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Plant tropism refers to the directed movement of an organ or
organism in response to external stimuli. Typically, these stimuli
induce hormone transport that triggers cell growth or deforma-
tion. In turn, these local cellular changes create mechanical forces
on the plant tissue that are balanced by an overall deformation
of the organ, hence changing its orientation with respect to the
stimuli. This complex feedback mechanism takes place in a three-
dimensional growing plant with varying stimuli depending on
the environment. We model this multiscale process in filamen-
tary organs for an arbitrary stimulus by explicitly linking hormone
transport to local tissue deformation leading to the generation
of mechanical forces and the deformation of the organ in three
dimensions. We show, as examples, that the gravitropic, pho-
totropic, nutational, and thigmotropic dynamic responses can be
easily captured by this framework. Further, the integration of
evolving stimuli and/or multiple contradictory stimuli can lead to
complex behavior such as sun following, canopy escape, and plant
twining.

plant tropism | biomechanics | morphoelasticity | rod theory |
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P lant tropism is the general phenomenon of directed growth
and deformation in response to stimuli. It includes pho-

totropism, a reaction to light (1); gravitropism, the reaction to
gravity (2, 3); and thigmotropism, a response to contact (4),
among many others (Fig. 1). The study of tropisms in plants dates
back to the pioneering work of giants such as Darwin (5) and
Sachs (6) and has been a central topic for our understanding of
plant physiology ever since. Tropisms form a cornerstone subject
of modern plant biomechanics (7) and crop management strate-
gies (8), as well as systems biology and plant genomics (9). Being
sessile by nature, plants lack the option to migrate and must
adapt to their ever-changing environment. The growth response
of individual plants to environmental cues will determine the
yield of a crop in unusually windy conditions, will decide the
future of rainforests in a world driven by climate change, and
may be key for colonizing foreign environments such as Mars.

Mathematical modeling plays an invaluable role in gaining a
better understanding of tropisms and how plants may respond
to a change in their environment (10). Yet, a general mathe-
matical description of tropisms is a grand challenge. First, the
growth response tends to be dynamically varying: A sunflower
grows to face the sun, but as it grows the sun moves, so the envi-
ronmental influence—the intensity of light impacting on each
side of the sunflower—is changing during the process. Similarly,
a tree branch may align with the vertical in a gravitropic response,
decreasing the likelihood of breaking under self-weight; how-
ever, the growth response itself may increase the branch weight
and thus change the stimulus (11). Second, while there exist
numerous experimental setups that enable one to carefully iso-
late a particular stimulus, a plant typically receives multiple
stimuli at the same time and in different locations (12). The
resulting movement is an integration of multiple signals.

Third, any tropism is fundamentally a multiscale phenomenon.
Transduction of an environmental cue takes place from the
organ to the cell and involves, ultimately, molecular processes.
A hormonal response is induced, which leads to different cells

expanding at different rates in response to the chemical and
molecular signals. However, one cannot understand the change
in shape of the plant and its position in relation to the direction
of the environmental stimulus at this level. To assess the effec-
tiveness of the growth response, one needs to zoom out. The net
effect of a nonuniform cell expansion due to hormone signaling
is a tissue-level differential growth (1) as depicted in Fig. 2. At
the tissue level, each cross-section of the plant can be viewed
as a continuum of material that undergoes nonuniform growth
and/or remodeling (17). Differential growth locally creates cur-
vature and torsion, but it also generates residual stress (18). As
a result, the global shape of the plant and its material properties
evolve in time. To characterize this global change, and to update
the position of the plant in the external field, a further zoom-
ing out to the plant or organ level is appropriate. At the plant
level, the global shape, material properties, and positioning in
the external stimulus are well described by a physical filament:
Here, the plant is viewed as a space curve endowed with physical
properties dictated by the lower-level tissue scale, and its shape
and motion can be described by the theory of elastic rods, which
has been applied to multiple biological contexts, from DNA and
proteins to physiology and morphogenesis (19–22).

The challenge of formulating a mathematical model of tropism
is further complicated by the remarkable variation in plants and
the multiple types of tropism. Within a single plant, a tropic
response may refer to the growth and movement of the entire
plant or a subset: a single branch, vine, stem, or root. Here, we
use the word “plant” to refer to the entire class of plant structures
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Fig. 1. Classic experiments on tropic responses. (A) Gravitropism: A potted
plant realigns itself with gravity (13). (B) Thigmotropism: A twining vine
develops curvature when in contact with a pole (6). (C) Phototropism: A
plant reorients itself toward the light source [18th century experiments by
Bonnet (14), correctly interpreted by Duhamel du Monceau (15, 16)].

that may undergo such growth responses. Moreover, even
within a single plant, multiple environmental cues will combine
and overlap in effecting mechanotransductive signals, hormonal
response, differential growth, and ultimate change in shape
(23); e.g., a sunflower exhibiting phototropism still perceives a
gravitational signal.

At the theoretical level, a variety of approaches have recently
been proposed. Growth kinematics models successfully describe
the tropic response at the plant level (7, 24, 25), but do not include
mechanics and cellular activities. A number of large-deformation
elastic rod descriptions of tropic plant growth have also been
proposed (26–31); these involve a full mechanical description
at the plant level, with phenomenological laws for the dynamic
updating of intrinsic properties such as bending stiffness and
curvature and even branching and self-weight (32), but specific
cell- and tissue-level mechanisms are not included. Multiscale
formulations have also appeared, including functional–structural
plant models (8, 33, 34) and hybrid models with vertex-based
cell descriptions (35, 36). These computational approaches have
the potential to incorporate effects across scales but are limited
to small deformations compared to the ones observed in nature.

The goal of this paper is to provide a robust mathematical the-
ory that links scales and can easily be adapted to simulate and
analyze a large number of overlapping tropisms for a spectrum
of plant types. Our mathematical and computational frame-
work includes 1) large deformations with changes of curvature
and torsion in three-dimensional space; 2) internal and exter-
nal mechanical effects such as internal stresses, self-weight, and
contact; and 3) tissue-level transport of growth hormone driven
by environmental signals. By considering the integration of mul-
tiple conflicting signals, we also provide a view of a plant as a
problem-solving control system that is actively responding to its
environment.

