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Abstract
Background: Artificial intelligence (AI) has recently achieved 
considerable success in different domains including medical 
applications. Although current advances are expected to im-
pact surgery, up until now AI has not been able to leverage 
its full potential due to several challenges that are specific to 
that field. Summary: This review summarizes data-driven 
methods and technologies needed as a prerequisite for dif-
ferent AI-based assistance functions in the operating room. 
Potential effects of AI usage in surgery will be highlighted, 
concluding with ongoing challenges to enabling AI for sur-
gery. Key Messages: AI-assisted surgery will enable data-
driven decision-making via decision support systems and 
cognitive robotic assistance. The use of AI for workflow anal-
ysis will help provide appropriate assistance in the right con-
text. The requirements for such assistance must be defined 
by surgeons in close cooperation with computer scientists 
and engineers. Once the existing challenges will have been 
solved, AI assistance has the potential to improve patient 
care by supporting the surgeon without replacing him or 
her. © 2020 S. Karger AG, Basel

The Potential of Artificial Intelligence in Surgery

Artificial intelligence (AI) has recently achieved con-
siderable success in domains such as object detection, 
speech recognition, or natural language processing [1]. 
Especially deep learning (DL) techniques have been re-
sponsible for such breakthroughs, and they have experi-
enced a renaissance due to the massive increase in com-
putational power and data availability [2]. DL is a subset 
of machine learning, which itself is part of the all-encom-
passing concept of AI. DL methods are based on artificial 
neural networks, which are inspired by neurons in a bio-
logical brain. DL refers to the concept of training specific 
tasks based on a large amount of data, learning from them 
and making predictions about these specific tasks through 
flexible adaptation to new data.

Recently, several success stories have been published 
in the medical domain based on DL for image classifica-
tion, such as prediction of cardiovascular risk based on 
retinal images [3], skin lesion classification [4], or breast 
cancer detection based on mammograms [5]. However, 
in surgery, AI has not yet leveraged its full potential, due 
to several challenges that are specific to this discipline. 
Unlike in the aforementioned examples, which are fo-
cused on the analysis of static images, surgery consists of 
procedural data in a dynamic environment including the 
patient, different devices and sensors in the operating 
room (OR), and the OR team, as well as domain knowl-
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edge such as clinical guidelines or experience from previ-
ous procedures [6]. Furthermore, DL methods require 
large amounts of annotated data for training, which is 
especially challenging in surgery. In addition, real-time 
capability is required of machine learning methods if they 
should be used during an operation.

Surgical data science is a newly emerging field that has 
the aim of “improving the quality of interventional health-
care and its value through capturing, organization, analy-
sis, and modeling of data” [6], especially using AI-based 
methods. Any potential for surgery can be identified 
along the surgical treatment path, such as decision sup-
port, context-aware assistance, and cognitive robotics 
(Fig. 1).

The remainder of this review will focus on data-driven 
methods and technologies as a prerequisite for different 
AI-based assistance functions in the OR. Potential effects 
of AI use in surgery will be highlighted, concluding with 
ongoing challenges to enabling AI for surgery.

Enabling AI-Assisted Surgery

The following paragraphs provide a short introduc-
tion to the basic technologies and concepts needed as a 
prerequisite for AI-assisted surgery. This includes (1) ac-
cess to comprehensive data in a sensor-enhanced OR 
(SensorOR) as well as (2) enrichment of those data with 
surgical knowledge by annotation to make them usable 
for (3) machine learning methods that provide AI assis-
tance to the surgeon.

SensorOR
Today’s operating theaters are characterized by a mul-

titude of information sources. For example, preoperative 
image and planning data provide information about the 
positions of tumors and the planned course of the opera-
tion, various medical devices (e.g., a suction-irrigation 

system, operating light, and anesthesia monitor) provide 
regular status reports and intraoperative imaging devices 
(endoscope, ultrasound, etc.) provide data about the pa-
tient and current processes in the OR. In their entirety, 
these heterogeneous sensors provide the information 
necessary to infer the actual course of the operation and 
to provide proper assistance at the right time. This is sub-
sumed under the term “context-aware assistance” [7], 
which avoids an information overflow and decreases the 
cognitive load, in particular in an already stressful and 
complex environment such as the OR. A prerequisite for 
providing such assistance is a SensorOR in which all de-
vices are connected to collect their data (Fig. 1).

