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Abstract
Introduction: A surgeon’s technical skills are an important 
factor in delivering optimal patient care. Most existing meth-
ods to estimate technical skills remain subjective and re-
source intensive. Robotic-assisted surgery (RAS) provides a 
unique opportunity to develop objective metrics using key 
elements of intraoperative surgeon behavior which can be 
captured unobtrusively, such as instrument positions and 
button presses. Recent studies have shown that objective 
metrics based on these data (referred to as objective perfor-
mance indicators [OPIs]) correlate to select clinical outcomes 
during robotic-assisted radical prostatectomy. However, the 
current OPIs remain difficult to interpret directly and, there-
fore, to use within structured feedback to improve surgical 
efficiencies. Methods: We analyzed kinematic and event data 
from da Vinci surgical systems (Intuitive Surgical, Inc., Sunny-
vale, CA, USA) to calculate values that can summarize the use 
of robotic instruments, referred to as OPIs. These indicators 
were mapped to broader technical skill categories of estab-
lished training protocols. A data-driven approach was then 
applied to further sub-select OPIs that distinguish skill for 
each technical skill category within each training task. This 
subset of OPIs was used to build a set of logistic regression 
classifiers that predict the probability of expertise in that skill 
to identify targeted improvement and practice. The final, pro-
posed feedback using OPIs was based on the coefficients of 

the logistic regression model to highlight specific actions 
that can be taken to improve. Results: We determine that for 
the majority of skills, only a small subset of OPIs (2–10) are 
required to achieve the highest model accuracies (80–95%) 
for estimating technical skills within clinical-like tasks on a 
porcine model. The majority of the skill models have similar 
accuracy as models predicting overall expertise for a task 
(80–98%). Skill models can divide a prediction into interpre-
table categories for simpler, targeted feedback. Conclusion: 
We define and validate a methodology to create interpreta-
ble metrics for key technical skills during clinical-like tasks 
when performing RAS. Using this framework for evaluating 
technical skills, we believe that surgical trainees can better 
understand both what can be improved and how to improve. 

© 2020 S. Karger AG, Basel

Introduction

There is increasing evidence that surgeon technical 
skills influence postoperative patient outcomes [1–7]. 
Methods to estimate technical skills and provide feed-
back throughout surgeons’ learning curves can lead to 
more efficient training [1, 8–10]. In turn, this could lead 
to improved patient outcomes. However, the challenge 
lies not only in developing the proper methods to mea-
sure technical skills accurately, but also in delivering 
feedback that is understandable and, thereby, actionable 
to improve performance.

Expert-evaluated methods can provide great insight 
into a subset of surgeries but scale poorly due to the time-
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consuming process of human rating [11]. In-person ex-
pert evaluation remains subjective in nature and can re-
sult in varying feedback from different experts. Further-
more, evaluation of surgeon performance from only a 
small subset of cases can be confounded by case-to-case 
fluctuations of patient disease factors, the composition of 
the OR team [12], or days off between cases [13] (to name 
just a few). For these reasons, expert-evaluated methods 
may have limited insight into which intraoperative fac-
tors influence postoperative outcomes. Surrogate mea-
sures of surgical skill and performance, such as surgeon 
experience or level of training, while correlated to patient 
outcomes [5, 7] and case-by-case evaluations of skill [3], 
do not provide the necessary information for deliberate 
practice and improvement. 

In comparison, computer-aided methods of analyzing 
surgical movements and tool use could scale well across 
many surgeries since these techniques are more amenable 
to automation. Moreover, computer-aided analysis of ki-
nematic and event data shows promise in providing ob-
jective evaluation of surgical skill both during training 
exercises [14–18] and during surgery [19, 20], even 
achieving correlation to postoperative patient outcomes 
[1, 3, 4]. Prior evaluations of surgical skill have focused 
on producing a categorical label, such as expert or novice, 
or reproducing a subjective score, like GEARS, over en-
tire procedures or tasks. While computer-aided methods 
still require manual annotation of procedural steps or 
tasks, recent advances to recognize clinically relevant sur-
gical activities using machine learning [21–26] suggest 
that annotation of tasks within surgeries and consequent 
analyses of kinematics could be entirely computer auto-
mated [27]. Even though computer-aided methods have 
the potential to significantly reduce the time needed to 
evaluate surgical performance, the metrics produced by 
this assessment can be difficult to interpret directly unless 
appropriately designed. 