1. Multiscale Modeling Framework
The key to our multiscale approach is to join three differ-
ent scales: stimulus-driven auxin transport at the cellular level,
tissue-level growth mechanics, and organ-level rod mechanics.

A. Geometric Description of the Plant. We start at the organ scale
and model the plant as a growing, inextensible, unshearable elas-

tic rod following the formalism of ref. 17, chap. 5 that extends
the classical Cosserat rod theory (37–40) to growing filaments. A
morphoelastic rod is a one-dimensional filamentary object that
can bend and twist with some penalty energy. The rod cannot be
elastically stretched, but it can increase in length by addition of
mass, leading to a growth stretch. Let r(S , t)∈R3 describe its
centerline, where S is the initial arc length measured from the
base of the plant toward its tip (Fig. 3A). Together with the fixed
Cartesian basis, {ei ; i = 1, 2, 3}, we define, at each point on the
curve r(S , t) a local orthonormal basis {di ; i = 1, 2, 3}, oriented
such that d3 aligns with the tangent ∂r/∂S in the direction of
increasing S , and (d1, d2) denote directions in each cross-section
from the centerline to two distinguished material points. From
the director basis, the Darboux vector is defined as u = u1d1 +
u2d2 + u3d3 and encodes the rod’s curvature, torsion, and twist
(17). For a given curvature vector, the shape of the rod, and the
evolution of the basis, is determined, for boundary conditions
{r(0), d1(0), d2(0), d3(0)}, by integrating the system of equations

∂r
∂S

= γd3,
∂di

∂S
= γu× di , i = 1, 2, 3. [1]

Here γ := ∂s/∂S denotes the total axial growth stretch of each
section mapping the initial arc length S to the current arc length
s (41). The general basis specializes to the Frenet–Serret frame
by taking γ= 1 and d1 to be the curve’s normal or to the so-called
Bishop frame (or parallel transport frame) by taking γ= 1 and
u3 = 0 (42, 43). At each value of S , the cross-section is defined
by a region (x1, x2)∈ΩS ⊂R2, where x1, x2 are local vari-
ables describing the location of material points in the respective
directions d1, d2.

In terms of the local geometry, any material point X =X1e1 +
X2e2 +X3e3 ∈R3 in the plant can be represented by its arc
length S and its position (x1, x2) on the cross-section at S as
follows:

X = r(S , t) + x1d1(S , t) + x2d2(S , t), for (x1, x2)∈ΩS . [2]

We can now use this representation to formulate the stimuli.

Fig. 2. Tropism is a multiscale dynamic process: The stimulus takes place
at the plant or organ level and its information is transduced down to the
cellular level, creating a tissue response through shape-inducing mechanical
forces that change the shape of the organ. In the process, the plant reorients
itself and, accordingly, the stimulus changes dynamically.
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Fig. 3. (A) Each cross-section Ωs of the rod is parameterized by its arc length
s (oriented acropetally) and equipped with a local material basis {d1, d2, d3}.
(B) Gravitropism: The gravity vector (1) is sensed in each cross-section and
causes lateral auxin flow (2). (C) Phototropism: The light vector is sensed at
the plant apex and results in the establishment of an apical auxin profile
(1) that is transported basipetally with attenuation (2). (D) The circumnu-
tation is generated by an internal oscillator with pulsation ω associated
with rotating auxin profile at the apex (1). The apical profile is transported
basipetally (2), generating curvature and torsion. (E) Thigmotropic pole
wrapping is triggered by a contact (1) eliciting an asymmetrical auxin pro-
file (2), which is in turn transported helically (3) to the rest of the plant with
signal attenuation (4).

B. The Stimuli. Tropic stimuli are characterized by their origin,
sign, and direction (44). Signal origin includes chemicals, water,
humidity, gravity, temperature, magnetic fields, light, and touch.
Tropisms can have a sign: positive if the plant grows toward or
in the direction of the stimulus or negative if it moves away from
the stimulus. The direction of tropism describes the orientation
of the response with respect to a directed stimulus: Exotropism
is the continuation of motion in the previously established direc-
tion, orthotropism is the motion in the same line of action as the
stimulus, and plagiotropism is the motion at an angle to a line of
stimulus.

Physically, stimuli are fields acting in space at a point X∈
R3 and changing over time t . They can be either scalar fields,
f = f (X, t), e.g., chemical, temperature, or light intensity; vec-
tor fields, F = F(X, t), e.g., geomagnetic field, gravity, or light

direction; and, possibly, tensor fields (e.g., mechanical stress—
not considered here). These stimuli are in general functions of
both space and time which makes plant tropism a physical the-
ory of fields (which is appropriate since plants grow in physical
fields). Since a stimulus is defined at points in space, we must
also take into account the orientation and the position of the
plant in space. For example, the cellular response to light in
phototropism is linked to the relative orientation of the plant in
relation to the light source. In the case of a vector stimulus F, we
must therefore decompose the stimulus in the local basis:

F =F1d1 +F2d2 +F3d3, Fi = F · di , i = 1, 2, 3. [3]

The quantities (F1,F2,F3) are the components of the stimulus as
felt by the plant. Next, we link an external stimulus to the cellular
response.

C. Cellular Response and Auxin Transport. At the cellular level,
deformations take place through anelastic expansions of the cell
walls in response to turgor-induced tension (45, 46). We refer to
any geometric change of cellular shape as growth. While detailed
models of these cellular processes are available (47–49), they
do not easily extend to the continuum level; hence, for simplic-
ity we adopt here a coarse-grained view in which the anelastic
expansions are connected locally via a single hormone concen-
tration field that plays the role of a morphogen. This is in line
with other models of morphogen-mediated growth (e.g., ref. 50).
Here, we consider the phytohormone auxin which is known to
play a central role in plant growth and remodeling. Indeed, lat-
erally asymmetrical auxin redistribution is broadly accepted as a
universal mechanism underlying tropisms (51, 52). A lateral gra-
dient is controlled via the relocalization of auxin transporters in
response to tropic signals (53). In shoots, higher levels of auxin
are generally associated with faster growth. The resulting asym-
metrical growth of cells elicits global curvature at the organism
level through pathways that are not completely understood (54).
Therefore, in our model auxin flux is a function of tropic signal
and growth is taken to depend only on auxin concentration.

