
Review Article

Visc Med 2020;36:456–462

Computer Vision in the Surgical 
Operating Room

François Chadebecq 

a    Francisco Vasconcelos 

a    Evangelos Mazomenos 

a    

Danail Stoyanov 

a    
a

 Department of Computer Science, Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), 
University College London, London, UK

Received: June 12, 2020
Accepted: September 30, 2020
Published online: October 15, 2020

Danail Stoyanov
Wellcome/EPSRC Centre for Interventional and Surgical Sciences
University College London, 43–45 Foley St.
London, WC1 2BT (UK)
danail.stoyanov @ ucl.ac.uk

© 2020 S. Karger AG, Baselkarger@karger.com
www.karger.com/vis

DOI: 10.1159/000511934

Keywords
Artificial intelligence · Computer-assisted intervention · 
Computer vision · Minimally invasive surgery

Abstract
Background: Multiple types of surgical cameras are used in 
modern surgical practice and provide a rich visual signal that 
is used by surgeons to visualize the clinical site and make 
clinical decisions. This signal can also be used by artificial in-
telligence (AI) methods to provide support in identifying in-
struments, structures, or activities both in real-time during 
procedures and postoperatively for analytics and under-
standing of surgical processes. Summary: In this paper, we 
provide a succinct perspective on the use of AI and espe-
cially computer vision to power solutions for the surgical op-
erating room (OR). The synergy between data availability 
and technical advances in computational power and AI 
methodology has led to rapid developments in the field and 
promising advances. Key Messages: With the increasing 
availability of surgical video sources and the convergence of 
technologies around video storage, processing, and under-
standing, we believe clinical solutions and products leverag-
ing vision are going to become an important component of 
modern surgical capabilities. However, both technical and 
clinical challenges remain to be overcome to efficiently 
make use of vision-based approaches into the clinic.

© 2020 S. Karger AG, Basel

Introduction

Surgery has progressively shifted towards the mini-
mally invasive surgery (MIS) paradigm. This means that 
today most operating rooms (OR) are equipped with dig-
ital cameras that visualize the surgical site. The video gen-
erated by surgical cameras is a form of digital measure-
ment and observation of the patient anatomy at the surgi-
cal site. It contains information about the appearance, 
shape, motion, and function of the anatomy and instru-
mentation within it. Once recorded over the duration of 
a procedure it also embeds information about the surgical 
process, actions performed, instruments used, possible 
hazards or complications, and even information about 
risk. While such information can be inferred by expert 
observers, this is not practical for providing assistance in 
routine clinical use and automated techniques are neces-
sary to effectively utilize the data for driving improve-
ments in practice [1, 2].

Currently, the majority of surgical video is either not re-
corded or it is stored for a limited period of time on the stack 
accompanying the surgical camera and then discarded at a 
later date. Perhaps some video is used in case presentations 
during clinical meeting discussions or society conferences 
or for educational purposes, and on an individual level sur-
geons may choose to record their case history. Storage has 
an associated cost and hence it is sensible to reduce data 
stores to only relevant and clinically useful information. 
This is largely due to the lack of tools that can synthesize the 
surgical video into meaningful information, either about 
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the process or about physiological information contained 
in the video observations. For certain diagnostic proce-
dures, e.g., endoscopic gastroenterology, storage of images 
from the procedure into the patient medical record to doc-
ument observed lesions is becoming standard practice but 
this is largely not done for surgical video.

In addition to surgical cameras, it is also nowadays 
common for other OR cameras to be present. These can 
be used to monitor activity throughout the OR and not 
just at the surgical site [3]. As such, opportunities are 
present to capture this signal and provide an understand-
ing of the entire room and activities or events that occur 
within it. This can potentially be used to optimize team 
performance or monitor room level events that can be 
used to improve the surgical process. To effectively make 
use of video data from the OR, it is necessary to build al-
gorithms for video analysis and understanding. In this 
paper, we provide a short review of the state of the art in 
artificial intelligence (AI), and especially computer vi-
sion, for the analysis of surgical data and outline some of 
the concepts and directions for future development and 
practical translation into the clinic.

Computer Vision

The field of computer vision is a sub-branch of AI fo-
cused on building algorithms and methods for under-
standing information captured in images and video [4]. 
To make vision problems tractable, computational meth-
ods typically focus on sub-components of the human vi-
sual system, e.g., object detection or identification (clas-
sification), motion extraction, or spatial understanding 
(Fig. 1). Developing these building blocks in the context 
of surgery and surgeons’ vision can lead to exciting pos-
sibilities for utilizing surgical video [4].

