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Abstract

Calculations of ligand binding free energies and kinetic rates are important for drug design. 

However, such tasks have proven challenging in computational chemistry and biophysics. To 

address this challenge, we have developed a new computational method “LiGaMD”, which 

selectively boosts the ligand non-bonded interaction potential energy based on the Gaussian 

accelerated molecular dynamics (GaMD) enhanced sampling technique. Another boost potential 

could be applied to the remaining potential energy of the entire system in a dual-boost algorithm 

(LiGaMD_Dual) to facilitate ligand binding. LiGaMD has been demonstrated on host-guest and 

protein-ligand binding model systems. Repetitive guest binding and unbinding in the β-

cyclodextrin host were observed in hundreds-of-nanosecond LiGaMD_Dual simulations. The 

calculated guest binding free energies agreed excellently with experimental data with < 1.0 

kcal/mol errors. Compared with converged microsecond-timescale conventional molecular 

dynamics simulations, the sampling errors of LiGaMD_Dual simulations were also < 1.0 kcal/mol. 

Accelerations of ligand kinetic rate constants in LiGaMD simulations were properly estimated 

using Kramers’ rate theory. Furthermore, LiGaMD allowed us to capture repetitive dissociation 

and binding of the benzamidine inhibitor in trypsin within 1 μs simulations. The calculated ligand 

binding free energy and kinetic rate constants compared well with the experimental data. In 

summary, LiGaMD provides a powerful enhanced sampling approach for characterizing ligand 

binding thermodynamics and kinetics simultaneously, which is expected to facilitate computer-

aided drug design.
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All-atom ligand Gaussian accelerated molecular dynamics (LiGaMD) simulations captured 

repeptitive binding of the benzamidine (BEN) ligand to the trypsin model protein, which enabled 

us to characterize the ligand binding free energy profiles, pathways and kinetic rate constants.
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Introduction

Free energy calculations of protein-ligand binding have been central to computational 

chemistry and biophysics research for the last several decades1. This is largely motivated by 

designing potent drug molecules with high binding free energies in the pharmaceutical 

industry2. A number of computational methods that have been developed in the field include 

thermodynamic integration (TI)3, free energy perturbation (FEP)4, double decoupling 

method5, umbrella sampling6, steered molecular dynamics (SMD)7, funnel metadynamics8, 

molecular mechanics Poisson-Boltzmann surface area and generalized Born surface area 

(MM/PBSA and MM/GBSA)9, and so on. Ligand binding free energy calculations have also 

been the focus of Statistical Assessment of Modeling of Proteins and Ligands (SAMPL)10 

and Drug Design Data Resource (D3R)11 community challenges.

Kinetics of ligand binding have recently been recognized to be potentially more relevant for 

drug design. In particular, the dissociation rate constant that determines the drug residence 

time appears to better correlate with drug efficacy than the binding free energy12. However, 

ligand kinetic rates have proven even more difficult to compute than the binding free 

energies, largely due to slow processes of ligand binding and dissociation over long 

timescales12b. With remarkable advances in supercomputing and method developments, 

molecular dynamics (MD) simulations using specialized hardware13, Markov state model 

(MSM)14 and enhanced sampling15 have extended our capabilities to capture spontaneous 

ligand binding to target proteins. A number of enhanced sampling methods, including 

metadynamics16, random acceleration MD17, SMD18, weighted ensemble19 and selectively 

scaled MD20 have also been able to dissociate ligand molecules from the proteins. However, 

it remains extremely challenging to simulate repetitive ligand binding and dissociation 

processes, precluding accurate calculations of ligand kinetic rate constants.
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With relatively small size and reduced complexity, host-guest binding systems has served as 

models of protein-ligand binding in SAMPL challenges10. The studied hosts include the 

cucurbit[7]uril (CB7), octa-acid, and CBClip and cyclodextrin (CD). These hosts are 

compounds that are typically much smaller than proteins but still large enough to bind guest 

molecules through non-covalent interactions, which share common characteristics as 

protein-ligand binding. Host-guest systems thus represent model systems for testing and 

improving free energy calculation methods. In addition to thermodynamics, Chang and co-

workers have investigated kinetics of fast guest binding and dissociation in the β-CD host21. 

Tens to hundreds of repetitive guest binding and dissociation events were observed in 

microsecond-timescale MD simulations, which enabled comprehensive characterization of 

both thermodynamics and kinetics of the host-guest binding.