Data Annotation
In order for AI to learn from collected data, the origi-

nal raw data has to be enriched with additional knowl-
edge through annotation. The most common forms of 
annotation are classification (e.g., which organs are visi-
ble in an image), semantic segmentation (e.g., which pix-
els belong to which organ in an image), and numerical 
regression (e.g., the size of an object). The process of data 
annotation is often time-consuming, especially for large 
data sets. Annotation of surgical data requires expert 
knowledge, which can be expensive to muster and is often 
a bottleneck. In addition, only a fraction of the data is 
digitally available, and there are no standard acquisition 
and annotation protocols. The data has to be representa-
tive of the task to be learned, preferably from multiple 
centers and accessible in comprehensive open data regis-
tries, highlighting questions regarding privacy and confi-
dentiality.

Several approaches to reducing the annotation effort 
have been proposed, such as active learning [8–10], where 
only the most informative data points are selected and 
then are annotated, as well as crowdsourcing, where the 
“wisdom of the crowd” can be utilized for certain clinical 
tasks [11, 12]. A promising pathway for overcoming the 

Fig. 1. Potential of artificial intelligence 
(AI) in surgery based on a sensor-enhanced 
operating room (SensorOR).
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lack of annotated data is to generate realistic synthetic im-
ages based on a simple simulation by using generative 
adversarial networks [13] (Fig. 2).

To ensure a consistent vocabulary for annotation, on-
tologies are used. Ontologies are widely used in the med-
ical domain – for instance, for clinical terms [14], for 
modeling surgical knowledge [15], to identify risks across 
medical processes [16], or for surgical processes [17, 18].

In other AI domains [19], there are many open data 
sets that can be used to develop, evaluate and compare 
different machine learning algorithms. While access to 
data sources is crucial also in surgery, only few public an-
notated data sets for different applications such as surgi-
cal phase detection [20, 21], surgical training [22, 23], 
and segmentation [21, 24] exist [7]. The Endoscopic Vi-
sion Challenge [25], an initiative that supports the avail-
ability of new public data sets for the systematic com-
parison of algorithms, has hosted challenges in surgical 
vision.

Machine Learning
Machine learning algorithms can operate in a super-

vised or an unsupervised manner. While in both cases the 
algorithms rely on data to learn, in supervised learning, 
the data have to be annotated [26]. DL, a popular example 
of supervised learning [2], is the current state of the art 
for many applications, such as surgical data analysis. 
Methods for DL have the benefit that they can be “pre-
trained,” meaning that a method used to solve one prob-
lem, e.g., transforming grayscale laparoscopic images 
into color images, can be retrained to solve a different 
task, e.g., segmenting laparoscopic tools [27]. This makes 
it possible to retain and apply knowledge from the former 
task to improve upon the later task.

Such methods can be used for workflow analysis 
through automatic segmentation of procedures into 
phases or surgical actions. These methods rely, for ex-
ample, on data from tool usage [28, 29] or robotic kine-
matics [30] or, by using DL, directly on camera data, such 

from an endoscope [20, 31, 32] or 3D camera [32]. DL 
methods for determining surgery duration (Fig. 2) [33–
35] and for predicting surgical tool usage [36] have also 
been developed.

Of further importance are methods for semantic seg-
mentation, especially surgical scene analysis, which pro-
vides information on relevant structures, such as tools 
and organs, during surgery. Until recently, most research 
has focused on surgical tools [37], though the broader 
topic of analyzing the entire surgical scene is becoming 
more popular [38]. One application of semantic segmen-
tation has been used for measurements during surgery 
with a stereo-endoscope [39].

AI has the potential to enhance soft-tissue navigation 
where the risk and target structures are highlighted dur-
ing surgery. DL methods have been used in data-driven 
registration and deformation models that estimate non-
rigid deformations of structures inside an organ when 
given only the displacement of the partial organ surface 
[40–42], a prerequisite for soft-tissue navigation.

Potential Effects of AI in Surgery

The abovementioned novel AI technologies developed 
by computer scientists will have tremendous effects on 
surgical practice. The effects can be categorized into the 
fields of decision support, context-aware assistance, and 
cognitive robotics [6].