Computer vision has seen major improvements in the 
last 2 decades driven by breakthroughs in computing, 
digital cameras, mathematical modelling, and most re-
cently deep learning techniques. While previous systems 
required human intervention in the design and modelling 
of image features that capture different objects in a cer-
tain domain, in deep learning the most discriminant fea-
tures are learned autonomously from extensive amounts 
of annotated data. The increasing access to high volumes 
of digitally recorded image-guided surgeries is sparking a 
significant interest in translating deep learning to intra-
operative imaging. Annotated surgical video datasets in a 
wide variety of domains are being made publicly available 
for training validating new algorithms in the form of 
competition challenges [5], resulting in a rapid progress 
towards reliable automatic interpretation of surgical data.

Surgical Process Understanding

Surgical procedures can be decomposed into a number 
of sequential tasks (e.g., dissection, suturing, and anasto-
mosis) typically called procedural phases or steps [6–8]. 
Recognizing and temporally localizing these tasks allows 
for process surgical modelling and workflow analysis [9]. 
This further facilitates the current trend in MIS practice 
towards establishing standardized protocols for surgical 
workflow and guidelines for task execution, describing 
optimal tool positioning with respect to the anatomy, set-
ting performance benchmarks, and ensuring operational 
safety and complication-free, cost-effective procedures 
[10, 11]. The ability to objectively quantify surgical per-
formance could impact many aspects of the user and pa-
tient experience, like a reduced mental/physical load, in-
creased safety, and more efficient training and planning 
[12, 13]. Intraoperative video is the main sensory cue for 

Fig. 1. The use of computer vision to pro-
cess data from a wide range of intraopera-
tive imaging modalities or cameras can be 
grouped into the following 3 main appli-
cations: surgical process understanding, 
CAD, and computer-assisted navigation. 
We adopted this grouping for the purposes 
of this article, although additional applica-
tions are also discussed in the text.
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surgical operators and provides a wealth of information 
about the workflow and quality of the procedure. Apply-
ing computer vision in the OR for workflow and skills 
analysis extends beyond the interventional video. Opera-
tional characteristics can be extracted from tracking and 
motion analysis of clinical staff using wall-mounted cam-
eras and embedded sensors [14] and from tracking eye 
movements and estimating gaze patterns in MIS [15]. As 
in similar data science problems, learning-based AI has 
the potential to pioneer surgical workflow analysis and 
skills assessment and represents the focus of this section.

Surgical Phase Recognition
Surgical video has been used for segmenting surgical 

procedures into phases and the development of AI meth-
ods for workflow analysis (or phase recognition), facili-
tated by publicly annotated datasets [7, 8], has dramati-
cally accelerated the stability and capability of recogniz-
ing and temporally localizing surgical tasks in different 
MIS procedures. The EndoNet architecture introduced a 
convolutional neural network for workflow analysis in 
laparoscopic MIS, specifically laparoscopic cholecystec-
tomy, with the ability to recognize the 7 surgical phases 
of the procedure with over 80% accuracy [16]. More com-
plex AI models (SV-RCNet, Endo3D) have increased the 
accuracy to almost 90% [17, 18]. One of the main require-
ments for learning techniques is data and annotations 
which are still limited in the surgical context. In robotic-
assisted MIS procedures, instrument kinematics can be 
used in conjunction with the video to add explicit infor-
mation on instrument motion. The JHU-ISI Gesture and 
Skill Assessment Working Set (JIGSAWS) is a dataset of 
synchronized video and robot kinematics data from 
benchtop simulations of 3 (suturing, knot tying, and nee-
dle passing) fundamental surgical tasks [6]. The JIG-
SAWS dataset has extended annotations at a sub-task lev-
el. AI techniques learn patterns and temporal intercon-
nections of the sub-task sequences from combinations of 
robot kinematics and surgical video and detect and tem-
porally localize each sub-task [19–24]. Recently, AI mod-
els for activity recognition have been developed and test-
ed on annotated datasets from real cases of robotic-assist-
ed radical prostatectomy and ocular microsurgery 
[18–20]. Future work in this area should focus on inves-
tigating the ability of AI methods for surgical workflow 
analysis to generalize with rigorous validation on multi-
center annotated datasets of real procedures [20].

Surgical Technical Skill Assessment
Automated surgical skill assessment attempts to pro-

vide an objective estimation of the surgeons’ performance 
and quality of execution [25]. AI models analyze the sur-
gical video and learn high-level features to discriminate 
different performance and experience levels during the 

execution of surgical tasks. In studies on robotic surgical 
skills, using the JIGSAWS dataset, such systems can esti-
mate manually assigned OSATS-based scores with more 
than 95% accuracy [26–28]. In interventional ultrasound 
(US) imaging, AI methods can automatically measure the 
operator’s skills by evaluating the image quality of the 
captured US images with respect to their medical content 
[29, 30].