In this study, we propose a new framework (Fig. 1) to 
evaluate technical skills learned during training activities 
on a porcine model through interpretable metrics. We set 

out to explore the feasibility of breaking tasks into techni-
cal skills, while still capturing objective information that 
distinguishes expertise. We hypothesized that models 
distinguishing expertise built on a subset of objective per-
formance indicators (OPIs; grouped by technical skill) 
would perform as well as models built on all OPIs and that 
such models can provide more interpretable feedback to 
trainees.

Methodology

Participants
Each participant performed clinical-like tasks that were de-

signed to practice technical skills in using the robotic platform in 
a porcine model described in Figure 2A. Participants were split 
into 3 categories of users of the da Vinci surgical system: (1) train-
ee, (2) expert surgeon, and (3) training specialist (Fig. 2B). Trainees 
were surgeons that do not have robotic surgery experience but 
have varying years of non-robotic experience across several spe-
cialties (Fig. 2C). Expert surgeons performed > 1,000 da Vinci ro-
botic procedures. Training specialists were non-surgeon, expert 
users that are experienced in the assessed training exercises with 
∼300–600 h of practice on or use of robotic platforms. Training 
specialists specialize in basic robotic technical skills targeted in 
these introductory exercises. They train hundreds of new robotic 
surgeons in this introductory course. 

Data Collection
We recorded synchronized video, kinematic (instrument posi-

tions and joint angles), and event (button presses, etc.) data from 
the da Vinci surgical systems. Each participant contributed a single 
recording. The start and stop times of each task were labeled to as-
sociate the kinematic and event data to the correct tasks. There 
were 7–9 tasks from expert surgeons and training specialists and 
93–122 from the trainee group (Fig. 2B). 

Objective Performance Indicators 
OPIs were computed to summarize the complex time series 

data into meaningful information. We calculated 43 OPIs (see on-
line suppl. Table for a complete list; for all online suppl. material, 
see www.karger.com/doi/10.1159/000512437) that estimate tech-
nical efficiencies when using the robotic platform (for examples, 
see Fig. 2D). We developed OPIs with interpretability in mind, and 
those too difficult to explain were not included. Similar metrics 
have been explored to characterize technical skills in inanimate 

Fig. 1. An overview of the workflow to provide data-driven, structured feedback to surgical trainees.
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models, virtual reality, and surgical settings (please see [28, 29] for 
reviews). For preliminary analysis of OPIs among participants, we 
compared training specialists and expert surgeons through cluster 
analysis, Wilcoxon rank sum test for significance, and visualiza-
tion of task duration distributions. For cluster analysis, all OPIs 
with non-zero variation are first converted to a z-score, followed 
by calculating hierarchical clusters based on Euclidean distances.

Technical Skills Mapping
To provide targeted feedback, we defined a set of broader tech-

nical skill categories that can be evaluated separately within the 
same tasks (Fig. 2A, “Skills Practiced”) based on established train-
ing protocols. Each OPI is mapped into a technical skill category 
prior to the data-driven selection based on whether or not the in-
strument or event is used in each category during the task. For 
example, while camera control activation may be important in 
overall expertise, it is not directly related to the trainee’s skill in 
using energy. 

