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The COVID-19 pandemic has caused more than 1,000,000 reported
deaths globally, of which more than 200,000 have been reported
in the United States as of October 1, 2020. Public health inter-
ventions have had significant impacts in reducing transmission
and in averting even more deaths. Nonetheless, in many jurisdic-
tions, the decline of cases and fatalities after apparent epidemic
peaks has not been rapid. Instead, the asymmetric decline in
cases appears, in most cases, to be consistent with plateau- or
shoulder-like phenomena—a qualitative observation reinforced
by a symmetry analysis of US state-level fatality data. Here
we explore a model of fatality-driven awareness in which indi-
vidual protective measures increase with death rates. In this
model, fast increases to the peak are often followed by plateaus,
shoulders, and lag-driven oscillations. The asymmetric shape of
model-predicted incidence and fatality curves is consistent with
observations from many jurisdictions. Yet, in contrast to model
predictions, we find that population-level mobility metrics usu-
ally increased from low levels before fatalities reached an initial
peak. We show that incorporating fatigue and long-term behavior
change can reconcile the apparent premature relaxation of mobil-
ity reductions and help understand when post-peak dynamics are
likely to lead to a resurgence of cases.
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The spread of COVID-19 has elevated the importance of
epidemiological models as a means to forecast both near-

and long-term spread. In the United States, the Institute for
Health Metrics and Evaluation (IHME) model has emerged
as a key influencer of state- and national-level policy (1). The
IHME model includes a detailed characterization of the vari-
ation in hospital bed capacity, intensive care unit beds, and
ventilators between and within states. Predicting the projected
strains on underlying health resources is critical to supporting
planning efforts. However, such projections require an epidemic
“forecast.” Early versions of IHME’s epidemic forecast differed
from conventional epidemic models in a significant way: IHME
assumed that the cumulative deaths in the COVID-19 epidemic
followed a symmetric, Gaussian-like trajectory. For example, the
IHME model predicted that, if the peak is 2 wk away, then, in
4 wk, cases will return to the level of the present, and continue
to diminish rapidly. But epidemics need not have one symmetric
peak—the archaic Farr’s Law of Epidemics notwithstanding (see
ref. 2 for a cautionary tale of using Farr’s law as applied to the
HIV epidemic).

Conventional epidemic models of COVID-19 represent popu-
lations in terms of their “status” vis a vis the infectious agent, that
is, susceptible, exposed, infectious, hospitalized, and recovered
(3–9). New transmission can lead to an exponential increases
in cases when the basic reproduction number R0 > 1 [the basic
reproduction number denotes the average number of new infec-
tions caused by a single, typical individual in an otherwise sus-

ceptible population (10)]. Subsequent spread, if left unchecked,
would yield a single peak—in theory. That peak corresponds to
when “herd immunity” is reached, such that the effective repro-
duction number Reff =1. The effective reproduction number
denotes the number of new infectious cases caused by a single
infectious individual in a population with preexisting circulation.
But, even when herd immunity is reached, there will still be new
cases which then diminish over time, until the epidemic con-
cludes. A single-peak paradigm is robust insofar as the disease
has spread sufficiently in a population to reach and exceed “herd
immunity.” The converse is also true: As long as a population
remains predominantly immunologically naive, then the risk of
further infection has not passed.

In contrast to the IHME model, the Imperial College of Lon-
don (ICL) model (3) used a conventional state-driven epidemic
model to show the benefits of early intervention steps in reducing
transmission and preserving health system resources vs. a “herd
immunity” strategy. The ICL model assumed that transmission is
reduced because of externalities, like lockdowns, school closings,
and so on. As a result, early predictions of the ICL model sug-
gested that lifting of large-scale public health interventions could
be followed by a second wave of cases. This has turned out to be
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the case, in some jurisdictions. Yet, for a disease that is already
the documented cause of more than 200,000 deaths in the United
States alone, we posit that individuals are likely to continue to
modify their behavior even after lockdowns are lifted. Indeed,
the peak death rates in the United States and globally are not
as high as potential maximums in the event that COVID-19 had
spread unhindered in the population (3). Moreover, rather than
a peak and near-symmetric decline, there is evidence of asym-
metric plateaus and shoulder-like behavior for daily fatality rates
in the spring–summer trajectory of the pandemic in US states
(Fig. 1; full state-level data in SI Appendix, Fig. S1). These early
plateaus have been followed, in many cases, with resurgence of
cases and fatalities.