Computer-Aided Detection

Automatically detecting structures of interest in digital 
images is a well-established field in computer vision. Its 
real-time application to surgical video provides assistance 
in visualizing clinical targets and sensitive areas to opti-
mize and increase the safety of a procedure.

Lesion Detection in Endoscopy
AI vision systems for computer-aided detection (CAD) 

can provide assistance during diagnostic interventions by 
automatically highlighting lesions and abnormalities that 
could otherwise be missed. CAD systems were firstly in-
troduced in radiology, with existing US Food and Drug 
Administration (FDA)- and European Economic Area 
(EEA)-approved systems for mammography and chest 
computed tomography (CT) [31]. In the interventional 
context there has been particular interest in developing 
CADe systems for gastrointestinal endoscopy. Colonos-
copy has received the most attention to date, and proto-
type CAD systems for polyp detection report accuracies 
as high as 97.8% using magnified narrow band imaging 
[32]. Similar systems have also been developed for endo-
cytoscopy, capsule endoscopy, and conventional white 
light colonoscopes [33]. Research on CADe systems is 
also targeting esophageal cancer and early neoplasia in 
Barret esophagus [34].

Anatomy Detection
Detection and highlighting of anatomical regions dur-

ing surgery may provide assisted guidance and avoid ac-
cidental damage to critical structures, such as vessels and 
nerves. While significant research on critical anatomy 
representation focuses on registration and display of data 
from preoperative scans (see Surgical Process Under-
standing), more recent approaches directly detect these 
structures from intraoperative images and video. In ro-
botic prostatectomy, subtle pulsation of vessels can be de-
tected and magnified to an extent that is perceivable by a 
surgeon [35]. In laparoscopic cholecystectomy, automat-
ed video retrieval can help in assessing whether a critical 
view of safety was achieved [36], with potential risk re-
duction and a safer removal of the gallbladder. Addition-
ally, the detection and classification of anatomy enables 
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the automatic generation of standardized procedure re-
ports for quality control assessment and clinical training 
[37].

Surgical Instrument Detection
Automatic detection and localization of surgical in-

struments, when integrated with anatomy detection, can 
also contribute to accurate positioning and ensure critical 
structures are not damaged. In robotic MIS (RMIS), this 
information has the added benefit of making progress to-
ward active guidance, e.g., during needle suturing [38]. 
For this reason, research on surgical instrument detection 
has seen its largest share of research targeting the articu-
lated tools in RMIS [39]. With RMIS there are interesting 
possibilities in using robotic systems to generate data for 
training AI models and bypassing the need for expensive 
manual labelling [40]. However, instrument detection 
has also received some attention in nonrobotic proce-
dures including colorectal, pelvis, spine, and retinal sur-
gery [41]. In such cases, vision for instrument analysis 
may assist in building systems that can report analytics 
about instrument usage for reporting, or instrument mo-
tion and activity for surgical technical skill analysis or ver-
ification.

Computer-Assisted Navigation

Vision-based methods for localization and mapping of 
the environment using the surgical camera have advanced 
rapidly in recent years. This is crucial in both diagnostic 
and surgical procedures because it may enable more com-
plete diagnosis or fusion of pre- and intraoperative infor-
mation to enhance clinical decision making.

Enhancing Navigation in Endoscopy
For providing physicians with navigation assistance in 

MIS, these systems must be able to locate the position of 
the endoscope within explored organs while simultane-
ously inferring their shape. Simultaneous localization 
and mapping in endoscopy is, however, a challenging 
problem [42]. The ability of deep learning approaches to 
learn characteristic data features has proven to outper-
form hand-crafted features detectors and descriptors in 
laparoscopy, colonoscopy, and sinus endoscopy [43]. 
These approaches have also demonstrated promising re-
sults for registration and mosaicking in fetoscopy with 
the aim of augmenting the fetoscope field of view [44]. 
Nonetheless, endoscopy image registration remains an 
open problem due to the complex topological and photo-
metrical properties of organs producing significant ap-
pearance variations and complex specular reflections. 
Deep learning-based simultaneous localization and map-
ping approaches rely on the ability of neural networks to 

learn a depth map from a single image, overcoming the 
need for image registration. It has recently been shown 
that these approaches are able to infer dense and detailed 
depth maps in colonoscopy [45]. By fusing consecutive 
depth maps and simultaneously estimating the endo-
scope motion using geometric constraints, it has been 
demonstrated that long range colon sections could be re-
constructed [46]. A similar approach has also been suc-
cessfully applied to 3-D reconstruction of the sinus anat-
omy from endoscopic video so as to propose an alterna-
tive to CT scans – expensive procedures using ionizing 
radiation – for longitudinal monitoring of patients after 
nasal obstruction surgery [47]. However, critical limita-
tions, such as navigation within deformable environ-
ments, need to be overcome. 