We assume that auxin is transported by diffusion and advec-
tion and locally removed by various mechanisms such as con-
jugation or direct oxidation (55–57). These effects are modeled
through a standard reaction–advection–diffusion equation (58)
for the auxin concentration A(x1, x2,S , t):

∂A

∂t
+∇· J =−QA+C , J =−κ∇A+ Jstim, [4]

where J is the auxin flux, Q is a parameter that characterizes
the rate of auxin turnover, and C captures any sources or sinks.
The flux is a sum of a diffusive component Jdiff =−κ∇A and
a stimulus component Jstim, although a simple scaling analysis
with estimated auxin diffusion and velocity (SI Appendix, sec-
tion 4A) suggests that the process is advection dominated, and
so we restrict our attention to the zero diffusion limit κ→ 0.
Depending on the particular tropism, the information about the
stimuli is contained either in Jstim or in a boundary or source
term. The auxin transport, Eq. 4, is combined with a no-flux con-
dition J · n = 0 at the outer boundary of each cross-section, where
n is an outward normal vector to the boundary ∂ΩS .

D. Tissue-Level Growth and Remodeling. Once the auxin distribu-
tion is known from the solution of Eq. 4, we can relate the growth
field at the tissue level to the concentration A. Here, we use the
general theory of morphoelasticity (17) that assigns at each point
of the plant a growth tensor dictating the deformation due to
growth. Physically, this tensor field integrates the multiple con-
tributions of local pressure, cell material properties, and tissue
geometry, all regulated via the cell metabolic and genetic activ-
ity (47) into a single object describing the local change of shape
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of an elementary volume element (59). This growth tensor may
be different in different directions (anisotropic growth) and/or
spatially varying (heterogeneous growth) (60) to encode changes
in both length and girth. However, here we assume that growth
takes place, locally, only along the axial direction and not in the
cross-sectional direction. This assumption implies that there is
no change in thickness, an effect that could be of importance in
some systems. Then, the only nontrivial component of the growth
tensor is a single function g(x1, x2,S , t) that describes the change
of axial length of an infinitesimal volume element (SI Appendix,
section 2). An initially straight filament of length L0 with g con-
stant at all points would grow to a new straight filament of length
L=L0(1 + g(t)) (18). If, however, g = g(x1, x2,S , t) varies from
point to point, the same filament would tend to bend and twist as
shown in Fig. 2.

Next, we connect the axial growth function g = g(x1, x2,S , t)
to the concentration of auxin A=A(x1, x2,S , t) via a growth law
of the form

∂g

∂t
=β(A−A∗)− ξ(g − g), [5]

where A∗ is a baseline level of auxin, β characterizes the rate at
which an increase in auxin generates growth, and

g =
1

A

∫
ΩS

g dx1dx2

is the average of the growth field, with A the area of the cross-
section. The term ξ(g − g) provides a pointwise measure of the
strain induced by differential growth and models autotropism,
the observed tendency to grow straight when subject to other
tropisms. The underlying mechanisms of autotropism are poorly
understood, but studies using radiolabeled auxin suggest that this
straightening response does not depend on auxin but rather is
sensed via an actomyosin-dependent mechanism (61, 62).

E. Change in Local Shape and Properties. The axial growth func-
tion g is defined at the tissue scale and, as such, does not directly
give the change in curvature and torsion of the plant. Indeed, the
change of shape depends not only on g but also on the internal
mechanical balance of the forces generated by each growing vol-
ume element. Following the general theory given in ref. 18 and
its adaptation to the particular case of plants given by the growth
law Eq. 5, we compute the intrinsic curvatures and elongation
of the growing plant (SI Appendix, section 3). In the absence
of autotropism (ξ= 0), these curvatures (given by the vector û),
which define the shape of the plant in the absence of body force
and external loads, evolve via

I ∂û1

∂t
=β

∫
ΩS

x2Adx1dx2, [6]

I ∂û2

∂t
=−β

∫
ΩS

x1Adx1dx2, [7]

∂û3

∂t
= 0, [8]

A∂γ
∂t

=β

∫
ΩS

(A−A∗) dx1dx2. [9]

Here and for the rest of this paper, we have assumed that the
cross-section is circular with radius R, areaA=πR2, and second
moment of area I =πR4/4.

F. Rod Mechanics Set the Plant Position in the Stimulus Field. Once
the intrinsic curvatures and elongation of the plant following
growth have been updated, the plant position and orientation are
updated by solving the Kirchhoff equations (41, 63) for the bal-
ance of linear and angular momentum for given external forces
such as self-weight, wind, or contact forces (see SI Appendix,
section 1 for details on the Kirchhoff equations).

Since at this scale the plant is treated as a one-dimensional
structure, its equilibrium shape is easily computed even in com-
plex nonplanar geometries. Once the deformation is determined,
the multiscale cycle is completed by updating the map between
external stimulus and cell-scale response with respect to the
updated orientation, and the process is repeated.

G. Summary. The flow of information between different spatial
scales for a given stimulus field proceeds as follows: 1) Given
an initial plant shape, a stimulus F impacts auxin transport and
thus local concentrations of auxin via the transport equation (Eq.
4); 2) the local auxin concentration A changes the local growth
field that impacts the intrinsic curvatures and axial extension of
the plant via Eqs. 6–9; and 3) the new intrinsic curvatures and
external conditions determine the new mechanical equilibrium
of the plant, thus changing the plant position and shape in the
stimulus field.

The theoretical objective in this work is to bridge the divide
between cell-based descriptions of auxin transport and plant-level
descriptions of tropism kinematics. In the examples below, we
demonstrate how the tissue-level transport and growth equations
may be mathematically combined to yield explicit evolution rules
for the curvature and axial growth at the rod level. In this way,
the multiscale flow can be efficiently simulated and analyzed for a
variety of tropic responses. It is also worth noting that a significant
amount of biology exists between the cell-scale and the tissue-
level models we propose, therefore we largely opt for qualita-
tive investigation of complex behavior, with further experimental
and theoretical work needed to refine parameter selection.

