use when we started 

developing single-cell proteomics methods in the fall of 2015 [32, 33]. While AFA allowed 

lysing mammalian cells without using MS incompatible chemicals [46, 47], it required a 

sample volume of 10μl per cells, and we sought to develop methods with reduced volumes, 

as elaborated below. Furthermore, the automation of AFA required expensive equipment. To 

overcome these weaknesses, we developed and validated a second generation method, 

Minimal ProteOmic sample Preparation (mPOP) [35, 48]. mPOP uses a freeze-heat cycle to 

efficiently deliver proteins to MS analysis and afford reliable quantification of proteins in 

single cells [13]. Importantly, mPOP allowed us to reduce sample volumes 10-fold (to 1μl/
cell) and to completely automate sample preparation with inexpensive equipment [35, 13]

Miniaturized cell lysis and sample preparation

Decreasing the volume of sample preparation reduces the amount of reagents that have to be 

added (e.g., trypsin, buffers, tandem mass tags). It also reduces the surface areas contacting 

the sample and thus the potential for losses from proteins adhering to surfaces during sample 

preparation. These considerations led to the development of methods for small volume 

sample preparation.

As discussed above, mPOP allows sample preparation in standard multi-well plates in 

volume of 1μl/cell, and further reductions in volume are still desirable [5, 48]. Indeed, 

several groups have developed methods that afford lower volumes, down to hundreds of 

nanoliters. These methods include nanodroplet processing in one pot for trace samples 

(nanoPOTS) [49], oil-air-droplets (OAD) [50], and on column cell lysis by iPAD1 [51], and 

they have allowed identifying from a few dozen to hundreds of proteins from label-free 

analysis of individual cells [50, 51–53]. nanoPOTS has also been used to prepare single cells 

for SCoPE-MSexperiments (i.e., with isobarically-labeled carriers) that identified over a 

thousand proteins [42, 43]. Since automated loading of hundreds of nanoliters on 
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chromatographic columns is challenging, cells prepared by these methods are usually loaded 

manually. Thus, taking full advantage of miniaturized cell lysis and sample preparation 

requires further miniaturization of all other steps of the analysis, including efficient and 

automated loading of small samples on chromatographic columns.

As discussed above, miniaturized sample preparation allows reducing adhesion related 

sample losses, which in turn enables analyzing individual cells by ultrasensitive label-free 

LC-MS/MS analysis [50,51–53]. Such label-free analysis simplifies sample preparation 

since it does not require labeling steps. Furthermore, it obviates the use of chemical labels, 

which may contribute chemical impurities that interfere with sample separation or MS 

analysis. Label-free MS analysis already affords detecting hundreds of protein groups in 

single Hela cells, and improvements in peptide separation, ionization and in MS 

instrumentation are going to further increase the number of proteins that can be detected and 

quantified by label-free methods [53]. Currently, these ultrasensitive LC-MS/MS workflows 

tend to have manual steps, such as transferring samples to chromatographic columns. 

Automating manual steps is likely to increase the throughput of single-cell label-free 

methods. Still, methods that use chemical labeling for multiplexing are likely to afford 

higher throughput and lower cost by enabling the simultaneous analysis of multiple samples 

[27]. Indeed, approaches using the isobaric carrier concept for multiplexing have analyzed 

over a thousand single cells while label-free approaches have analyzed only a few single 

cells.

Optimizing parameters for data acquisition by LC-MS/MS

Every LC-MS/MS experiment depends upon numerous parameters whose optimization can 

substantially increase the number of identified peptides and the accuracy of their 

quantification [54, 17]. Such optimization is particularly important for the analysis of small 

samples, such as single-cell proteomes, since even low levels of contaminants or reductions 

in ion delivery may substantially undermine data quality [17, 5, 48].

To facilitate benchmarking and optimization LC-MS/MS experiments, we developed Data-

driven Optimization of Mass-Spectrometry (DO-MS) [55]. DO-MS aims to specifically 

diagnose problems in LC-MS/MS analysis by interactively visualizing data from all levels, 

from the peptide separation and the survey scans to ion isolation for MS2 analysis and 

matching spectra to sequences, and thus has become an integral part of SCoPE2, Figure 2. 