The MSM22 and metadynamics8, 23 have been applied to investigate the thermodynamics 

and kinetics of protein-ligand binding, using particularly the benzamidine inhibitor binding 

to trypsin as a model system. Multiple metadynamics trajectories with a total of 5 μs 

simulation time were obtained to predict the ligand unbinding pathways and dissociation 

rate constant, koff. The calculated koff = 9.1 ± 2.5 s−1 was suggested to be in agreement of 

the experimental value koff
exp = 600 ± 300 s−1. Separate funnel metadynamics simulations also 

allowed calculations of ligand binding free energies, in particular −8.5 ± 0.7 kcal/mol for the 

trypsin-benzamidine system8. The MSM built with 150 μs MD simulation data provided a 

complex picture of ligand binding kinetics and protein conformational plasticity22. The 

simulation predicted koff = 131 ± 109 × 102 s−1 appeared to be faster than the experimental 

value, while the predicted binding rate constant kon = 6.4 ± 1.6 × 107 M−1·s−1 compared 

well with the experimental value of kon
exp = 2.9 × 107 M−1 ⋅ s−1. Repetitive ligand binding and 

unbinding in trypsin were also captured using a selective integrated-tempering-sampling 

molecular dynamics (SITSMD) method recently24. The binding free energy of benzamidine 

in trypsin was estimated as −5.06 kcal/mol, but the ligand kinetic rates were not calculated 

from the SITSMD simulations.

Here, we present a new computational method called ligand Gaussian accelerated molecular 

dynamics (“LiGaMD”), which enables us to simulate repetitive ligand binding and 

unbinding, and thus characterize both thermodynamics and kinetics of ligand binding 

simultaneously. Gaussian accelerated molecular dynamics (GaMD) is an enhanced sampling 

computational technique that works by adding a harmonic boost potential to smooth the 

biomolecular potential energy surface.25 GaMD greatly reduces energy barriers and 

accelerates biomolecular simulations by orders of magnitude.26 GaMD does not require pre-

defined collective variables or reaction coordinates. Compared with the enhanced sampling 

methods that rely on careful selection of the collective variables, GaMD is of particular 

advantage for studying complex biological processes such as ligand binding to proteins27. 

Moreover, because the boost potential follows a Gaussian distribution, biomolecular free 

energy profiles can be properly recovered through cumulant expansion to the second order.25 

GaMD builds on the previous accelerated MD (aMD) method28, but solves its energetic 

reweighting problem29 for free energy calculations of large biomolecules. GaMD has been 

implemented in the widely used AMBER25, 30, NAMD31 and GENESIS32 packages. GaMD 

has successfully revealed physical pathways and mechanisms of protein folding and ligand 
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binding, which are consistent with experiments and long-timescale conventional MD (cMD) 

simulations.25, 31, 33 It has also been applied to characterize protein-protein34, protein-

membrane,35 and protein-nucleic acid36 interactions.

Building upon GaMD, we have developed LiGaMD for more efficient sampling simulations 

of protein-ligand binding and unbinding processes. In LiGaMD, the non-bonded 

electrostatic and van der Waals interactions between the bound ligand and protein/

environment are selectively boosted to enable ligand dissociation. In this context, selective 

acceleration has been found useful in previous enhanced sampling techniques, including the 

selective aMD37, selectively scaled MD20, essential energy space random walk38, replica 

exchange solute tempering (REST)39 and REST240. In addition, a number of unbound 

ligand molecules are added in the solvent and another boost potential is applied on these 

ligand molecules, the protein and solvent in a dual-boost LiGaMD (LiGaMD_Dual) 

algorithm to facilitate ligand rebinding.

The LiGaMD method has been demonstrated on host-guest and protein-ligand binding 

model systems. Repetitive guest binding and unbinding in the β-CD host have been observed 

in hundreds-of-nanosecond LiGaMD simulations. The LiGaMD predicted guest binding free 

energies and kinetic rate constants agree well with those from previous cMD simulations21 

and experimental data. Furthermore, LiGaMD has also allowed us to capture multiple 

dissociation and rebinding events of the benzamidine inhibitor in trypsin within 1 μs 

simulations. The reweighted ligand binding free energy and kinetic rate constants compared 

well with the experimental data.