2. Examples
A. Gravitropism. Gravitropism has been extensively studied both
experimentally and theoretically. The classic description is based
on the so-called “sine rule” in which the change in curvature fol-
lows the sine of the angle with the direction of gravity (64). While
it is successful in capturing observed behavior in gravitropic
experiments, it is mostly phenomenological and is applicable only
to planar geometry. Here, we show that the sine rule emerges
naturally from our formulation but that it can be generalized to
include three-dimensional deformations that are generated when
the entire plant is forced to change its orientation in time.

The stimulus for gravitropism is the vector field F =−Ge3

which can be written in the plant frame of reference as F = f +
f3d3, where f := f1d1 + f2d2 is the gravity force acting in the plane
of the cross-section. Since it is believed that plants are insensi-
tive to the strength of gravitational field (65), it is sufficient to
use a unit vector representing only the direction of gravity; i.e.,
we scale the gravitational acceleration G to 1. If f≡ 0, no tropic
response will occur. Gravity perception relies on specific cells
called statocytes distributed along the shoot (66). Statocytes con-
tain dense organelles, statoliths, that sediment under the effect
of gravity. Tilting of the plant causes statoliths to avalanche and
to form a free surface perpendicular to the gravity vector, pro-
viding orientational information to the cell (67). It has been
observed that the gravitropic response depends upon the angle
between the statoliths free surface and the vertical, but not upon
the intensity of the gravitational field or the pressure of sta-
toliths against the cell membrane (65). A possible mechanism
is that the contact between the statoliths and the cell membrane
may trigger relocalization of PIN membrane transporters and a
redirection of auxin flux (67). Here, we follow this hypothesis
and, accordingly, assume that gravity drives an advective flow
of auxin Jstim = kAf. If the statocytes are uniformly distributed
within the stem volume, then k is constant. We assume also a
source and sink of auxin on each cross-section, representing a
continual axial auxin flow, and that auxin transport occurs on
timescales much shorter than the one associated with growth.
Combining the transport equation (Eq. 4), the growth law
(Eq. 5) (in the absence of autotropism for simplicity), and the
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evolution laws given by Eqs. 6–9, we obtain (SI Appendix, section
4B) the gravitropic curvature and axial extension models:

∂û1

∂t
= Cgravf2,

∂û2

∂t
=−Cgravf1, [10]

∂γ

∂t
=β

(
∆C

QA −A∗
)
. [11]

Here, Cgrav =βk∆C/(IQ2) is a single constant characterizing
the rate of change of curvature due to gravity and associated
with a timescale of gravitropic reaction tgrav = 1/ (LCgrav), where
L is a characteristic axial length, say the length of the plant; Q
characterizes the constant rate of auxin turnover (Eq. 4); and
the parameter ∆C is the net auxin available in the cross-section
(SI Appendix, section 4B). Note that the right-hand side of Eq.
11 is proportional to the net “excess auxin,” given by the inte-
gral of (A−A∗) over the section, while the quantity A∗ does not
appear in Eq. 10. The existence of such an auxin threshold is
observed both in local biosynthesis and developmental processes
(68, 69) and has been adopted in models (e.g., ref. 70). In our
model, curvature may develop without axial extension: For axial
extension the net auxin must exceed a threshold, while curvature
development conceptually derives from a redistribution and thus
asymmetry of auxin.

In the particular two-dimensional case where the plant can
only bend around the single axis d2 and all external forces can
be neglected, we have f2≡ 0, û1≡ 0, and the curvature u= û2.
Defining α to be the inclination angle, Eq. 10 reads

∂u

∂t
=−Cgrav sinα, [12]

which is the classic and widely used sine law of gravitropism (24).
The general evolution equations (Eqs. 10 and 11) can be used

for more complex gravitropic scenarios. Consider, for instance,
an experiment in which the base of the plant stem is at a fixed
angle θ from the horizontal and the base is rotated, as shown
in Fig. 4A and used in experiments to study gravitational set-
point angles (71). Then, in the frame of reference of the plant,
the direction of gravity is constantly changing. Here, we con-
sider the case of zero-axial growth and neglect self-weight (see
C. Photogravitropic Response for these additional effects). The
tropic response will generate curvature and torsion, depending
on the angle and the rotational velocity of the base as shown
in Fig. 4.

For visualization purposes, we fix the base rotation rate to
one turn per unit time and vary the tropic reaction rate of the
plant, which is equivalent to a fixed reaction rate and vary-
ing base rotation rate via a rescaling of time. In Fig. 4, we
simulate three full rotations of the base with varying reaction
rates (SI Appendix, Movies S1–S4). The evolving morphology is
characterized by three metrics: an alignment metric in Fig. 4B
that measures how closely aligned with the vertical the plant is
(a value of one is attained if the entire plant is vertical) and
curvature and torsion in Fig. 4C that broadly measure deviation
from a straight configuration (details in SI Appendix, section 5).

Consider first the slowest reaction morphology (equivalent to
the case of fastest base rotation), given by the black curves in
Fig. 4 B and C. Since the plant’s response time is much slower
than the base rotation, the gravitropic response is averaged out
and the plant hardly deviates from the straight configuration,
never improving its alignment and generating effectively no cur-
vature or torsion. The plant is almost perfectly straight at all
times (snapshots not included). The red curves denote a case
with increased but still small reaction rate (fast base), which gen-
erates only small oscillations in alignment and curvature. In this
regime, the plant is effectively “confused”; the local gravitational
field is changing too quickly for the plant to make any progress
toward alignment with the gravitational field (Fig. 4D).

A

B

C

D

E

F

Fig. 4. Gravitropism with a rotating base. (A) A base is tilted with respect
to the vertical and then rotated about the axis with speed so that one
revolution is completed every time unit. Gravitropic response is simulated
for varying values of gravitropic sensitivity Cgrav = 0.1 (black), 1 (red), 10
(green), and 50 (blue). (B and C) Alignment with the vertical (B) and curva-
ture and torsion (C) are plotted against time for three base rotations. (D–F)
Snapshots for cases of (D) slow reaction, Cgrav = 1; (E) intermediate reaction,
Cgrav = 10; and (F) fast reaction, Cgrav = 50. The sequence is read left to right,
top to bottom, and the base rotation is counterclockwise. Further simulation
details and parameters are provided in SI Appendix, section 8.