Experimental Design
To estimate technical skills, we compared OPIs of trainee sur-

geons to an experienced group (expert surgeons and training spe-
cialists). For each task, we used these groups to classify technical 
skill based on OPI values. In order to evaluate our hypothesis, we 
created 2 sets of models and evaluated their performances: (1) task 

models that include all 43 OPIs and (2) models specific to each skill 
evaluated in a task using OPIs from the technical skills mapping. 
Given the large number of trainee participants (Fig. 2B), we held 
back 5 randomly selected trainees per task from this process to 
demonstrate the model prediction to feedback process, leaving 88–
117 for feature selection. Both model sets were used to predict the 
probability of expertise for 5 trainee recordings that were held back 
from model building.

Cross-Validation and Data Resampling
We used a nested 5-fold cross-validation approach described in 

Figure 3A to obtain a more robust measure of classifier accuracy. 
First, the data is split pseudo-randomly into training and test sets 
(80/20%). By using a stratified sampling approach, we maintain 
the original class distributions. The training data per fold is then 
used to perform the inner 5-fold cross-validation of recursive fea-
ture elimination (RFE), requiring an additional train-test split. 
This approach is done for 2 sets of models: (1) an overall task mod-
el using all 43 OPIs and (2) a skill-specific model using mapped 
OPIs. We combined upsampling and downsampling approaches 
to balance sample sizes for each training fold of inner and outer 
cross-validation loops. We upsampled the experienced group by 
3-fold using the Synthetic Minority Over-Sampling Technique 
(SMOTE) [30]. The trainee data was downsampled in 2-steps. 
First, we used the Neighborhood Cleaning Rule [30, 31] to reduce 

Fig. 2. Data, participants, and methodology. A Table of each task 
in the study, along with a description and skills practiced from the 
training protocol. B Number of recordings for each clinical-like 
training task grouped by experience level. The number of record-
ings containing each task per group is labeled on each bar. C Train-
ee backgrounds in this study described as years of non-robotic ex-

perience in practice and divided by specialty. D Two example OPIs 
calculated for this study. Economy of motion represents total dis-
tance traveled along a linear path. Wrist articulation is measured 
through tracking 3 joint angle movements. A full list and descrip-
tions can be found in the online supplementary material.
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noisy data of the trainee group by removing points far from other 
trainee samples. We then applied random undersampling of re-
maining samples to balance the groups to an approximate 50/50 
ratio [30]. When the class sizes are small, these combination meth-
ods tend to perform better than their random counterparts [32]. 
An example of OPI data before and after this process is shown in 
Figure 3B. This is done for both cross-validation loops to avoid 
performing feature selection only on synthetic samples. 

OPI Selection
Within each training task and skill combination, RFE with lo-

gistic regression as a base estimator was used to determine the fea-
tures (OPIs) to build a model. To avoid including OPIs with spuri-
ous relationships to expertise, we used 2 methods to rank OPIs: (1) 
the Wilcoxon rank sum test using a Bonferroni-adjusted p value 
cutoff at p < 0.05 [33] and (2) RFE with logistic regression as a base-
estimator [34]. The OPIs selected in each method are combined. 
Often, these ensemble methods for feature selection are used to 
provide better feature sets [35]. 

Wilcoxon rank sum tests were not performed on resampled 
data in the inner cross-validation loop alongside RFE to avoid bi-
asing p values. RFE selects features by recursively considering 
smaller and smaller sets of features until a minimum number is 
reached, in this case 1, ranking each OPI by importance [34, 36]. 
At each RFE step, the model is evaluated on the test data, which is 
not resampled, to determine the minimal and optimal number of 
OPIs. The final feature set is the union of OPIs selected by RFE and 
Wilcoxon. 

Skill Classification Model 
After OPI selection, the training data is used to build a logistic 

regression classifier to predict experience level. The model is then 
tested on the test data, which was not subject to resampling. This 
is repeated for the other 4 folds to obtain a cross-validated estimate 
of each model’s performance. We measured performance using 2 
metrics: a balanced accuracy score (average of recall between both 
groups) to account for the large differences in sample sizes [37] and 
Matthews correlation coefficient (MCC). MCC is a balanced qual-
ity measure of classification, ranging from –1 (poor prediction) to 
1 (perfect prediction) [38, 39]. The coefficients of each logistic re-
gression model are converted to odds ratios to determine how the 

model uses OPIs to classify surgeon skill. Based on the directional-
ity and magnitude of odds ratio values, feedback can target im-
provement among the reported OPIs.

