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Twenty patients with carbapenem-resistant Enterobacteriaceae 
infections were treated with meropenem-vaborbactam. Thirty-
day clinical success and survival rates were 65% (13/20) and 
90% (18/20), respectively. Thirty-five percent of patients had 
microbiologic failures within 90  days. One patient devel-
oped a recurrent infection due to meropenem-vaborbactam–
nonsusceptible, ompK36 porin mutant Klebsiella pneumoniae.
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Meropenem-vaborbactam is a carbapenem-boronic acid 
β-lactamase inhibitor combination that demonstrates potent 
in vitro activity against Klebsiella pneumoniae carbapenemase 
(KPC)–producing Enterobacteriaceae [1]. The agent was ap-
proved by the US Food and Drug Administration (FDA) for 
treatment of complicated urinary tract infections in August 
2017 [2]. Meropenem-vaborbactam was studied in 47 pa-
tients with microbiologically confirmed carbapenem-resistant 
Enterobacteriaceae (CRE) infections in a multinational, open-
label, randomized clinical trial (TANGO-II) [3]. Clinical 
cure rates were significantly higher among patients receiving 
meropenem-vaborbactam (21/32 [65.6%]) compared to best 
available therapy (BAT; 5/15 [33.3%]) at end of treatment 
(P = .03) and test of cure (TOC; P = .02) evaluations. Meropenem-
vaborbactam was associated with fewer severe treatment-
emergent adverse events (TEAEs; 7/50 [14%] vs 7/25 [28%]) 
and renal-related TEAEs (2/50 [4%] vs 6/25 [24%]) than BAT. 
While these findings provide important preliminary efficacy 

and safety data to support use of meropenem-vaborbactam 
against CRE infections, their applicability to clinical practice is 
limited as only 15.6% of patients were in the intensive care unit 
(ICU) at the time of infection, BAT regimens were highly var-
iable, and few patients with pneumonia were included in the 
trial [3]. The objective of this study is to report our experience 
with the use of meropenem-vaborbactam in clinical practice 
for the treatment of infections due to CRE, including long-term 
clinical and microbiologic outcomes.

METHODS

We conducted a prospective, observational study of patients with 
CRE infections who were treated with meropenem-vaborbactam 
for >48 hours at the University of Pittsburgh Medical Center 
between December 2017 and April 2019. During this time, 
meropenem-vaborbactam was recommended as the front-line 
therapy for infections caused by suspected or confirmed KPC-
producing organisms. CRE was defined according to Centers for 
Disease Control and Prevention criteria by phenotypic resistance 
to any carbapenem or the presence of a carbapenemase hydro-
lyzing enzyme. Types of CRE infection were classified according 
to National Healthcare Safety Network criteria [4]. A standard 
dosing of 4 g intravenously every 8 hours was used, with adjust-
ments for renal impairment made according to manufacturer 
recommendations. One patient receiving continuous renal re-
placement therapy (CRRT) was prescribed 2  g intravenously 
every 8 hours. Clinical success was defined as a composite of 
survival, resolution of signs and symptoms of infection, and ab-
sence of recurrent infection or microbiologic failure at 30 days 
following the onset of infection [5]. Microbiologic failure was de-
fined as isolation of the same bacterial species following ≥7 days 
of meropenem-vaborbactam treatment. Minimum inhibitory 
concentrations (MICs) were determined using reference broth 
microdilution methods and interpreted according to Clinical 
and Laboratory Standards Institute criteria [6]; vaborbactam 
was tested at a fixed concentration of 8 µg/mL. All isolates were 
tested for the presence or absence of β-lactamases by multiplex 
polymerase chain reaction (PCR) [7]. Among K.  pneumoniae 
isolates, gene mutations in ompK35 and ompK36 were further 
explored by PCR and Sanger DNA sequencing [7]. Outcome 
comparisons between groups were made using Fisher exact and 
Mann-Whitney U tests for categorical and continuous variables, 
respectively. Significance was defined as P < .05 (2-tailed).

