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The immune system is permanently confronted with 
mutated and self-, microbe-, and tumor-derived neoanti-
gens – as well as other, “unknown” antigens – and has to 
differentiate between self or nonself. These antigenic 
molecules (protein or lipid based) must be phagocytosed, 
processed, and/or presented in the respective major his-
tocompatibility complex (MHC) molecules on the cell 
surface in recognizable form to train immune cells such 
as effector T cells, leading to their specific activation. 
These “trainers” are so-called antigen-presenting cells 
(APCs), which can be divided into professional (e.g., den-
dritic cells [DCs], B cells, and macrophages) and nonpro-
fessional APCs (e.g., fibroblasts and hepatocytes). While 
all nucleated human cells can present peptide fragments 
of endogenous proteins using the MHC class I pathway 
and display them on the surface to CD8+ cytotoxic T lym-
phocytes [1–3], only professional APCs such as DCs, 
macrophages, and B cells are characterized by the ability 
to present exogenous antigens using MHC class II mole-
cules and present them on MHC class II molecules to 
CD4+ T-helper cells (TH cells), along with the required 
costimulatory molecules, such as CD86 and CD83 mol-
ecules [2]. Therefore, the main difference between profes-
sional and nonprofessional APCs is the absence of MHC 
class II and costimulatory molecules on nonprofessional 
APCs. Recently, it was described that the three main 
granulocyte subsets (neutrophils, eosinophils, and baso-
phils) also seem to be able to present exogenous antigens 
to naive TH cells via MHC class II molecules, which has 
led to the suggestion that they should be referred to as 
APCs [4, 5].

Only professional APCs provide all three signals (an-
tigen presentation via MHC molecules, expression of co-
stimulatory molecules, and cytokine/chemokine secre-
tion) needed to train and activate T cells to recognize, 
destroy, or tolerate cells that carry these antigens, and 
thereby to control viral infections or cancer cell growth 
[6, 7]. Macrophages and DCs internalize pathogens and 
cellular debris by phagocytosis, whereas B cells use the B-
cell receptor for antigen uptake. Antigens are presented 
to T cells along with the required costimulatory mole-
cules to get activated, get “licensed” to mediate their 
(helper or cytotoxic) function, and produce memory 
cells.

DCs are most effective at presenting tumor and viral 
antigens of intracellular origin because they have the abil-
ity to “cross-present” antigens [8]. A variety of DC sub-
types in various organs with different phenotypical and 
functional characteristics mediating wound healing, pro-
inflammation, or anti-infectious or antitumor attack 
were described, and they can be used for immune profil-
ing to monitor the grade of activation or suppression of 
the immune system [9, 10]. Plasmacytoid or special 
tolerogenic DCs regulate responses of the innate and 
adaptive immune cells and contribute to avoiding auto-
immune reactions [10–12].

DC-based treatments have been applied for almost 
three decades and so far have been tested most often in 
patients with malignant melanoma, prostate cancer, ma-
lignant glioma, or renal cell cancer [13, 14]. DCs were also 
applied in combination with cytokine-induced killer cells 
to treat gastrointestinal tumors, lung cancer, and breast 
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cancer, as well as hematological malignancies [15]. Their 
clinical effectiveness was markedly increased after meth-
ods for generation, cultivation, and manipulation to ex-
ploit the immune-activating potential of DCs had been 
improved [14, 16]. The protocols were substantially im-
proved with respect to optimization and standardization 
to increase cell yield, reduction of culture time, the differ-
entiation process, and antigen loading. Recently, it was de-
scribed that reprogramming of monocytes with lentiviral 
vectors expressing granulocyte-macrophage colony-stim-
ulating factor (GM-CSF), interferon (IFN)-α, interleukin 
(IL)-4, and antigens will lead to maturation of DCs and the 
induction of autocrine and paracrine immune effects 
against virus- or leukemia-associated antigens [17, 18].

A specialty of myeloid leukemic blasts is their capabil-
ity to differentiate into “leukemia-derived DCs” [19–22]. 
Those DCs can either be generated ex vivo or used for 
adoptive transfer to patients with leukemia. Alternatively, 
blasts in the body can be converted into leukemia-derived 
DCs after treatment with approved drugs. This strategy is 
successful independent of patients’ leukemic subtype, 
mutation, MHC expression, or transplantation status.

Macrophages, derived from the same progenitor cells 
as DCs, express MHC class II and costimulatory mole-
cules after activation by IFN-γ. They also circulate in the 
blood and enter sites of infections or tissue damage and 
have been shown to be involved in cross-presentation of 
antigens [23]. Macrophages can be generated in vitro 
from monocytes or CD34 progenitor cells in the presence 
of cytokines such as M-CSF and GM-CSF, but a great het-
erogeneity in origin and tissue-specific functions was 
found, making the standardization of protocols more dif-
ficult. Protocols for generating APCs and macrophages as 
off-the-shelf products from induced pluripotent stem 
cells are under investigation, and they might open up a 
new field for generating and designing macrophages on a 
large scale to be used for clinical studies [24, 25].

To overcome limitations to the generation of conven-
tional APCs – especially for cancer patients, where the 
functionality of both APCs and effector cells is im- 
paired – alternative strategies are under investigation. 
Engineered MHC class I-deficient K562 cells or paramag-
netic nanoparticle-based artificial (a) APCs were de-
signed to optimize and control T-cell signals required for 
activation, expansion, and costimulation via human leu-
kocyte antigen-restricted peptide complex and costimu-
latory signals [26, 27]. These tools make the generation of 
APCs cost-effective, highly reproducible, and scalable, 
and generated T-cell products will be capable of generat-
ing potent and durable responses in treated patients [28–
30]. Interestingly, genetically modified K562-based 
aAPCs were recently used as an inexhaustible source for 
CD19-directed chimeric antigen receptor (CAR) T-cell 
expansion, thereby opening up new areas of APC applica-

tion [31]. This approach was found to be less prone to 
variability in CAR T-cell expansion than a standard bead-
based approach, and it resulted in CAR T cells with potent 
antitumor responses in preclinical models of acute lym-
phoblastic leukemia and B-cell lymphoma.

The knowledge of APCs’ biology, their function and 
regulation, and their role in a pathological context (e.g., 
during the course of infection, allergy, autoimmunity, 
transplant rejection, or tumor immunological processes) 
is indispensable when utilizing APCs for clinical applica-
tions. In summary, highly professional APCs for cellular 
therapies can be generated or addressed by 

 − optimization of culture conditions for APCs and pro-
duction under GMP (Good Manufacturing Practice) 
conditions [16, 22];

 − generation of new, highly specialized APCs after load-
ing with tumor antigens or generation of leukemia-
derived APCs from myeloid blasts ex vivo [16];

 − in vivo production of leukemia-derived DCs from 
blasts in the body [22];

 − genetic engineering of precursors for APC generation 
[18, 25];

 − usage of off-the-shelf APCs (DCs or macrophages) 
generated from induced pluripotent stem cells [25]; 
and

 − establishment of aAPCs such as nanoparticles under 
highly reproducible conditions [30].
Our understanding of the mechanisms involved in an-

tigen processing and presentation will be leading to effec-
tive and durable cellular and humoral immune responses 
and will contribute to the design of new vaccination strat-
egies against microbial or tumor targets, to refinement of 
immune monitoring, to blockage of APC-mediated 
“overactivation” of the immune system, and to the devel-
opment of attractive and useful accessories for improve-
ment of new cell-based therapies.
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