Navigation in Robotic Surgery
Surgical robots such as the da Vinci Surgical System 

generally use stereo endoscopes which have significant 
advantages over monocular endoscopes in their ability to 
capture 3-D measurements. Estimating a dense depth 
map from a pair of stereo images generally consists of es-
timating dense disparity maps defining the apparent pix-
el motion between 2 images. Most of the stereo registra-
tion approaches rely on geometric methods [48]. It has, 
however, been shown that DL-based approaches could be 
successfully applied to partial nephrectomy outperform-
ing state of the art stereo reconstruction methods [49]. 
Surgical tool segmentation and localization contribute to 
safe tool-tissue interaction and are essential to visually 
guided manipulation tasks. Recent DL approaches dem-
onstrate significant improvements over hand-crafted tool 
tracking methods offering a high degree of flexibility, ac-
curacy, and reliability [50].

Image Fusion and Image-Guided Surgery
A key concept in enhancing surgical navigation has 

been the idea of fusing multiple preoperative and intra-
operative imaging modalities in an augmented reality 
(AR) view of the surgical site [48]. Vision-based AR sys-
tems generally involve mapping and localization of the 
environment in addition to blocks that align any preop-
erative 3-D data models to that reconstruction and then 
display the fused information to the surgeon [51]. The 
majority of surgical AR systems have been founded on 
geometric vision algorithms but deep learning methods 
are emerging, e.g., for US to CT in spine surgery [52] or 
to design efficient deformable registration in laparoscop-
ic liver surgery [53]. Despite methodological advances, 
significant open problems persist in surgical AR, such as 
adding contextual information to the visualization (e.g., 
identifying anatomical structures and critical surgical ar-
eas and detecting surgical phases and complications) 
[54], ensuring robust localization despite occlusions and 
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displaying relevant information to different stakeholders 
in the OR. Work is advancing to address these challenges 
and evaluation of the state-of-the-art learning-based 
method for visual human pose estimation in the OR has 
recently been reported [55] alongside a review dedicated 
to face detection into the OR [56] and methods to esti-
mate both surgical phases and remaining surgery dura-
tions [57] which can be used to alter information dis-
played at different times.

Discussion

In this paper, we have provided a succinct review of the 
broad possibilities for using computer vision in the surgi-
cal OR. With the increasing availability of surgical video 
sources and the convergence of technologies around vid-
eo storage, processing, and understanding, we believe 
clinical solutions and products leveraging vision are go-
ing to become an important component of modern surgi-
cal capabilities. However, both technical and clinical 
challenges remain and we try to outline them below.

Priorities for technical research and development are:
• Availability of datasets with labels and ground truth: 

despite efforts from challenges, the quality and avail-
ability of large scale surgical datasets remains a bottle-
neck. Efforts are needed to address this and cause a 
similar catalyst effect as was observed in wider vision 
and AI communities.

• Technical development in unsupervised methods: de-
veloping approaches that do not require any labelled 
sensor data (ground truth) is needed to bypass the 
need for large scale dataset or adapt to new domains 
(i.e., adapt method dedicated to nonmedical data to 
medical imaging). Furthermore, even if the data gap is 
bridged, the domain of surgical problems and axes of 
variation (patient, disease, etc.) is huge and solutions 
need to be adaptive to be able to scale. 
Challenges for clinical deployment are:

• Technical challenges in infrastructure: computing fa-
cilities in the OR, access to cloud computing using lim-
ited bandwidth, and latency of delivering solutions are 
all practical problems that require engineering re-
sources beyond the core AI development.

• Regulatory requirements around solutions: various 
levels of regulation are needed for integrating medical 
devices and software within the OR. Because of their 
complexity, assessing the limitation and capabilities of 
AI-based solutions is difficult, particularly for prob-
lems in which human supervision cannot be used to 
validate their precision (e.g., simultaneous localization 
and mapping).

• User interfaces design: it is critical to ensure that only 
relevant information is provided to the surgical teams 

and, for advanced AI-based solutions, a direct practi-
tioner-surgical platform communication can be estab-
lished. Integrating contextual information (e.g., surgi-
cal phase recognition and practitioner identification) 
is a major challenge for developing efficient user inter-
faces. 
Finally, this short and succinct review has focused on 

research directions that are in active development. Due to 
limitations of space, we have not discussed opportunities 
around using computer vision with different imaging sys-
tems or spectral imaging despite the opportunities in AI 
systems to resolve ill posed inverse problems in that do-
main [58]. Additionally, we have not covered in detail 
work in vision for the entire OR but this is a very active 
area of development with exciting potential for a wider 
team workflow understanding [3].
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