As the reaction rate is increased (or the base rotation
decreased), interesting morphologies emerge. In the case of the
intermediate reaction rate Cgrav = 10 (green curves in Fig. 4 B
and C), the plant begins to curve toward the vertical during
the first quarter rotation of the base, bending about the d2 axis
and increasing its alignment. However, as the base continues to
rotate, the curvature initially developed has the tip pointing away
from the vertical, so the alignment decreases, and the plant now
must bend about the orthogonal d1 axis. As the base completes
its first rotation and the “desired” axis for bending returns to
the original d2, an inversion occurs (Fig. 4E, and more visible in
Movie S3), creating a large spike in torsion that remains bounded
and continuous. This basic process repeats with each rotation.

Finally, increasing the reaction rate (or slowing the base) fur-
ther creates highly complex morphologies as evidenced by the
blue curves in Fig. 4 B and C. Here the plant quickly aligns with
gravity and attains near perfect alignment in the first 10th of the
first rotation. As the base rotates away from this aligned state,
we see an interesting phenomenon: The tip of the plant is able to
react and maintain alignment with the vertical, but since the base
of the plant is clamped at an ever-changing angle, a loop forms,
starting at the base and working its way to the tip (Fig. 4F). This
is accompanied by strong variations in the total alignment and
increasingly high curvature, with repeated spikes in torsion as
extra twist is removed. Our simulations of this case beyond three
rotations suggest that while the basic process of loops generated
at the base and working to the tip continues, the morphology
does not settle down into a fixed oscillatory pattern, highlight-
ing the potential for complex dynamics generated by this highly
nonlinear system.

Phototropism. It was Darwin, at the end of the 19th century,
who demonstrated that exposure of the plant apex to a light
source was necessary to induce tropic bending (5, 72). Later on,
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Boysen-Jensen proposed that bending is induced by a diffu-
sive substance, later identified as auxin, that carries the tropic
information from the apex to the rest of the shoot (73, 74).
These early observations are the basis of the popular Cholodny–
Went model (75, 76) stating that phototropism relies upon three
broad mechanisms: 1) sensing of light direction at the tip of
the shoot; 2) establishment of a lateral asymmetry of auxin
concentration at the tip; and 3) basipetal transport of this asym-
metrical distribution, resulting in differential growth along the
shoot (77–79).

We model these three steps by considering axial transport of
auxin, with an asymmetrical distribution that is established at the
shoot apex by the stimulus, treated as a point source of light.
We suppose that auxin flows basipetally with advective velocity
U and turnover Q , for which the transport equation is

∂A

∂t
− ∂

∂s
(UA)=−QA. [13]

Here the derivative in space is taken with respect to the current
arc length s ∈ [0, `]. Additional source/sink terms can be used to
model axial extension without changing the evolution of the cur-
vature (SI Appendix, section 4C). We account for the amount and
distribution of auxin at each section via a boundary condition
at the tip (s = `) and define Atip(x1, x2, t) =A(x1, x2, `, t) that
depends on the light source located at p(t) in space and a scalar
I (t) representing its intensity. We then define the unit vector e
from the plant tip to the light source and write it in the plant
reference frame e(t) = e1(t)d1(`) + e2(t)d2(`) + e3(t)d3(`), as
shown in Fig. 3C. The vector e1d1 + e2d2 in the cross-section dis-
tinguishes the light side of the tip from the dark side and defines
the asymmetrical distribution of auxin:

Atip(x1, x2, t) =−κI (t) (e1(t)x1 + e2(t)x2), [14]

where κ characterizes the sensitivity of the phototropic response.
For constant velocity U , and in the absence of autotropic

effects, Eqs. 13 and 14 can be solved exactly (SI Appendix, section
4C), leading to the phototropic curvature model:

∂û1

∂t
=−Cphoto exp

(
−Q(`− s)

U

)
e2

(
t − `− s

U

)
[15]

∂û2

∂t
= Cphoto exp

(
−Q(`− s)

U

)
e1

(
t − `− s

U

)
, [16]

where Cphoto :=βκI is a single parameter from which the pho-
totropic response time is defined as tphoto := 1/(LCphoto). The
exponential decay in Eq. 15 is due to the turnover of auxin so that
less is available at the base, while the time shift ttran :=L/U of
Atip accounts for the transport time to the section at arc length s ,
leading to time-delay differential equations. The change of curva-
ture thus depends on three quantities: 1) the orientation of the tip
with respect to the light source t = (`− s)/U ago; 2) the amount
of auxin available for the phototropic signal, which depends on
the turnover Q ; and 3) the plant’s response sensitivity, charac-
terized by Cphoto. Bending occurs over a characteristic dimension-
less bending length `bend :=U /(Q`) within the tip of the plant.
B.1. Fixed light source—no growth. We consider first a fixed light
source and restrict our attention to the case of zero axial growth
so that `=L for all time and the transport equation is solved
in the reference variables. For a given transport time ttran, the
response of the plant is determined by the characteristic dimen-
sionless bending length `bend and the response time as shown in
Fig. 5.

With small bending length, the response is localized close to
the tip, and the plant is much slower to orient (comparing Fig. 5
A and B). Increasing the response rate naturally produces a faster
orientation and potentially an overshoot. If axial auxin transport
is much faster than the growth response (ttran� tphoto), then the

auxin is effectively in steady state at each growth step (as we have
assumed for the cross-sectional transport). This implies that the
delay can be neglected and the curvature response at each point
depends on the current orientation of the tip. In this case, since
the response is characterized entirely by the orientation of a sin-
gle point, the motion is very simple: The plant bends to orient
with the light, with no oscillations about the state in which the tip
is perfectly oriented with the light (e2 = 0).

Contrast this behavior with gravitropism, in which an oscilla-
tion about the vertical state is typical unless a strong autotropism
response is added. The difference between the gravitropic model
and the phototropic model for fast transport is that during grav-
itropism, each cross-section tries to align itself with gravity, thus
creating a conflict at the global level that results in an oscilla-
tory motion; while during phototropism each cross-section tries
to align the tip with the light, so there is no conflict. However,
with delay, such a conflict does exist, due to the fact that each
cross-section is accessing a previous state of the tip. Thus, in the
regime ttran∼ tphoto, and if the bending length is not too short, a
damped oscillation about the preferred orientation is observed,
as shown in Fig. 5C.