Methods

Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD)

Gaussian accelerated molecular dynamics (GaMD) is an enhanced sampling technique that 

works by adding a harmonic boost potential to smooth biomolecular potential energy surface 

and reduce the system energy barriers25. Details of the GaMD method have been described 

in previous studies25, 31, 33a. A brief summary is provided in Appendix A. Here, we develop 

a new ligand GaMD (LiGaMD) method for more efficient sampling of protein-ligand 

binding.

We consider a system of ligand L binding to a protein P in a biological environment E. The 

system comprises of N atoms with their coordinates r ≡ r 1, ⋯, r N  and momenta 

p ≡ p 1, ⋯, p N . The system Hamiltonian can be expressed as:

H(r, p) = K(p) + V (r), (1)

where K(p) and V(r) are the system kinetic and total potential energies, respectively. Next, 

we decompose the potential energy into the following terms:

V (r) = V P , b rP + V L, b rL + V E, b rE + V PP , nb rP + V LL, nb rL
+ V EE, nb rE + V PL, nb rPL + V PE, nb rPE + V LE, nb rLE . (2)
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where VP,b, VL,b and VE,b are the bonded potential energies in protein P, ligand L and 

environment E, respectively. VPP,nb, VLL,nb and VEE,nb are the self non-bonded potential 

energies in protein P, ligand L and environment E, respectively. VPL,nb, VPE,nb and VLE,nb 

are the non-bonded interaction energies between P-L, P-E and L-E, respectively. According 

to classical molecular mechanics force fields41, the non-bonded potential energies are 

usually calculated as:

V nb = V elec + V vdW . (3)

Where Velec and VvdW are the system electrostatic and van der Waals potential energies. 

Presumably, ligand binding mainly involves the non-bonded interaction energies of the 

ligand, VL,nb(r) = VLL,nb(rL) + VPL,nb(rPL) + VLE,nb(rLE). In LiGaMD, we add a boost 

potential selectively to the ligand non-bonded potential energy as:

ΔV L, nb(r) =
1
2kL, nb EL, nb − V L, nb(r) 2, V L, nb(r) < EL, nb

0, V L, nb(r) ≥ EL, nb
(4)

where EL,nb is the threshold energy for applying boost potential and kL,nb is the harmonic 

constant. For simplicity, the subscript of ΔVL,nb(r), EL,nb and kL,nb is dropped in the 

following. The LiGaMD simulation parameters are derived similarly as in the previous 

GaMD algorithm (Appendix A). When E is set to the lower bound as the system maximum 

potential energy (E=Vmax), the effective harmonic force constant k0 can be calculated as:

k0 = min 1.0, k0′ = min 1.0, σ0
σV

V max − V min
V max − V avg

, (5)

where Vmax, Vmin, Vavg and σV are the maximum, minimum, average and standard 

deviation of the boosted system potential energy, and σ0 is the user-specified upper limit of 

the standard deviation of ΔV (e.g., 10kBT) for proper reweighting. The harmonic constant is 

calculated as k = k0 ⋅ 1
V max − V min

 with 0 < k0 ≤ 1. Alternatively, when the threshold energy 

E is set to its upper bound E = V min + 1
k , k0 is set to:

k0 = k0" ≡ 1 − σ0
σV

V max − V min
V avg − V min

, (6)

if k0" is found to be between 0 and 1. Otherwise, k0 is calculated using (Eqn. 5).

Next, one can add multiple ligand molecules in the solvent to facilitate ligand binding to 

proteins in MD simulations13b, 42. This is based on the fact that the ligand binding rate 

constant kon is inversely proportional to the ligand concentration. The higher the ligand 

concentration, the faster the ligand binds, provided that the ligand concentration is still 

within its solubility limit. In addition to selectively boosting the bound ligand to accelerate 

its dissociation, another boost potential could thus be applied on the unbound ligand 

molecules, protein and solvent to facilitate ligand rebinding. The second boost potential is 
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calculated using the total system potential energy other than the non-bonded potential energy 

of the bound ligand as:

ΔV D(r) =
1
2kD ED − V D(r) 2, V D(r) < ED

0, V D(r) ≥ ED
(7)

where ED and kD are the corresponding threshold energy for applying the second boost 

potential and the harmonic constant, respectively. This leads to dual-boost LiGaMD 

(LiGaMD_Dual) with the total boost potential ΔV(r) = ΔVL,nb(r) + ΔVD(r).