RESULTS

Twenty consecutive patients were included in the study. Median 
age was 56 years (range, 31–83 years); 60% (12/20) of patients 
were men, and the median Charlson comorbidity index was 
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4 (range, 0–11). At the onset of infection, 70% (14/20) of pa-
tients were in the ICU and 35% (7/20) required renal replace-
ment therapy (RRT; intermittent hemodialysis [n = 6] or CRRT 
[n  =  1]). Median Sequential Organ Failure Assessment and 
Acute Physiology and Chronic Health Evaluation (APACHE-II) 
scores were 5 (range, 1–14) and 20 (range, 7–40), respectively. 
CRE infection types included bacteremia (n = 8), pneumonia 
(n = 5/6 [83%] ventilator-associated), tracheobronchitis (n = 1/2 
[50%] ventilator-associated), skin/soft tissue (n = 2), pyelone-
phritis (n  =  1), and peritonitis with intra-abdominal abscess 
(n = 1). Klebsiella pneumoniae was the predominant pathogen 
(n = 14), followed by Klebsiella oxytoca (n = 2), Escherichia coli 
(n = 2), Enterobacter cloacae (n = 1), and Citrobacter freundii 
(n  =  1). Ninety-five percent (19/20) of isolates were resistant 
to ertapenem; the lone exception was a K. pneumoniae isolate 
harboring a KPC-3 variant enzyme with a tyrosine for aspartic 
acid substitution at Ambler amino acid position 179 (D179Y; 
KPC-31, accession number MAPH01000113), which confers 
ceftazidime-avibactam resistance and restores carbapenem 
susceptibility [8]. Median meropenem and meropenem-
vaborbactam MICs were 32  µg/mL (range,  0.25–128) and 
0.03  µg/mL (range,  0.015–0.12), respectively. Ninety percent 
(18/20) of isolates produced KPC (KPC-3 [n  =  10], KPC-2 
[n = 7], or KPC-31 [n = 1]). All KPC-producing K. pneumoniae 
isolates (n = 14) harbored mutant ompK35 genes with a prema-
ture stop codon and wild-type ompK36 at baseline. The 2 non-
KPC-producing isolates were an E. coli isolate with blaCMY and 
a K. oxytoca isolate with blaACC, blaCMY, and blaDHA (ertapenem 
MIC = 2 µg/mL for both).

Meropenem-vaborbactam was administered as monotherapy 
in 80% (16/20) of patients; 4 patients received a second agent 
with in vitro activity against the infecting isolate for >48 hours 
(inhaled gentamicin [n = 2], intravenous and inhaled gentamicin 
[n = 1], and intravenous ciprofloxacin [n = 1]). The median du-
ration of treatment was 8 days (range, 3–28 days). Thirty- and 
90-day survival rates were 90% (18/20) and 80% (16/20), respec-
tively. Clinical success was achieved in 65% (13/20) of patients. 
Failures were due to death (n = 2), worsening symptoms (n = 2), 
recurrent infection (n = 2), or persistent bacteremia for 10 days 
(n = 1). Success rates were 63% (5/8) and 67% (4/6) for bacte-
remia and pneumonia, respectively. Rates were not statistically 
different among patients who did ( 3/7 [43%]) or did not (10/13 
[77%]) require RRT (P = .17). Median APACHE-II scores were 
higher among patients failing therapy compared to those ex-
periencing clinical success (29 vs 15; P = .06). No other clinical 
or microbiologic factors were predictive of treatment response. 
Severe TEAEs were limited to 1 patient (5%) who developed eo-
sinophilia following 19 days of meropenem-vaborbactam.