B.2. Moving light source. Next, we consider a moving source, and
in particular we simulate a day–night cycle of a plant follow-
ing a light source (the Sun) as shown in Fig. 6A. The intensity
I (t) is also taken to be sinusoidal, so that the phototropic sig-
nal is strongest at noon and the signal vanishes at sunset. For
fast response and long bending length, the plant bends signifi-
cantly and successfully tracks the moving light source (Fig. 6B).
However, at night and without a signal, the motion halts (Movie
S5). The plant remains bent toward sunset the entire night and
does not display the nocturnal reorientation observed in many
plants (80, 81). With a nonvanishing autotropic term ξ in Eq. 5,
we obtain an autophototropism curvature model of the form

∂û1

∂t
=−Cphoto exp

(
−Q(`− s)

U

)
e2

(
t − `− s

U

)
− ξû1, [17]

∂û2

∂t
= Cphoto exp

(
−Q(`− s)

U

)
e1

(
t − `− s

U

)
− ξû2. [18]
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Fig. 5. (A–D) Planar phototropic shape evolution for a fixed light source
and with no axial growth, for small and large values of the ratio of response
rate to transport rate ttran/tphoto and dimensionless bending length `bend =

U/(QL). (A–D, Insets) Alignment is characterized by e2(t), such that e2 = 0
when the tip is pointed at the source for this planar case. Further simulation
details and parameters are provided in SI Appendix, section 8.
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Fig. 6. (A) Geometry of the phototropic response stimulated by a light
source that follows a circular path of radius R, shifted a distance Y in
the transverse “horizon.” (B) A full day–night cycle with fast response and
long bending length. (C) The addition of autotropic terms enables the
plant to return to the vertical during night, when the phototropic signal is
absent. Further simulation details and parameters provided in SI Appendix,
section 8.

The additional terms serve to straighten the plant in the absence
of any other signal. This is evident in Fig. 6C, in which we see
that the motion during the day is very similar, while at night the
stem straightens back to the vertical (Movie S6). We note that
in heliotropic plants such as the common sunflower, Helianthus
annuus, there are additional mechanisms, not considered here,
based on circadian rhythms to reorient the plant at night to face
eastward in anticipation of the next sunrise (82).

C. Photogravitropic Response. Next, we demonstrate the delicate
balance that must exist in the presence of tropic responses to
multiple stimuli. We simulate two different scenarios of a plant
responding to simultaneous but conflicting gravitropic and pho-
totropic signals. Following ref. 12, we assume that the effects
of multiple stimuli are additive (SI Appendix, section 4F). This
assumption is based on the existence of separate pathways for
signal transduction leading to the redistribution of auxin. How-
ever, it is known that these pathways share common molecular
processes and there are nontrivial interactions between different
tropisms (83) that are not included here.
C.1. Fixed horizontal light source. We consider a growing plant
subject to self-weight and initially oriented vertically, but with
a fixed light source located in the transverse horizontal direc-
tion. The evolution of the plant can then be characterized by the
ratio of response rates to gravitropic versus phototropic signals
and the ratio of density to bending stiffness, which controls the
degree of deformation under self-weight.

In Fig. 7 A–D we show the evolving morphology of the
plant in this two-dimensional parameter space, plotting both the
deformed shape (solid lines) and the reference unstressed shape
(dashed lines). In Fig. 7 A and B, the effect of self-weight is
relatively minimal, and the evolution is primarily driven by the
conflicting phototropic signal acting horizontally to the right and
the vertical gravitropic signal. With increased mass, there is an
increased mechanical deformation due to self-weight, so that
significant disparity develops between the deformed and refer-
ence shapes. In this regime the balance of signals has greater
importance for the fate of the plant. Comparing Fig. 7 B and
D, the initial phases are similar, but as the plant lengthens and
extends to the right in Fig. 7D, self-weight deforms the plant

significantly, with half of the plant below the base level by the
end of the simulation. Such a deformation could signal failure
by creating large torque at the base. In Fig. 7E we plot the
moment at the base, where the stress is highest, against time for
each case, and as expected the moment is significantly higher for
larger mass.

Intuitively, we expect that this problem could be alleviated by
increasing the gravitropic response rate. Comparing Fig. 7 C and
D, the evolution with higher gravitropic response in Fig. 7C does
show decreased sagging. However, the moment at the base is in
fact higher in Fig. 7C. Increasing the gravitropic response rate
even further does ultimately alleviate the problem—consider
that the plant remains mostly vertical if gravitropism dominates
phototropism—nevertheless, this example highlights the delicate
and potentially counterintuitive nature of this balance.
C.2. Escaping from the shade. The results above suggest a view of
a plant as a problem-solving agent that actively responds to the
signals in its environment. A typical problem that many plants
have to solve is access to light (84). For instance, consider a
plant growing underneath a canopy (85) as shown in Fig. 7 F
and G. While the tip is in the shaded region, diffuse lighting cre-
ates a phototropic stimulus to grow horizontally, orthogonal to
the gravitational signal. If the tip emerges from under the shade,
phototropism and gravitropism align, and the plant will attempt
to grow vertically. In this mixed-signal scenario, the success or
failure of the plant in emerging from under the canopy is down to
how the competing signals are integrated and the relative impor-
tance of self-weight. An example of a successful escape is shown
in Fig. 7G. Note that determining the mechanical forces acting
in the plant is crucial in this example: Once the tip is outside of
the shade, both signals try to align the entire length of the plant
with the vertical, and this leads to physical contact between the
plant and the corner of the canopy. Determining the morphology
beyond this point thus requires determining the mechanical con-
tact force (SI Appendix, section 6), which would not be possible
in a purely kinematic description.