In this manuscript, we use a nonlinear model of epidemio-
logical dynamics to ask the question: What is the anticipated
shape of an epidemic if individuals modify their behavior in
direct response to the impact of a disease at the population level?
In doing so, we build upon earlier work on awareness-based
models (e.g., refs. 11–14) with an initial assumption: Individu-
als reduce interactions when death rates are high and increase
interactions when death rates are low. As we show, in con-

trast to models which do not account for behavior, short-term
awareness can lead to dramatic reductions in death rates, and
therefore plateaus, shoulders, and lag-driven oscillations in epi-
demic dynamics. We also show that dynamics can be driven
from persistent spread to elimination when awareness shifts from
short to long term. Notably, we find that, despite model pre-
dictions, the empirical data reveal that mobility increased even
as fatalities were increasing. This reveals the potential role for
fatigue and long-term changes in behavior beyond those linked
to mobility (e.g., mask wearing) in shaping COVID-19 dynamics.

Results and Discussion
Susceptible–Exposed–Infectious–Removed Model with Short-Term
Awareness of Risk. Consider a susceptible–exposed–infectious–
removed (SEIR)-like model,

Ṡ =− βSI

[1+ (δ/δc)k ]
[1]

Ė =
βSI

[1+ (δ/δc)k ]
−µE [2]

A
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Fig. 1. Plateaus and shoulder-like dynamics in COVID-19 fatalities. (A) Examples of daily number of reported deaths for COVID-19 (black points and lines)
and the corresponding LOESS curves (red lines) in four states, including two estimated to be the most plateau-like (Minnesota and North Carolina) and two
estimated to be the most peak-like (Indiana and Maryland). Daily number of deaths is smoothed in log space, only including days with one or more reported
deaths. We restrict our analysis to states in which the peak smoothed death is greater than 10 as of June 7, 2020 (resulting in 17 states in total). (B) Smoothed
daily number of reported deaths centered around the first peak time tP across 17 states. Smoothed death curves are plotted between tP −∆t and tP + ∆t,
where ∆t is defined such that smoothed death at time tP −∆t corresponds to 10% of the smoothed peak value. (C) Measured symmetry coefficient and
CIs. Symmetry coefficient is calculated by dividing the death value at time tP −∆t by the death value at time tP + ∆t. If the death curve is symmetric, the
symmetry coefficient should equal 1. CIs are calculated by bootstrapping across the date of deaths for each individual 1,000 times and recalculating the
symmetry coefficient (after smoothing each bootstrap time series). LOESS is performed by using the loess function in R.
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Fig. 2. Schematic of an SEIR model with awareness-driven social distanc-
ing. Transmission is reduced based on short- and/or long-term awareness of
population-level disease severity (i.e., fatalities).

İ =µE − γI [3]

Ṙ=(1− fD)γI [4]

Ḋ = fDγI , [5]

where S , E , I , R, and D denote the proportions of suscep-
tible, exposed, infectious, recovered, and deaths, respectively,
given transmission rate β days−1, transition to infectious rate µ
days−1, and recovery rate γ days−1, where fD is the infection
fatality probability. The awareness-based distancing is controlled
by the death rate δ≡ Ḋ , the half-saturation constant (δc > 0),
and the sharpness of change in the force of infection (k ≥ 1) (see
Fig. 2 for a schematic, and see Table 1 for a list of all param-
eters used in models). Since δ is proportional to I , this model
is closely related to a recently proposed awareness-based dis-
tancing model (14) and to an independently derived feedback
susceptible–infectious–removed (fSIR) model (15). Note that
the present model converges to the conventional SEIR model
as δc→∞.