Ligand Binding Free Energy Calculations from 3D Potential of Mean Force

We calculate ligand binding free energy from 3D potential of mean force (PMF) of ligand 

displacements from the target protein as the following14:

ΔG0 = − ΔW 3D − RTLn V b
V 0

, (9)

where V0 is the standard volume, V b = ∫be−βW (r)dr is the average sampled bound volume of 

the ligand with β = 1/kBT, kB is the Boltzmann constant, T is the temperature, and ΔW3D is 

the depth of the 3D PMF. ΔW3D can be calculated by integrating Boltzmann distribution of 

the 3D PMF W(r) over all system coordinates except the x, y, z of the ligand:

ΔW 3D = − RTLn
∫u e−βW (r)dr

∫u dr , (10)

where Vu = ∫u dr is the sampled unbound volume of the ligand. The exact definitions of the 

bound and unbound volumes Vb and Vu are not important as the exponential average cut off 

contributions far away from the PMF minima14. A python script PyReweighting-3D.py is 

freely available in the PyReweighting tool kit (http://miao.compbio.ku.edu/PyReweighting/) 

for calculating the 3D PMF and associated ligand binding free energies. It works for both 

cMD (without energetic reweighting) and enhanced sampling simulations using LiGaMD 

with energetic reweighting (Appendix B).

Ligand Binding Kinetics obtained from Reweighting of LiGaMD Simulations

Provided sufficient sampling of repetitive ligand dissociation and binding in simulations, one 

can record the time periods and calculate their averages for the ligand found in the bound 

(τB) and unbound (τU) states from the simulation trajectories. The τB corresponds to 

residence time in drug design43. Then the ligand dissociation and binding rate constants (koff 

and kon) were calculated as:

koff = 1
τB

. (11)
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kon = 1
τU ⋅ [L] , (12)

where [L] is the ligand concentration in the simulation system.

Two algorithms were implemented using the transition state theory (TST) and Kramers’ rate 

theory for reweighting kinetics of the LiGaMD simulations. According to Kramers’ Rate 

Theory (Appendix C), the rate of a chemical reaction in the large viscosity limit is calculated 

as26:

kR ≅ 2πwmwb
ξ e−ΔF /kBT , (13)

where wm and wb are frequencies of the approximated harmonic oscillators (also referred to 

as curvatures of free energy surface44) near the energy minimum and barrier, respectively, ξ 
is the frictional rate constant and ΔF is the free energy barrier of transition. The friction 

constant ξ is related to the diffusion coefficient D with ξ = kBT/D. The apparent diffusion 

coefficient D can be obtained by dividing the kinetic rate calculated directly using the 

transition time series collected directly from simulations by that using the probability 

density solution of the Smoluchowski equation45 (Appendix C). In order to reweight ligand 

kinetics from the LiGaMD simulations using the Kramer’s rate theory, the free energy 

barriers of ligand binding and dissociation are calculated from the original (reweighted, ΔF) 

and modified (no reweighting, ΔF*) PMF profiles, similarly for curvatures of the reweighed 

(w) and modified (w*, no reweighting) PMF profiles near the guest bound (“B”) and 

unbound (“U”) low-energy wells and the energy barrier (“Br”), and the ratio of apparent 

diffusion coefficients from LiGaMD simulations without reweighting (modified, D*) and 

with reweighting (D). The resulting numbers are then plugged into Eq. (11) to estimate 

accelerations of the ligand binding and dissociation rates during LiGaMD simulations 

(Appendix C)26, which allows us to recover the original kinetic rate constants.

In comparison, the rate of a chemical reaction in the transition state theory (TST) is 

calculated as46:

kTST ≅ Ae−ΔF /kBT , (14)

where A is a pre-exponential coefficient or frequency factor. Only the energy barriers of 

ligand binding and dissociation need to be calculated from the original (reweighted, ΔF) and 

modified (no reweighting, ΔF*) free energy profiles for estimating the accelerations and 

recovering the ligand kinetic rate constants.