One aspect that has benefited significantly by the DO-MS application is improving apex 

targeting. Specifically, DO-MS visualizes time offsets from the elution peak of a peptide (its 

apex) and the time when the peptide is sampled for MS2 analysis. These data allowed us to 

rationally correct for systematic biases, such sampling elution peaks too early [55]. While it 

is not possible to deterministically ensure apex sampling for every peptide, a higher 

proportion of peptides can be sampled at or near their elution apices by choosing optimal 

LC-MS/MS parameters. Via data visualization platforms like DO-MS, LC-MS/MS 

parameters, such as the maximum number of MS2 scans triggered per MS1 scan, can be 

iteratively tuned until system suitability is optimal for single-cell samples. Many tools for 

diagnosis and optimizing LC-MS/MS have not be designed specifically for single-cell 
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proteomics but can nonetheless be very useful; such methods are reviewed by Bittremieux, 

et al [54].

Enhancing peptide sequence identification

The abundance of a peptide may be estimated based on a single mass/charge peak that 

originates from the peptide. However, determining its sequence generally requires multiple 

fragment ions, some of which are produced with low efficiency and may not be detectable in 

lowly abundant sample [56]. Thus, peptides whose abundance is quantified may be 

challenging to identify. Sequence identification is particularly challenging with MS methods 

that allow for limited peptide fragmentation, such as MALDI-TOF [22].

To alleviate these difficulties in determining peptide sequence, it is desirable to use all 

features informative for the sequence as implemented by the Percolator [57] and recently 

applied to SCoPE-MSdatasets [58]. The retention time (RT) and ion mobility of a peptide 

can be very informative features for its sequence, and RT has been used by many methods, 

including for disambiguating mixed spectra by CharmeRT [59] and for increasing peptide 

identifications by Skyline ion matching [60], and MaxQuant match-between-runs [61, 62]. 

Yet, these methods do not necessarily estimate the false discovery rate (FDR) of peptide 

sequences determined based on the retention time. To fill in this gap, we developed a 

principled Bayesian framework for incorporating retention time information in determining 

peptide sequences, Data-driven Alignment of Retention Times for IDentification (DART-ID) 

[36]. DART-ID can be applied to most MS datasets, and it is particularly powerful for single-

cell proteomics. It can increase the number of confidently identified peptides by 50% at 1% 

FDR and contributes significantly to the SCoPE2framework as shown in Figure 2 [36, 13]

Improving peptide separation and ionization

The importance of high performance peptide separation and ionization has been an integral 

part of developing ultrasensitive MS analysis for decades [26, 63]. Sharp elution peaks and 

low flow rates help maximize the delivery of proteins to the MS detectors [5, 53]. These 

principles have been implemented both by capillary electrophortesis [23, 26–29], by highly 

sensitive multidimensional chromatographic strategies [7, 64], and by liquid 

chromatography using monolithic nanocapillary columns, PLOT columns, small bore 

columns and low flow rates [65, 46, 53].

Shorter chromatographic gradients and electropherograms help maximize the number of 

single-cells samples analyzed per unit time. Indeed, reducing the gradient length from 180 

min for SCoPE-MSto 60 min for SCoPE2helped increased throughput without concomitant 

decrease in the number of quantified proteins [13]. Improved separation is a very important 

aspect of ultrasensitive MS analysis has been extensively reviewed, e.g. by Ref. [63, 66].

Future Developments

Recently, the power of single-cell protein analysis by MS has increased by orders of 

magnitude [5, 13]. This growth marks the beginning of a new phase whose growth will 

likely continue and even accelerate. This future growth will build upon and extend the 

advances outlined in Figure 1. Below are highlight some promising directions, both for 
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extending approaches that are already fruitfully applied to single-cell analysis and for 

introducing new ones.