Uncontrolled epidemics in SEIR models have a single case
peak, corresponding to the point where γI =βSI such that
the population obtains herd immunity when only a proportion
S =1/R0 have yet to be infected. However, in the model above,
individuals decrease transmission in response to awareness of the
impacts of the disease, δ(t). In this case, infected cases can peak
even when the population is far from herd immunity, specifically
when

γI =
βSI

[1+ (δ/δc)k ]
. [6]

When δc is small compared to the per capita death rate of
infectious individuals (γfD), we anticipate that individual behav-
ior will respond quickly to the disease outbreak. Hence, we
hypothesize that the emergence of an awareness-based peak can
occur early, that is, S(t)≈ 1, consistent with a quasi-stationary
equilibrium when the death rate is

δ(q)≈ δc (R0− 1)1/k [7]

and the incidence of new infections i(t) is given by

i (q)≈ δc
fD

(R0− 1)1/k . [8]

This quasi-equilibrium is maintained not because of herd
immunity but because of changes in behavior.

We evaluate this hypothesis in Fig. 3 for k =1, k =2, and
k =4 given disease dynamics with β=0.5 per d, µ=1/2 per
d, γ=1/6 per d, fD =0.01, N =107, and N δc =50 per d. As
is evident, the rise and decline from peaks are not symmetric.
Instead, incorporating awareness leads to dynamics where inci-
dence decreases very slowly after a peak. The peaks occur at
levels of infection far from that associated with herd immunity.

Post-peak, shoulders and plateaus emerge because of the balance
between relaxation of awareness-based distancing (which leads
to increases in cases and deaths) and an increase in awareness
in response to increases in cases and deaths. As the steepness of
response k increases, individuals become less sensitive to fatal-
ity rates where δ < δc and more sensitive to fatality rates where
δ > δc . This leads to sharper dynamics. In addition, infections can
overshoot the expected plateau given that awareness is driven by
fatalities which are offset with respect to new infections.

Short-Term Awareness, Long-Term Plateaus, and Oscillations. Ini-
tial analysis of an SEIR model with short-term awareness of
population-level severity suggests a generic outcome: Fatalities
will first increase exponentially before slowing to a plateau at
a level near δc . Fig. 4 shows dynamics for values of δc rang-
ing from to 5 to 500 deaths per day in a population of 107

(here k =2; results for k =1 or k =4 are similar; SI Appendix,
Fig. S2). When δc is small compared to (γfD), fatalities can be
sustained at near-constant levels for a long time. When δc is
higher, then the decline of cases and fatalities due to suscepti-
ble depletion is relatively fast. However, over a wide range of
assumptions about critical daily fatality rates δc , the population
remains largely susceptible, even as sustained fatalities continue
for a period far greater than the time it took to reach the plateau.
To explore the impacts of lags on dynamics, we incorporated an
additional class H , assuming that fatalities follow potentially pro-
longed hospital stays. We do not include detailed information on
symptomatic transmission, asymptomatic transmission, hospital-
ization outcome, age structure, and age-dependent risk (as in ref.
3). Instead, we consider the extended SEIR model,

Ṡ =− βSI

[1+ (δ/δc)k ]
[9]

Ė =
βSI

[1+ (δ/δc)k ]
−µE [10]

İ =µE − γI [11]

Ṙ=(1− fD)γI [12]

Ḣ = fDγI − γHH [13]

Ḋ = γHH , [14]

where TH =1/γH defines the average time in a hospital stay
before a fatality. Note that we recognize that many individu-
als recover from COVID-19 after hospitalization; this model’s
hospital compartment functions as a prefilter.