Results

Analysis of Participant Groups
We analyzed OPIs of training specialists and expert 

surgeons to determine if there were significant differenc-
es in these groups of highly skilled users. For each task, 
we found no significantly different OPIs (p < 0.05) after 
multiple testing corrections. Hierarchical clustering of 
the training specialists’ and experienced surgeons’ data 
shows that the 2 groups do not form distinct groups based 
on their OPIs (Fig. 4A). A commonly used metric for dis-
tinguishing surgical skill is task completion time, which 
has a similar distribution across tasks for training special-
ists and experienced surgeons but that does differ from 
the trainee group (Fig. 4B). Expert surgeon and non-sur-
geon training specialists were combined into a single, 
high-skilled grouped deemed as the experienced group to 
classify technical skills.

Data-Driven OPI Selection 
Each skill-task combination of mapped OPIs started 

with 4–20 OPIs and RFE reduced it to 1–18 OPIs. RFE for 
task models displayed high balanced accuracies (cross-
validated [CV] score; Fig. 4C) that typically plateau early. 
Wilcoxon testing produced overlapping feature sets and 
added 0–11 OPIs to the final models. 

Classification Using Broad Technical Skill Models
The balanced accuracy and MCC of each task-specific 

model is reported in Figure 5A, along with the same met-

Fig. 3. A The nested cross-validation method for feature selection and model validation described in the Meth-
odology. B A dot plot of economy of motion values for all 4 instruments in the Uterine Horn task before (left) 
and after (right) the resampling approach described in the Methodology. Experienced group contains both expert 
surgeons and non-surgeon training specialists.
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Fig. 4. Analysis of OPIs across experience levels and feature selection. A Dendrograms of hierarchical clustering 
results for expert surgeons (blue) and non-surgeon training specialists (pink) along the y-axis. Heatmaps display 
z-score normalized values for OPIs and task durations with non-zero variance along the x-axis. B Distributions 
of task durations split by experience level. C Cross-validated (CV) scores (balanced accuracy, y-axis) of varying 
numbers of OPIs per skill (x-axis) using RFE. 

Fig. 5. Task- and skill-based model performance. A Table of average cross-validation performance metrics, bal-
anced accuracy, and Matthews correlation coefficient (MCC) for each of the skill-task and overall task logistic 
regression models. B Example of predicted probabilities for 5 trainees by overall task models and 2 skill-mapped 
models for Rectal Artery/Vein and Running Suture. C Odds ratio for Rectal Artery/Vein task model and skill-
mapped models for energy and camera use.
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rics for each skill-based model per task. Each task model 
accuracy ranged from 80.24 to 98.27% and MCCs from 
0.52 to 0.78. Skill model accuracies ranged from 76.32 to 
95.44% and MCCs from 0.45 to 0.87. The skill models 
produce performance metrics mostly no lower than 10% 
of each task model’s balanced accuracy (14/18), with no 
one task standing out. Thus, splitting each scoring model 
into skills maintains similar accuracy to more commonly 
used scoring models that would consider all OPIs togeth-
er. While the MCC was well above 0 across models, they 
were less consistent by the same criteria (8/18). 