Microbiologic failures occurred in 35% (6/20) of patients 
due to relapsing CRE infections (n = 3), respiratory coloniza-
tion (n = 1), breakthrough infection during treatment (n = 1), 
or persistent bacteremia (n = 1) (Table 1). The median time to 

microbiologic failure was 38.5 days (range, 12–67 days). Fifty 
percent (3/6) of recurrent isolates demonstrated a ≥8-fold 
meropenem-vaborbactam MIC increase (Table 1). One recur-
rent isolate was categorized as nonsusceptible to meropenem-
vaborbactam (MIC = 8 µg/mL).

DISCUSSION

Our early experience with meropenem-vaborbactam for treat-
ment of CRE infections supports the findings of TANGO-II 
and extends those observations to critically ill patients. Indeed, 
70% of patients included in our cohort were in the ICU at the 
time of infection and the median APACHE-II score was 20. 
Overall clinical success and survival rates at 30 days were 65% 
and 90%, respectively, which are similar to rates of cure at the 
TOC visit and survival reported in TANGO-II (59% and 84%, 
respectively) [3]. Clinical success and 30-day survival rates with 
meropenem-vaborbactam were higher than, but not statistically 
different from, those we previously reported for ceftazidime-
avibactam against CRE infections (59% and 76%, respectively) 
[9]. Our study also provides new insights into the efficacy of 
meropenem-vaborbactam against CRE pneumonia, an under-
represented infection type in TANGO-II that we previously 
identified as a risk factor for ceftazidime-avibactam clinical 
failures [3, 5]. Here, clinical success was achieved in 67% (4/6) 
of patients with CRE pneumonia and 100% (2/2) of patients 
with tracheobronchitis; all 8 patients with respiratory tract in-
fections survived at 30  days. Likewise, none of the 4 patients 
with CRE pneumonia treated with meropenem-vaborbactam 
in TANGO-II died at 28  days, the regulatory guidance-based 
endpoint for hospital-acquired and ventilator-associated pneu-
monia. Among healthy volunteers, ratios of epithelial lining fluid 
to plasma concentrations are 65% and 79% for meropenem and 
vaborbactam, respectively [10]. Corresponding ratios for both 
ceftazidime and avibactam are approximately 30% [11]. Taken 
together, the preliminary data supporting use of meropenem-
vaborbactam for CRE infections, including pneumonia, are en-
couraging, but must be validated in future studies.

Microbiologic failures were noted in more than one-third 
of patients treated with meropenem-vaborbactam, as CRE 
were reisolated within 90  days following treatment initia-
tion. One failure occurred in a patient with bacteremia due 
to a ceftazidime-avibactam resistant K.  pneumoniae isolate 
(MIC  =  256  µg/mL) harboring KPC-31; the meropenem-
vaborbactam MIC was 0.12 µg/mL. On day 12 of meropenem-
vaborbactam treatment, a new abdominal wall abscess was 
identified. Abscess cultures grew K.  pneumoniae with a 
meropenem-vaborbactam MIC of 8  µg/mL. Whole genome 
sequence (Illumina) analysis identified an IS5 insertion in the 
ompK36 promoter of the recurrent isolate that was not present 
at baseline; a single copy of blaKPC on an IncFIA pBK30683-like 
plasmid that encoded KPC-31 was unchanged. The baseline 
and recurrent isolates were of sequence type 258, in which core 
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genomes differed by 2 single-nucleotide polymorphisms; both 
isolates harbored blaSHV-11 and blaTEM-1. To our knowledge, this 
is the first case of meropenem-vaborbactam nonsusceptibility 
to be reported during or following treatment. Two additional 
patients experienced microbiologic failures due to isolates 
demonstrating at least an 8-fold MIC increase. We previously 
showed that meropenem-vaborbactam MICs were approxi-
mately 8-fold higher against KPC-producing K.  pneumoniae 
isolates that harbored ompK36 mutant genes than isolates with 
wild-type ompK36 [7]. Findings here corroborate a prior in vitro 
study showing that meropenem-vaborbactam passage-selected 
K. pneumoniae contained partially functional or completely in-
active ompK36 genes [12]. In TANGO-II, a single isolate (1/32 
[3%]) collected after randomization demonstrated a 4-fold 
meropenem-vaborbactam MIC increase (0.25 to 1  µg/mL); 
however, patients were only followed until a TOC visit 5–9 days 
after treatment completion. Our study design allowed for pa-
tients to be monitored at least 90 days after treatment initiation, 
and all recurrent isolates were tested for reduced susceptibility.