Table 1. Parameter descriptions and values/ranges used
for simulations

Notation Description Values/ranges

β Transmission rate 1/2 days−1

1/µ Mean latent period 2 d
1/γ Mean infectious period 6 d
1/γH Mean time in a hospital 7 to 28 d

stay before a fatality
fD Infection fatality probability 0.01
N Population size 107

Nδc Half-saturation constant 5 to 500
for short-term awareness deaths days−1

NDc Half-saturation constant 2,500 to 10,000
for long-term awareness deaths

k Sharpness of change in 1 to 4
the force of infection

ε Time scale of behavior change 1/7 days−1

Transmission rate is chosen to matchR0 = 3.
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Fig. 3. Infections and deaths per day in a death-awareness–based social
distancing model. Simulations have the epidemiological parameters β=

0.5 days−1, µ= 1/2 days−1, γ= 1/6 days−1, and fD = 0.01, with variation
in k = 1, 2, and 4. We assume Nδc = 50 per d in all cases.

The earlier analysis of the quasi-stationary equilibrium in
fatalities holds in the case of an SEIR model with additional
classes before fatalities. Hence, we anticipate that dynamics
should converge to δ= δ(q) at early times. However, increased
delays between cases and fatalities could lead to oscillations.
Indeed, this is what we find via examination of models in which
TH ranges from 7 d to 28 d, with increasing magnitude of
oscillations as TH increases (see Fig. 5 for k =2, with qualita-
tively similar results for k =1 and k =4 shown in SI Appendix,
Fig. S3).

Dynamical Consequences of Short-Term and Long-Term Awareness.
Awareness can vary in duration, for example, awareness of severe
acute respiratory syndrome coronavirus 2 may prepare individu-
als to more readily adopt and retain social distancing measures
(16, 17). In previous work, long-term awareness of cumulative
incidence was shown to lead to substantial decreases in final size

of epidemics compared to baseline expectations from inferred
strength (14). Hence, we consider an extension of the SEIR
model with lags between infection and fatalities that incorporates
both short-term and long-term awareness,

Ṡ =− βSI

[1+ (δ/δc)k +(D/Dc)k ]
[15]

Ė =
βSI

[1+ (δ/δc)k +(D/Dc)k ]
−µE [16]

İ =µE − γI [17]

Ṙ=(1− fD)γI [18]
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Fig. 4. Dynamics given variation in the critical fatality awareness level, δc,
for awareness k = 2. Shown are deaths per d (Top) and the susceptible frac-
tion as a function of time (Bottom), the latter compared to a herd immunity
level when only a fraction 1/R0 remain susceptible. These simulations share
the epidemiological parameters β= 0.5 days−1, µ= 1/2 days−1, γ= 1/6
days−1, and fD = 0.01.
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Fig. 5. Emergence of oscillatory dynamics in a death-driven awareness
model of social distancing given lags between infection and fatality. Aware-
ness is k = 2, and all other parameters are as in Fig. 3. The dashed lines are
for fatalities expected quasi-stationary value δ(q).

Ḣ = fDγI − γHH [19]

Ḋ = γHH , [20]

where Dc denotes a critical cumulative fatality level (and, for-
mally, a half-saturation constant for the impact of long-term
awareness on distancing). Note that the relative importance of
short- and long-term awareness can be modulated by δc and
Dc , respectively. Fig. 6 shows daily fatalities (Fig. 6, Top panel)
and cumulative fatalities (Fig. 6, Bottom panel) for an SEIR
model with R0 =2.5, TH =14 d, and N δc =50 fatalities per
day and critical cumulative fatalities of NDc =2, 500, 5,000, and
10,000, as well as a comparison case with vanishing long-term
awareness. As is evident, long-term awareness drives dynamics
toward a rapid decline after reaching a peak. This decline arises
because D monotonically increases; increasing fatalities beyond
Dc leads to rapid suppression of transmission. However, when
short-term, rather than long-term, awareness drives dynamics,
then shoulders and plateaus can reemerge. In reality, we expect
that individual behavior is shaped by short- and long-term aware-
ness of risks, including the potential for fatigue and “decay” of
long-term behavior change (11, 12).