Extending the SCoPE design

The ability of the isobarically labeled carrier proteins to influence the ions selected for MS2 

analysis can be exploited to target the analysis of protein modifications, sub-cellular 

structures, or any defined group of proteins under investigation. As previously suggested 

[16], if the carrier channel contains post-translationally modified peptides (e.g., 

phosphorylated peptides enriched by immobilized metal affinity chromatography), the most 

abundant ions detected in survey scans will correspond to the phosphorylated peptides from 

the carrier channel, and thus they will be selected for MS2 analysis, quantification and 

identification. Similarly, if the carrier contains mitochondria, mitochondrial proteins will be 

selected for MS2 analysis. Of course, selection for MS2 analysis does not guarantee clean 

spectra and quantification in the single-cell samples. Achieving reliable single-cell 

quantification requires reducing coisolation effects (e.g., good apex targeting or using 

complement ions as discussed below) and delivering sufficient ion copy numbers from each 

single cells. These aspects must be rigorously benchmarked before one can confidently 

extend the SCoPE concepts more broadly to quantifying post-translational modifications and 

and sub-cellular structures.

Extending the SCoPE2framework to large scale targeted analysis can increase the sensitivity 

(e.g., by increasing ion accumulation times), the reliability (e.g., by sampling more ion 

copies per peptide), and the reproducibility (e.g., by consistently sampling the same 

precursor ions) of single-cell MS analysis [5]. Such targeted analysis may afford consistent 

sampling and quantification of thousands of proteins, and thus reduce missing data, which is 

a common problem in high-throughput single cell analysis [6, 10, 13].

Increasing multiplexing

Sample throughput scales with the number of available tandem mass tags (chemical 

barcodes), and we have already demonstrated 50 % increase in throughput due to increased 

multiplexing [13]. With SCoPE-MS, we used 10-plex TMT labels and could analyze only 8 

single-cell samples per LC-MS/MS run. With SCoPE2, we used 16-plex TMT pro labels and 

could analyze 12 single-cell samples per LC-MS/MS run [13]. Extrapolating this trend to a 

hundred isobaric labels, we expect to analyze the proteomes of about 2,400 single cells in 24 

hours of continuous instrument operation. Additionally, as the number of single cells 

analyzed per run grows, the necessity of the carrier channel diminishes, especially its role in 

providing peptide fragments for sequence determination. This increased multiplexing is 

likely to proportional decrease the cost per single cells since at the moment the cost is 

dominated by the cost of LC-MS/MS time [13]. The decreased cost and increased 

throughput will provide the large-scale data required for many promising biomedical 

applications [16].

Limits of multiplexing

One fundamental limit on the number of labeled samples, N, is set by the capacity of the MS 

analyzer, Cmax: On average the MS analyzer can sample about Cmax/N ion copies per 
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sample, and thus for very large N the number of sampled ion copies will not be enough to 

support reliable quantification. Measurements will be dominated by counting noise. For the 

current orbitrap detectors, Cmax ≈ 106 ions, and thus N = 1,000 will result in sampling on 

average up to 1,000 ion copies from each peptide per sample. The sampling error then can 

be estimated from the Poisson distribution as standard deviation / mean to be 

1, 000/1, 000 = 3%. Less abundant peptides will have large sampling error while more 

abundant peptides smaller.

This limit of multiplexing deserves special consideration in the context of experimental 

designs including isobaric carriers (i.e., SCoPE-MSand SCoPE2) since the carrier sample 

represents a substantial fraction of analyzed ions, and thus it might disproportionately fill in 

the orbitrap and leave insufficient space for single-cell peptides. For a carrier sample that is 

about 200 times larger than the small samples (i.e., single cells), the mass-analyzer can 

sample on average up to Cmax / (200 + N) ion copies. With TMT pro, this corresponds to 

about 47,000 ion copies per peptide from a single cell and a sampling error of about 1.5%. 

In practice, we rarely reach this limit because even the peptide quantity pooled across the 

carrier and the single cells is too low to reach this limit. As a result, the number of ions 

accumulated for MS2 analysis is much smaller than the capacity of the orbitrap [13]. Indeed, 

we have observed that the copy number of ions sampled from a single-cell is limited not by 

the carrier amount but by the efficiency of delivering peptide ions to MS2 scans [5, 13].

DIA analysis of multiplexed single-cell samples

Modern single-cell MS analysis has focused on the sequential analysis of individual peptide 

precursors. A well-recognized weakness of this analysis is that relatively few peptides can 

be analyzed per MS run, especially when the analysis time per peptides is long. In the case 

of single-cell MS analysis, the analysis time is long because of the need to accumulate 

enough ions for reliable quantification and sequence identification [32, 5, 13].