The clinical efficacy of meropenem-vaborbactam against 
infections caused by CRE isolates that demonstrate reduced 
susceptibility is unknown. In vitro data generated in a hollow-
fiber infection model showed rapid bactericidal killing at the 
FDA-approved dose for isolates exhibiting MICs up to 8 µg/mL; 
however, experiments were only conducted for 32 hours [13]. 
Pooled data from these experiments, which included 3 isolates 
with MICs ≥8 µg/mL, suggest that vaborbactam 24-hour free 
drug area under the curve (AUC):MIC ratio >24 suppresses the 
emergence of resistance [14]. When the vaborbactam AUC:MIC 
ratio was <24, resistant mutants were selected that demon-
strated a 4-fold MIC increase compared to baseline. As clinical 
experience grows, it will be imperative to define the efficacy of 
meropenem-vaborbactam against isolates harboring porin mu-
tations that demonstrate higher MICs, and the frequency with 
which they are selected following treatment. Moreover, the im-
pact of various porin mutations requires careful consideration 
and further characterization. The 2 most common mutations 
we have identified among KPC-producing K. pneumoniae clin-
ical isolates have varying effects on the outer cell membrane. 
Mutant ompK36 with a glycine–aspartic acid insertion at posi-
tion 134 results in a constricted inner porin channel whereas an 
IS5 promoter insertion results in decreased ompK36 expression 
[1, 7, 15].

To date, only 3 other cases of meropenem-vaborbactam 
treatment against CRE infections have been reported outside 
of clinical trials [16–18]. Two of 3 patients were treated suc-
cessfully following failure of ceftazidime-avibactam, including 
1 case in which the isolate was ceftazidime-avibactam resistant 
[16, 17]. At this point it is unclear if meropenem-vaborbactam 
will be more effective than ceftazidime-avibactam for treat-
ment of serious CRE infections. While the emergence of 
ceftazidime-avibactam resistance due to blaKPC mutations is Ta
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well-documented [5, 16], it is unknown if resistance will emerge 
less frequently with meropenem-vaborbactam based on the lim-
ited in vitro data that are available [12]. Ceftazidime-avibactam 
has in vitro characteristics that offer potential advantages over 
meropenem-vaborbactam, including broader activity against 
OXA-48–producing Enterobacteriaceae and carbapenem-
resistant Pseudomonas aeruginosa [19, 20]. Centers may prior-
itize 1 agent over the other based on their local epidemiology 
and clinical experience. Both agents are clearly safer and more 
effective than polymyxin-based combinations and other sal-
vage regimens used to treat CRE infections historically [3, 21, 
22]. Nevertheless, 2018 United States prescription data indi-
cate that intravenous polymyxins were used more commonly 
than meropenem-vaborbactam and ceftazidime-avibactam to 
treat CRE infections [23]. In countries such as the United States 
where new anti-CRE agents are available, they should be priori-
tized unambiguously over polymyxins for treatment of CRE in-
fections. Studies to elucidate potential clinical outcome and/or 
pharmacokinetic differences between ceftazidime-avibactam, 
meropenem-vaborbactam, and the recently FDA-approved 
imipenem-cilastatin-relebactam are needed.

We acknowledge that our study is limited by its single-center 
design and sample size. Nevertheless, this is the first systematic 
study of meropenem-vaborbactam in routine clinical practice. 
The data presented here harken a new era in which clinicians 
have a choice of effective antibiotics against CRE infections. Our 
findings speak to the need for future comparative-effectiveness 
studies that define advantages and disadvantages of newly ap-
proved CRE treatment options.
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