Empirical Assessment of Mechanistic Drivers of Asymmetric Peaks
in COVID-19 Death Rates. The models developed here suggest
that awareness-driven distancing can lead to asymmetric epi-
demic peaks even in the absence of susceptible depletion. To

test this hypothesis mechanistically, we jointly analyzed the
dynamics of fatality rates and behavior, using mobility data
obtained from Google COVID-19 Community Mobility Reports
(https://www.google.com/covid19/mobility/) as a proxy for behav-
ior (see Methods for the aggregation of multiple mobility metrics
via a principal component analysis [PCA]). Notably, we find that,
in the bulk of states examined, aggregated rates of mobility typ-
ically began to increase before the local peak in fatality was
reached (Fig. 7A). This rebound in mobility rates implies that
real populations are opening up faster than our simple model
could predict. Awareness-driven models, shown in Fig. 7B, show
either “reversible” or “counterclockwise” dynamics. In these
models, risky behavior decreases until fatalities reach their peak.
Models with short-term awareness but no long-term awareness
exhibit a tight link between fatality and behavior (reversible
behavior, like the top curve in Fig. 7B). Models with long-term
awareness exhibit counterclockwise dynamics, as risky behavior
remains at low levels even as fatalities decrease; the asymmetry
here is driven by the extent of long-term awareness.

In contrast, the real data (Fig. 7A) exhibit predominantly
clockwise dynamics; exceptions include New York, which has a
nearly reversible (but still clockwise) pattern, and Washington,
which has a counterclockwise pattern anticipated by the aware-
ness model. We hypothesized that a combination of awareness-
driven distancing and fatigue could lead to clockwise dynamics:
If people become fatigued with distancing behavior, then risk

0 50 100 150 200 250 300 350 400

0

25

50

75

100

125

Fig. 6. SEIR dynamics with short- and long-term awareness. Model param-
eters are β= 0.5 days−1, µ= 1/2 days−1, γ= 1/6 days−1, TH = 14 d, fD =

0.01, N = 107, k = 2, and Nδc = 50 per day (short-term awareness), with vary-
ing NDc (long-term awareness) as shown in the legend. The dashed line (Top
panel) denotes δ(q) due to short-term distancing alone.
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Fig. 7. Phase plane visualizations of deaths vs. mobility for (A) state-level data and (B–D) SEIR models. (A) Deaths and mobility indexes through time
for the 17 analyzed states. Both data series are smoothed. Time windows as in Fig. 1. Here, the first mobility principal component represents a proxy for
behavior, with positive values associated with higher mobility (see Methods). (B) Dynamics of effective behavior and death rates in an SEIR model with
short- and long-term awareness. Curves denote different assumptions regarding long-term awareness, in each case β= 0.5 days−1, µ= 0.5 days−1, and
γ= 1/6 days−1, such thatR0 = 3, with k = 2, γH = 1/21 days−1, and fD = 0.01. The short-term awareness corresponds to Nδc = 50 deaths per day. Thin lines
denote full dynamics over 400 d; thick lines denote the dynamics near the case fatality peak. (C) Dynamics of effective behavior and death rates in an SEIR
model with awareness and fatigue. The three different curves denote different assumptions regarding long-term awareness; in each case, β= 0.5 days−1,
µ= 0.5 days−1, γ= 1/6 days−1, such that R0 = 3, with k = 2, γH = 1/21 days−1, fD = 0.01, and ε= 1/7 days−1. The short-term awareness corresponds to
Nδc = 50 deaths per day. The force of infection does not include long-term changes in behavior beyond mobility, that is, g(D) = 1. (D) As in C, but the force
of infection includes long-term changes in behavior, that is, g(D) = 1/(1 + (D/Dc)k).