D. Pole Dancing. A fascinating plant motion is the mesmerizing
dance that climbing plants, such as twiners, perform to first find a
pole and then wrap around it. Like any dance, this event requires
a complex integration of stimuli to achieve a well-orchestrated
sequence of steps: 1) finding a pole, 2) contacting the pole, and
3) proceeding to wrap around the pole. A common mechanism
for searching for a climbing frame is circumnutation, a combi-
nation of circular movement and axial growth causing the tip to
move up in a sweeping spiral path, as first described by Darwin
(5, 26, 86). When the plant makes contact with a pole, it must
then interpret its orientation with respect to the pole in order to
wrap around it. Here the stimulus is mechanical: The physical
contact of the plant with the pole results in a change of curva-
ture, a response referred to as thigmotropism. Since initially the
plant samples only a very small region of the pole, the stimu-
lus field is highly localized. As the plant wraps around the pole,
new contact points are established to propagate the helical shape
upward.
D.1. Circumnutation. Experiments suggest that, depending on
the plant, circumnutation is driven by an internal oscillator, a
time-delay response to gravity, or a combination of the two (87,
88). Here, following the hypothesis of an internal oscillator, we
show that the basic nutating motion emerges naturally from an
internal oscillator at a single point combined with axial auxin
transport (89). We consider an auxin source at the point s = sc
from which an auxin differential is transported axially. The auxin
transport equation may be solved in a similar manner to that in
the phototropism case with an added rotational component in
the local frame of the cross-section due to an internal oscilla-
tor (Fig 3D). Taking for simplicity a constant rotation rate ω, we
obtain (details in SI Appendix, section 4D) the circumnutation
curvature model:
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Fig. 7. Gravitropism versus phototropism. In A–E, a fixed light source is located to the right, at the point (4,1), while gravity points vertically downward.
For each parameter set, the tropic response is simulated for the same total time and with equivalent axial growth. The evolving plant shape, deformed
under self-weight, is shown in increasing time from yellow to blue, with the unstressed shape appearing as a dashed line. The moment at the base for the
four cases is plotted against time in E. F depicts the setup for a plant escaping from the shade under a rigid obstacle. The phototropic signal points either
horizontally, if the tip is under the shade, or vertically, if the tip is out of the shaded region. (G) A sample simulation showing a successful escape. Further
simulation details and parameters are provided in SI Appendix, section 8.

∂û1

∂t
= Ccirc sin

(
ω

(
t − |s − sc |

U

))
e−

Q
U
|s−sc |, [19]

∂û2

∂t
=−Ccirc cos

(
ω

(
t − |s − sc |

U

))
e−

Q
U
|s−sc |. [20]

Since the signal here is internal, there is no feedback from the
environment and the morphology of the plant is predetermined
by the turnover Q , the transport velocity U , the response rate
Ccirc, and the rotation rate ω. In Fig. 8A we illustrate a sample
motion with auxin source at the tip. Fig. 8B demonstrates the
impact of auxin turnover: High turnover means the motion is
constrained to a region very close to the tip and thus the ellip-
tical shape of the tip pattern is small. More complex tip patterns

may also be generated if there is nonuniformity in the internal
oscillator (Fig. 8C).
D.2. Thigmotropism. Two interesting observations can be made
when a twining plant makes first contact with a pole: 1) Torsion
is generated via a localized contact around a single point, and 2)
a rotation is induced; i.e., the orientation of the tangent of the
plant with respect to the axis of the pole changes. These obser-
vations suggest that this contact is sufficient to generate locally
a helical shape and that the pitch of the helix is fixed by inter-
nal parameters as opposed to the angle at which contact is made
(90, 91).

To show how pole wrapping can be obtained within our frame-
work consistently with these observations, we consider a plant
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with a single contact point located at s = 0 and at position on
the boundary Ω0 with angle ψ0 in the plane d1-d2. The con-
tact induces an auxin gradient at this point, with maximal auxin
on the opposite side of the contact point, i.e., A(0, x1, x2) =
−F (cosψ0 x1 + sinψ0 x2), and the auxin is transported by an
advective flux with both an axial component U and a con-
stant rotational component with angular velocity ω (Fig. 3E).
The transport equation can be solved exactly (SI Appendix, sec-
tion 4E), and we obtain the following thigmotropism curvature
model:

∂û1

∂t
=−Cthig exp

(
−Qs

U

)
sin
(
ψ0 +

ωs

U

)
, [21]

∂û2

∂t
= Cthig exp

(
−Qs

U

)
cos
(
ψ0 +

ωs

U

)
. [22]

Solving these equations leads to exact expressions for the intrin-
sic curvatures from which we extract the geometric curvature
κ= Cthig exp (−Qs/U )t and torsion τ =ω/U (SI Appendix, sec-
tion 8F). The curvature increases linearly in time until it reaches
a maximal value determined by the pole radius (the intrinsic
curvature may keep increasing, but the actual curvature may
not due to the mechanical contact). For a pole of radius c and
plant radius a the helix radius α= c + a is fixed, while the heli-

cal angle φ depends on the rotation rate and is found to satisfy
sin(2φ) =ωα/U .

For given axial velocity U , the resulting helical shape is deter-
mined solely by the geometry of the pole and the rotational
component ω, while the wrapping rate depends on the turnover
Q and the response rate Cthig. In Fig. 8 D–F we illustrate three
different regimes: low rotational component with low turnover
(D), high rotational component with low turnover (E), and high
rotational component with high turnover (F) (Movies S7–S9).
Note that at time κ̂/Cthig where κ̂ is the final curvature, the
contact point spreads to a contact region, creating a wave of
contact and auxin signal that propagates along the length of the
plant. Here, we restrict our attention to the signal from the first
contact point. The separate curvature models for circumnuta-
tion and pole wrapping can now be combined to simulate the
process of searching for a pole, making contact, and wrapping
(Movie S10).

3. Model Validation
The tropic scenarios we have considered thus far were not focused
on specific plants or experiments, but rather with the aim of
demonstrating a diverse range of complex behavior. To validate
the framework as a general construct, in Fig. 9 we compare model
output with data in three distinct experimental scenarios that

Increasing 

A B C

D E F

A

Increasing 

Fig. 8. (A–F) Circumnutation (A–C) and thigmotropism (D–F). (A) Snapshots of a sample circumnutation motion, with tip pattern projected onto the plane.
In B and C, tip patterns are plotted for varying parameters (the location of the plant base is indicated by the cross). In B, an increase in turnover Q decreases
the size of the tip pattern. In C, a nonconstant angular velocity of the oscillator is given by ω= ω̂+α cos(5t), generating a tip pattern with fivefold symmetry,
and increasingly noncircular with increasing α. In D–F, the wrapping around a pole due to thigmotropism at a single contact point is simulated for the same
total time, for different parameter regimes: With a low rotational component (D) the torsion is low, a high rotational component with low turnover (E)
generates rapid wrapping and high torsion, while wrapping is much slower with high turnover (F). Further simulation details and parameters are provided
in SI Appendix, section 8.
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together include all of the tropisms we have modeled: Fig. 9A
includes data on thigmotropic curvature generation (92) and grav-
itropic bending, Fig. 9B shows a diversity of tip patterns mea-
sured during circumnutation (93), and Fig. 9C plots the evolving
shape of saplings bending to align with gravity and exposed to
isotropic (Fig. 9 C, Left) or anisotropic (Fig. 9 C, Right) light (94)
(see SI Appendix, section 9 for details of these experiments and
model comparison). In each case, the model is able to repro-
duce, qualitatively and quantitatively, the experimental observa-

tions, demonstrating a robustness of the framework across a range
of plant types and combined tropic responses.