Interpreting Predictions and Providing Feedback
For 5 trainee predictions (Fig. 5B, C), the Rectal Ar-

tery/Vein task shows low probabilities, scoring correctly 
as beginners, with the highest for Trainee 4. For running 
suture, there is 1 trainee with a high probability of exper-
tise. Two corresponding skill models for each task present 
a wider range of probabilities that are more consistent 
with task scores, like Trainee 2 or 5 for running suture, or 
differ, like Trainee 3 or 5 for Rectal Artery/Vein (Fig. 5B). 
The overall Rectal Artery/Vein task model includes only 
1 OPI for energy and camera use (Fig. 5C, Rectal Artery/
Vein). The inclusion of task duration may have improved 
skill models overall, as this is a commonly used metric for 
classifying surgical skill, but not specific to a single tech-
nical skill. Skill models included frequency of energy use 
and median camera speeds, while task models did not. 
Overall task feedback could include primarily improving 
the task completion time, increasing the frequency of 
camera control, and practicing increasing the speed of the 
dominant arm. Energy skill feedback would include prac-
ticing reducing unnecessary energy activation (reduce to-
tal events), while applying energy more frequently in 
shorter time periods (increase frequency). Camera skill 
feedback would include not only increasing the frequency 
of adjusting the camera to improve the field of view, but 
also doing so at faster speeds, which may relate to ineffi-
ciencies in camera adjustments. 

Discussion

Early evaluation of robotic skill can be broken down 
into specialty-agnostic skill categories, with experienced 
non-surgeon experts displaying similar technical profi-
ciencies as expert surgeons in a structured training set-
ting. This evaluation is built on the assumption that ex-
perienced surgeons and non-surgeon, expert users are 
highly skilled in these activities, while new robotic-assist-
ed surgeons are not. While this may often be true, it can 
lead to noisy data, as some new surgeons may become 
adept at certain technical skills quickly. Perhaps, a better 
model would be based on evaluation of performance by 

expert surgeons, but even that has its caveats, such as 
challenges with inter-rater reliability [40–42].

The probabilities computed from the proposed mod-
els can be presented as a score either raw, ranked, or re-
weighted to give the trainee a sense for where they can 
improve. Skill models may give more insight into where 
each trainee needs to focus, rather than a single score that 
may be driven by different OPIs. Feedback from an over-
all task model would generally indicate task-specific ex-
pertise, recommending practice in tasks like Rectal Ar-
tery/Vein, which may not be useful to all specialties. From 
a task model alone, we might suggest a trainee increase 
the rate of camera control activation but, without the oth-
er camera OPIs, we miss out on recommendations on 
how to control the camera to improve. We propose that 
broad skill categories give interpretable guidance by first 
breaking each task into technical skills that are common 
across specialties, but this has yet to be validated. Instead 
of informing the surgeon of their poor performance of 
Rectal Artery/Vein, they are told where their inefficien-
cies lie in camera, energy, dissection, and arm retraction 
skills. Examining further the feedback for each skill, the 
model can be used to suggest improvement with more 
specific context, such as inanimate training or virtual re-
ality simulation that specifically target these smaller, 
technical proficiencies.

Additionally, the scores and feedback can be paired 
with videos of a trainee’s task performance alongside a 
video of a peer or experienced surgeon for comparison(s). 
This allows a trainee to review their own performance, 
taking care to reflect on specific skills within the video 
and how the other surgeons perform the same task. Our 
framework does not encompass all technical skills, such 
as force sensitivity [43], or aspects of clinical judgment 
[44], which surgeons seem to be able to derive from video 
review. 

The objective evaluation of surgical technical skill us-
ing computer-aided methods is an area of growing inter-
est in the broader surgical education community to ad-
dress challenges with subjective rating scales [43, 45]. Our 
work explores a quantitative method for providing more 
interpretable guidance for surgical trainees early in their 
learning curves by utilizing a logistic regression classifier 
built on skill-mapped OPIs. This presents a potential ad-
vantage over earlier work because we may be able to inte-
grate better into the surgeon training pathways by target-
ing broader technical skills within clinical-like tasks (as 
opposed to dry-lab activities [45]) and specific deliberate 
practice recommendations. The utility and advantage of 
the work in surgeon training remains to be evaluated in 
future studies; however, we believe our framework can be 
applied to clinical settings to enable continued feedback 
throughout a surgeon’s learning curve. 
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