could rise even as deaths were rising. We developed the follow-
ing model as a proof of concept in which fatigue is driven directly
by deaths (although alternatives could also be explored linked to
cases, hospitalizations, deaths, and/or a combination):

Ṡ =−g(D)βSI [21]

Ė = g(D)βSI −µE [22]

İ =µE − γI [23]

Ṙ=(1− fD)γI [24]

Ḣ = fDγI − γHH [25]

Ḋ = γHH [26]

β̇=
ε

2


(

β̂

1+(δ/δc)k
−β
)

1+ (D/Dc)k
+
(
β̂−β

). [27]

In this model with fatigue, the force of infection is related
to the mobility denoted by β(t) (which dictates the number of
interactions per unit time) modulated by a reduction in risk per
infection g(D). In this model, β̂ denotes the baseline behav-
ior, and ε denotes a time scale for behavior change. The level

of fatigue is controlled by Dc , such that mobility returns to a
baseline β̂ once D�Dc . We consider two models, correspond-
ing to g(D)= 1 such that the force of infection depends on
mobility alone, and g(D)= 1/

(
1+ (D/Dc)

k
)

corresponding to
sustained changes in the risk of infection per contact (e.g., due to
mask wearing, contact-less interactions, use of personal protec-
tive equipment, etc.). As shown in Fig. 7 C and D, the dynamics
switch from counterclockwise to clockwise in the δ−β plane
given the incorporation of fatigue. Deaths drive down mobility,
but, eventually, decreases in β due to short-term awareness are
overcome by fatigue, leading to increases in β. If g(D)= 1, then
the dynamics include increases in both mobility and fatalities
akin to levels expected in the absence of behavior, and, eventu-
ally, levels of infection that are stopped by herd immunity, rather
than by awareness (Fig. 7C). In contrast, if there is sustained
behavior change such that g(D) decreases with increasing cumu-
lative deaths, then there is a single peak that forms a clockwise
loop, with the peak close to, but after the minimum in behavior
(Fig. 7D), as observed in nearly all state-level data sets.

Conclusions
We have developed and analyzed a series of models that assume
awareness of disease-induced death can reduce transmission, and
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shown that such awareness-driven feedback can lead to highly
asymmetric epidemic curves. Resulting fatality time series can
exhibit extended periods of near-constant levels even as the
majority of the population remains susceptible. Hence, pass-
ing a “peak” need not imply the rapid decline of risk. In these
conditions, if individuals are unable to sustain social distancing
policies, or begin to tolerate higher death rates, then cases and
fatalities could increase [similar results have also been proposed
in a recent, independently derived feedback SIR model (15)].
Indeed, detailed analysis of mobility and fatalities suggests that
mobility increased before fatalities peaked, with the exceptions
of Washington and New York. This increase of mobility amid
rising fatalities is not consistent with simple models of awareness-
driven distancing, but is consistent with more detailed models
that include fatigue. Notably, we find that if mobility increases
but the risk of infection per interaction decreases due to systemic
changes in behavior then models suggest “clockwise” dynamics
between behavior and fatality, as found in nearly all state-level
datasets analyzed here. Awareness-driven endogenous changes
in Reff are typically absent in models that form the basis for
public policy and strategic planning. Our findings highlight the
potential impacts of short-term and long-term awareness in
efforts to shape information campaigns to reduce transmission
after early onset “peaks,” particularly when populations remain
predominantly immunologically naive.