Host-Guest Binding Simulations

GaMD simulations were performed on the binding of two guest molecules (aspirin and 1-

butanol) to the β-CD host using the same input files as in a previous study by Tang and 

Chang21. The CD host were modeled with both the GAFF and q4MD force fields. The guest 

molecules were modeled with GAFF. The LiGaMD and dual-boost LiGaMD 

(LiGaMD_Dual) simulations were compared with GaMD simulations using the previous 
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algorithms25, 33b, including the total potential boost GaMD (GaMD_Tot), dual-boost GaMD 

(GaMD_Dual)25, non-bonded potential boost GaMD (GaMD_NB) and non-bonded dual-

boost GaMD (GaMD_Dual_NB)33b simulations, as well as the previous long microsecond-

timescale cMD simulations21 (Tables 1 and S1).

With the same restart files as used for running the cMD production simulations21, the GaMD 

simulations proceeded with 1 ns short cMD to collect potential statistics, 20 ns GaMD 

equilibration after adding the boost potential and then three independent 300 ns production 

runs. GaMD production frames were saved every 0.1 ps for analysis. The VMD47 and 

CPPTRAJ48 tools were used for simulation analysis. The number of host-guest dissociation 

and binding events (ND and NB) and the guest binding and unbinding time periods (τB and 

τU) were recorded from individual simulations (Table S1). With high fluctuations, τB and τU 

were recorded for only the time periods longer than 0.5 ns. For systems with more than one 

time of guest dissociation and binding in each of the individual simulations, 1D, 2D and 3D 

PMF profiles, as well as the host-guest binding free energies, were calculated through 

energetic reweighting of the GaMD simulations. The center-of-mass distances between the 

host and guests (dHG) and the host radius of gyration (Rg) were chosen as reaction 

coordinates for calculating the 1D PMF profiles. 2D PMF profiles of (dHG, Rg) were also 

calculated to analyze conformational changes of the CD host upon guest binding. The bin 

size was set to 0.5 Å for the dHG and 0.05 Å for the Rg. The cutoff of the number of 

simulation frames in one bin for reweighting was set to 500 in 1D and 2D PMF calculations. 

The 3D PMF profiles of guest displacements from the CD host in the X, Y and Z directions 

were further calculated from the LiGaMD simulations. The bin sizes were set to 1 Å in the 

X, Y and Z directions. The cutoff for the number of simulation frames in one bin for 

reweighting the 3D PMF was set to 10 for LiGaMD simulations and 50 for LiGaMD_Dual 

simulations. The host-guest binding free energies (ΔG) were calculated using the reweighted 

3D PMF profiles and compared with those from previous cMD simulations and 

experimental data21 (Table 1). In addition, accelerations of the ligand dissociation and 

binding rate constants (kon and koff) in LiGaMD simulations were analyzed using the TST 

and Kramers’ rate theory as described above (Table S2).

Protein-Ligand Binding Simulations

LiGaMD simulations using the dual-boost scheme were performed on benzamidine binding 

to the trypsin protein. The X-ray crystal structure of benzamidine-bound trypsin (PDB ID: 

3PTB49) was used with the calcium ion and water molecules kept. The missing hydrogen 

atoms were added using by the tleap module in AMBER50. The general Amber force field51 

and the AMBER ff14SB force field52 were used for the ligand and protein, respectively. 

Atomic partial charges of benzamidine were obtained through B3LYP/6–31G* quantum 

calculations of the electrostatic potential, for which the RESP charges53 were fitted using the 

antechamber program50. The system was neutralized by adding a number of counter ions (Cl
−) and immersed in a cubic TIP3P water54box, which was extended 13 Å from the protein-

ligand complex. Testing simulations were performed on protonation of the protein active-site 

residue His57 at the Nδ atom or the Nε atom. Results showed that benzamidine could bind to 

the protein target site as in the X-ray conformation with the Nδ atom protonated, but not 

with atom Nε protonated. Therefore, the protein residue His57 was protonated at the Nδ 
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atom. Moreover, a total of 10 ligand molecules (one in the X-ray bound conformation and 

another nine placed randomly in the solvent) were included in the system to facilitate ligand 

binding. This design was based on the fact that the ligand binding rate constant kon is 

inversely proportional to the ligand concentration. The higher the ligand concentration, the 

faster the ligand binds, provided that the ligand concentration is still within its solubility 

limit.