Decision support systems that gather patient informa-
tion in order to provide a clinical recommendation are 
commercially available and under scientific investigation 
in internal medicine [43], but they show only marginal 
change in clinical practice. Novel AI-based systems can 
predict future acute kidney injury based on data from 
hundreds of thousands of patients [44]. Similarly, AI can 
be used to predict circulatory failure in the intensive care 
unit [45]. Another system for intraoperative blood pres-
sure management has shown its benefit in supporting the 

Fig. 2. Left: example of generating synthetic images based on sim-
ple laparoscopic simulations. Middle: generative adversarial net-
works translate these images so they look like real laparoscopic 
images. These images, along with their generated labels, can be 

used without further annotation effort. Right: machine-learning-
based detection of the surgical phase and prediction of the dura-
tion of the remaining procedure during laparoscopic cholecystec-
tomy.
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anesthesiologist in a randomized controlled trial [46]. In 
surgery, however, we still lack these kinds of assistance 
system. For example, in oncological liver surgery, one 
would like to have a system that combines patient infor-
mation (laboratory results, imaging, comorbidities, and 
previous surgeries) with evidence-based information 
(scientific publications) and surgical experience (the clin-
ical course of previously treated patients) to avoid post-
hepatectomy liver failure or to choose the optimal multi-
modal treatment. Similarly, AI may help to improve sys-
tems of predictive analytics that estimate survival after 
pancreatoduodenectomy for pancreatic cancer [47] or 
secondary effects of surgery, such as incisional hernia 
[48].

Context-aware assistance systems will provide this ad-
ditional information for the right patient at the right 
point in time. To achieve this, the surgical workflow may 
be optimized by modelling the process [49] to define im-
portant steps during the operation and recognize them 
using machine learning, such as has been shown by Twi-
nanda et al. [20] for laparoscopic cholecystectomy. This 
may also allow the detection of dangerous deviations 
from the optimal workflow. Extended information could 
be provided to predict the remaining duration of a sur-
gery to optimize the organizational workflow and treat 
more patients. Bodenstedt et al. [34] demonstrated a way 
of online procedure duration prediction using unlabeled 
endoscopic video data and surgical device data in a lapa-
roscopic setting. Relevant information may also be ob-
tained by means of AI such as computer vision for detect-
ing structures at risk such as the cystic duct and common 
bile duct during laparoscopic cholecystectomy, as dem-
onstrated by Tokuyasu et al. [50].

AI may also change practice in robot-assisted surgery 
towards cognitive surgical robotics. Today, clinically used 
surgical robots are mere telemanipulators without any 
autonomous activity. In research, robotic systems have 
been developed for situation-aware automatic needle in-
sertion [51]. Another system has shown its superiority 
over humans in performing bowel anastomosis on a por-
cine bowel [52]. However, even these robotic systems do 
not understand the surgical scene and do not adapt to the 
surgical workflow. This is why surgical workflow analysis 
and an understanding of the surgical scene have to be de-
veloped and validated towards a level of robustness where 
they can be used as an information source for cognitive 
surgical robots. Only then can auxiliary tasks such as con-
trol of the laparoscopic camera and stretching tissue, or 
even certain major surgical tasks such as an anastomosis, 
be performed by a cognitive robot. Using AI, such a cog-
nitive robot will understand its environment and may 
even learn from experience to improve its performance 
over time.

Conclusions

AI-assisted surgery enables objective data-driven deci-
sion-making and will have a strong impact on how sur-
gery is performed in the future. Clinical implications arise 
from the aim of assistance, but not replacement of surgi-
cal expertise. Decision support systems will recommend, 
not make, a decision. Cognitive robots will perform au-
tonomous actions only as requested by surgeons. Less ex-
perienced surgeons will need this support more often 
than experienced surgeons. However, in the end, all AI 
assistance has to improve patient outcomes to be effec-
tive.

While machine learning methods are evolving and 
further achievements are to be expected, there exist nu-
merous challenges in the surgical domain that have ham-
pered any significant impact so far. Challenges arise re-
garding data, methods, devices, and integration. Machine 
learning methods require large amounts of labeled train-
ing data, which are difficult and expensive to acquire con-
sidering the need for high-quality annotations. Further-
more, such methods need to be robust and accurate, as 
well as able to deal with heterogeneous data sources and 
high variability, since the course of surgery greatly de-
pends on the patient and the OR team, which makes it 
difficult to predict anomalies that are not represented in 
the training data. To reduce the amount of training data 
and to address diversity, DL approaches could be com-
bined with semantic knowledge to incorporate medical 
background knowledge and context. Up to now, such 
methods have behaved like a “black box,” which is critical 
for such a high-risk domain as surgery. Research towards 
explainable AI can overcome the black box paradigm and 
make decisions more transparent and traceable by hu-
mans [53]. Another important aspect is related to the de-
vices and their integration; for instance, to enable data-
driven online analysis in the OR, devices have to be con-
nected and accessible (SensorOR), which can only be 
achieved in collaboration with the device manufactures.

In summary, AI-assisted surgery has the potential to 
improve patient care if the aforementioned challenges are 
addressed by all stakeholders including clinicians, engi-
neers, patients, and industry.
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