An alternative to such sequential analysis was introduced by Yates and colleagues in 2004 

[67] and further developed by Aebersold and colleagues [68]. This alternative is known as 

data independent nalysis (DIA). DIA simultaneously isolates and fragments multiple 

peptides in parallel. This parallel analysis allows to increase the number and reproducibility 

of the analyzed peptides. However, if DIA is applied to samples labeled with isobaric mass 

tags, e.g., the SCoPE2design, the parallel isolation of multiple peptides means that the 

abundance of the detected reporter ions will reflect the cumulative abundance of all isolated 

peptides, making it challenging to quantify individual peptides. Thus, DIA has not yet been 

extended to the analysis of TMT labeled samples.

Extending DIA analysis of SCoPE2samples is both very challenging and promising. One 

approach would require to quantify single-cell peptides based on the TMT fragments 

remaining bound to the peptide fragments, known as a mass balancers or complementary 

ions. These complementary ions have allowed quantifying bulk samples by data dependent 

methods [69], and have not yet been employed in DIA analysis. Such employment will be 

very challenging but seems feasible. A primary challenge, especially for single-cell analysis, 

will be sampling enough from these lowly abundant ions to achieve reliable quantification. 

A second approach would require to quantify the single-cell reporter ions of each peptide 

Slavov Page 9

Curr Opin Chem Biol. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



across a large number of MS2 scans so that the superposition of reporter ion intensities can 

be fit into a linear model and deconvoluted. This approach is also very challenging for 

single-cell analysis since the long ion accumulation times make it harder to acquire many 

MS2 scans across the elution profiles.

Advances in MS instrumentation

Advances in MS instrumentation can also play important role in solving the challenges of 

single-cell MS analysis Figure 1. As discussed above, instrumentation that allows for 

automated and reliable loading of very small samples to CE and LC columns is essential for 

automating high-performance separation, and enhancing ionization by minimizing flow 

rates. Similarly, improvements in the efficiency of ionization and ion accumulation can 

improve ion delivery to the MS detectors [70, 5], 71. Trapped Ion mobility, as implemented 

by the timsTOF, can both enable parallel accumulation of ions and provide an additional 

feature (i.e., ion mobility) for peptide sequence identification [5, 72].

The recent progress and futures prospects outlined here promise to bring to single-cell 

analysis the power and versatility of MS methods that so far have been limited to bulk 

samples. The resulting single-cell MS methods will far exceed the power of antibody-based 

methods that so far have dominated single-cell protein analysis [4]. If we succeed in making 

single-cell MS methods robust, inexpensive and widely accessible [16], they will become a 

major enabling factor in identifying molecular mechanisms that underlie health and disease.
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Figure 1|. Major challenges to single-cell protein analysis by mass-spectrometry and their 
solutions
Single-cell proteomics by mass-spectrometry faces three main challenges: (i) Delivering 

enough copy number of ions to MS detectors to afford accurate quantification; (ii) Reliable 

amino acid sequence determination of quantified ions; (iii) Scaling the analysis to many 

thousands of single cells at affordable cost. Each of these challenges is addressed by one or 

more solutions. These solutions are highly synergistic and thus depicted as interlocking 

puzzle pieces with a few prominent examples from each category.
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Figure 2|. Conceptual work flow of automated sample preparation, the isobaric carrier design, 
enhanced peptide sequence identification, and LC-MS/MS optimization as implemented by 
SCoPE2
SCoPE2provides solutions for all challenges from Figure 1: (i) Protein delivery for MS 

analysis is facilitated by the clean, automated and miniaturized lysis by mPOP [35], and by 

the isobaric carrier design, which combines isobarically-labeled peptides from single-cell 

and from carrier samples [32, 13], 33. (ii) Peptide sequence identification is enhanced by the 

carrier peptides contributing fragment ions to the MS2 spectra and by DART-ID [36]. (iii) 

Analysing many cells is facilitated by fully automated sample preparation and analysis, and 

by the isobaric carrier design multiplexing with TMT pro [35, 4], 5, 13.
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