A second type of validation is obtained by considering the sim-
plification of our models to existing purely kinematic models.
A number of geometric models exist in the literature, positing
the evolution of the plant’s curvature as a function of time, and
have been systematically validated against data and observations.
The sine law (Eq. 12) is an example of such a kinematic model.
Similarly, planar kinematic phototropic (12) and circumnutation
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Fig. 9. A comparison of model output with experimental observations for a variety of tropic responses. (A) Mechanical perturbation is applied to cucumber
hypocotyls situated vertically, causing them to bend (blue data and curves), after which they recover the vertical; a horizontally situated plant bends toward
the vertical under gravitropism (red data and curves). (B) Multiple tip patterns are observed in sunflowers; these circumnutation patterns are reproduced
by the model with (solid curves) and without (dashed curves) gravitropic effects. (C) Tree saplings are inclined at an angle and subjected to either isotropic
(Left) or anisotropic (Right) light. The shape of the plants is extracted at five times and discretized along the length (symbols). Continuous two-dimensional
shapes (solid curves) obtained by our model combining gravitropic, phototropic, and autotropic effects are included at the same time points.
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models (95) have been proposed and we show explicitly in SI
Appendix, section 7 that they can be reproduced from the models
we have derived under particular geometric restrictions and/or
parameter limits. Our framework both generalizes these descrip-
tions and enables potential insight into how changes at the level
of auxin transport and tissue growth might be seen in organ-level
kinematics.

4. Conclusion
Plant motion in response to environmental stimuli is a process
of extreme biological and ecological relevance. While the pio-
neering biologists of the 19th century investigated the global
motion of plants via clever experiments devised to create con-
flicting signals and generate complex plant morphologies, most
of the work of the 20th century was focused on the molecular
and cellular processes, seeking signaling pathways and relevant
proteins involved in tropic response. We have combined this
accumulated knowledge with recent progress in the physical and
computational modeling of living structures to develop a gen-
eral framework for tropism that relates stimuli to shape. To do
so, we modeled auxin transport and the mechanisms by which
environmental stimuli are integrated into cellular activities,
tissue-level growth, leading ultimately to a change in shape at
the plant scale viewed as a morphoelastic structure.

We have demonstrated the power of this framework through
a series of examples including key effects such as axial growth,
autotropism, gravitropism, phototropism, thigmotropism, self-
weight, circumnutation, contact mechanics, and three-dimen-
sional deformations. The specific tropic scenarios we have
considered were chosen to illustrate the range of complex behav-
iors capable of being simulated. The study of individual stimuli
provided new models for the evolution of curvatures for different
forms of tropisms. These models can be confronted and refined,
iteratively, against data and experiments as needed. Further, we
demonstrated the potential for multiple and potentially conflict-
ing stimuli to create problems for the plant to solve. The resulting
plant behaviors indicate a need for a delicate balance between
competing tropisms to achieve a particular task. In each partic-
ular scenario, we have opted for parsimony over complexity in
terms of modeling choices, to highlight qualitative features and
how auxin-level differences may become apparent in plant-level
morphology.

The work presented here integrated information at the tissue
and organ levels. This approach needs to be expanded to include

cell-based and molecular-level descriptions to fully link the scales
for tropisms and plant growth. At the cell to tissue scale, the link
between auxin and growth in Eq. 5 is a lumped description of a
complex process that involves cell wall tension and turgor pres-
sure (96). In principle, additional modeling layers could also be
added between the stimulus and auxin response, including for
example transcription factors and protein production and inter-
actions. Both of these extensions likely require explicit cell-based
modeling. However, our framework is such that if the output
from a cell model is the value of the piecewise continuous axial
growth function g , then the evolution of the curvatures given by
Eqs. 6–8 still applies and can be used to infer the global changes
of geometry. Another important extension is to include branch-
ing processes since most of these filamentary structures include
multiple branches. Branches can easily be included within a rod
theory, at the additional cost of including extra parameters, such
as length and orientation of each segment, and new growth laws
for the placement of each segment (28, 32).

This work provides a theoretical platform for understanding
plant tropisms and generating complex morphologies. As well as
linking to cellular and subcellular scales, a key future direction
is connecting with experiments dedicated to controlling multiple
stimuli and generating complex morphologies. For instance, we
showed that a relatively simple experimental setup like a rotat-
ing base under gravity can generate a wide range of plant shapes.
Such steps espouse an approach that is both multiscale and mul-
tidisciplinary. Indeed, plants refuse to obey the rules of a single
scientific discipline. They are not simply genetic or cellular enti-
ties, nor are they purely physical objects or ecological atoms.
They reach for the sun; they bend under gravity; they feel their
neighbors; they grow, twist, curve, and dance in the fresh air and
in the dark caves. If we have any hope to understand them, we
will need to respect their plurality, break down our own disci-
plinary barriers, and fully integrate our scientific knowledge from
subcellular to ecological levels.

Data Availability. Mathematica notebook files data have been deposited
in the Oxford University Research Archive (https://doi.org/10.5287/bodleian:
EoydP5kOP).
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14. C. Bonnet, Mémoires d’Histoire Naturelle. Recherches sur l’Usage des Feuilles

(l’Imprimerie de Samuel Fauche, Libraire du Roi, 1779).

15. D. du Monceau, H. Louis, La Physique des Arbres, Où IL Est Traité de l’Anatomie des
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