In moving from concept to intervention, it will be critical
to address problems related to noise, biases, and the quan-
titative inference of mechanism from model–data fits. First,
epidemic outbreaks include stochasticity of multiple kinds. Fluc-
tuations could arise endogenously via process noise (especially
at low levels of disease) or exogenously via time-varying param-
eters, Moreover, given the evidence for clustered transmission
and superspreading events (18–21), extensions of the present
model framework should explicitly account for awareness-driven
behavior associated with risky gatherings (22, 23). Next, the
link between severity and behavior change depends on report-
ing of disease outcomes. Biases may arise due to underre-
porting of fatalities, particularly amid intense outbreaks (24).
Awareness may also vary with community age structure and
with other factors that influence the infection fatality rate and
hence the link between total cases and fatalities (25). Such
biases could lead to systematic changes in awareness-driven
responses. Finally, we recognize that estimating the influence
of awareness-driven behavior change is nontrivial, given funda-
mental problems of identifiability. Nonetheless, it is important
to consider the effects of behavior changes. Otherwise, reduc-
tions in cases (and fatalities) will necessarily be attributed to
exogenous factors [e.g., influential analyses of the impact of non-
pharmaceutical interventions on COVID-19 in Europe do not
account for changes in behavior (26)]. Disentangling the impact
of entangled interventions will require efforts to link model pre-
dictions with measurements of behavior, awareness, and disease
dynamics.

Although the models here are intentionally simple, it seems
likely that observed asymmetric dynamics of COVID-19, includ-
ing slow declines and plateau-like behavior, are an emergent

property of awareness-driven behavior. Moving forward, it is
essential to fill in significant gaps in understanding how aware-
ness of disease risk and severity shapes behavior (27). Mobility
data are an imperfect proxy for distancing and other preventative
behaviors, and thus for transmission risk. Thus far, measure-
ments of community mobility have been used as a leading indi-
cator for epidemic outcomes. Prior work has shown significant
impacts of changes in mobility and behavior on the COVID-19
pandemic (7). Here we have shown the importance of looking at
a complementary feedback mechanism, that is, from outbreak
to behavior. In doing so, we have also shown that decompos-
ing the force of infection in terms of the number of potential
transmissions and the probability of infection per contact can
lead to outcomes aligned with observed state-level dynamics.
Understanding the drivers behind emergent plateaus observed
at national and subnational levels could help decision makers
structure intervention efforts appropriately to effectively com-
municate awareness campaigns that may aid in collective efforts
to control the ongoing COVID-19 pandemic.

Methods
Epidemiological Data. Daily number of reported deaths as of June 7, 2020
was obtained from The COVID Tracking Project (https://covidtracking.com).

Mobility Data. Mobility data as of June 12, 2020 were obtained from
Google COVID-19 Community Mobility Reports (https://www.google.com/
covid19/mobility/). The dataset describes percent changes in mobility across
six categories (grocery and pharmacy; parks; residential; retail and recre-
ation; transit; and workplaces) compared to the median value from the
5-wk period January 3 to February 6, 2020. Raw mobility data are plotted in
SI Appendix, Fig. S4.

PCA. We use PCA on the mobility data to obtain a univariate index of mobil-
ity. We exclude park visits from the analysis, due to their anomalous, noisy
patterns (SI Appendix, Fig. S4). Before performing PCA, we first calculate the
7-d rolling average for each mobility measure in order to remove the effects
of weekly patterns. We combined mobility data from all 17 analyzed states,
and standardized each measure (to zero mean and unit variance). The first
principal component explains 93% of the total variance in this analysis, and
the loading of the residential metric had a different sign from the other
four mobility metrics. We thus used this component as our index of mobility
(setting the direction so that only the residential metric contributed nega-
tively to the index). To draw phase planes, we further smoothed our mobility
index and daily reported deaths using locally estimated scatterplot smooth-
ing (LOESS). Daily number of deaths is smoothed in log space, only including
days with one or more reported deaths. LOESS is performed by using the
loess function in R.

Data Availability. All simulation codes, figures, and data used in the devel-
opment of this manuscript are available at https://github.com/jsweitz/
covid19-git-plateaus. All study data are included in the article and SI
Appendix.
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