The built simulation system was energy minimized with 1 kcal/mol/Å2 constraints on the 

heavy atoms of the protein and ligand, including the steepest descent minimization of 5,000 

steps followed by a conjugate gradient minimization of 5,000 steps. The system was then 

heated from 0 K to 300 K for 200 ps. It was further equilibrated using the NVT ensemble at 

300K for 800 ps and the NPT ensemble at 300 K and 1 bar for 1 ns with 1 kcal/mol/Å2 

constraints on the heavy atoms of the protein and ligand, followed by 2 ns short cMD 

without any constraint. The LiGaMD simulations proceeded with 14 ns short cMD to collect 

the potential statistics, 54.6 ns GaMD equilibration after adding the boost potential and then 

five independent 1000 ns production runs. Initial testing simulations showed that when the 

threshold energy for applying boost potential to the ligand non-bonded energy was set to the 

lower bound (i.e., E = Vmax), the bound ligand maintained the X-ray conformation and did 

not dissociate. In comparison, when the threshold energy was set to the upper bound (i.e., E 
= Vmin+1/k), it enabled high enough boost potential to dissociate the ligand from the protein. 

Therefore, the threshold energy for applying the ligand boost potential was set to the upper 

bound in the LiGaMD_Dual simulations. For the second boost potential that was applied to 

the system total potential energy other than the ligand non-bonded potential energy, 

sufficient acceleration was obtained to sample ligand rebinding by setting the threshold 

energy to the lower bound. LiGaMD_Dual production simulation frames were saved every 

0.2 ps for analysis.

The VMD47 and CPPTRAJ48 tools were used for simulation analysis. The number of ligand 

dissociation and binding events (ND and NB) and the ligand binding and unbinding time 

periods (τB and τU) were recorded from individual simulations (Table S3). With high 

fluctuations, τB and τU were recorded for only the time periods longer than 5 ns. The 1D, 

2D and 3D PMF profiles, as well as the ligand binding free energy, were calculated through 

energetic reweighting of the LiGaMD_Dual simulations. The distance between charge 

centers at the amidine C atom in benzamidine and CG atom of Asp189 in trypsin was 

chosen as the reaction coordinate for calculating the 1D PMF profiles. The bin size was set 

to 1.0 Å. 2D PMF profiles of the benzamidine:C – Asp189:CG and Trp215:NE – 

Asp189:CG atom distances were also calculated to analyze conformational changes of the 

protein upon ligand binding. The bin size was set to 1.0 Å for the atom distances. The cutoff 

for the number of simulation frames in one bin was set to 500 for reweighting 1D and 2D 

PMF profiles. The 3D PMF profiles of guest displacements from the CD host in the X, Y 

and Z directions were further calculated from the LiGaMD simulations. The bin sizes were 

set to 1 Å in the X, Y and Z directions. The cutoff of simulation frames in one bin for 3D 

PMF reweighting (ranging from 1100–4000 for five individual LiGaMD_Dual simulations) 

was set to the minimum number below which the calculated 3D PMF minimum will be 

shifted. The ligand binding free energies (ΔG) were calculated using the reweighted 3D 

PMF profiles. Furthermore, structural clustering was performed on frames of the diffusing 
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ligand molecules from each 1 μs LiGaMD_Dual simulation trajectory using the Density 

Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm55 in 

CPPTRAJ48. The frames were sieved at a stride of 500 for clustering. The remaining frames 

were assigned to the closest cluster afterwards. The distance cutoff for DBSCAN clustering 

was set to 0.5 Å. The resulting structural clusters were reweighted to obtain energetically 

significant binding pathways of the ligand. In addition, the ligand dissociation and binding 

rate constants (kon and koff) were calculated from the LiGaMD_Dual simulations with their 

accelerations analyzed using the Kramers’ rate theory as described above (Table S4).

Results

Thermodynamics of Host-Guest Binding

For the β-cyclodextrin (CD) host as modeled with both the GAFF and q4MD force fields, 

all-atom GaMD simulations were performed to investigate the dissociation and binding of 

two guest molecules aspirin (Fig. 1A) and 1-butanol (Fig. 1B) using a number of different 

potential boost algorithms (Table 1). The center-of-mass distances between the host and 

guest molecules were monitored as a function of time to record the number of dissociation 

and binding events (ND and NB) in each of the 300 ns GaMD simulations. The new 

LiGaMD method especially using the dual-boost algorithm (LiGaMD_Dual) showed 

significantly improved sampling of ligand binding compared with the previous GaMD 

algorithms, including the total potential boost GaMD (GaMD_Tot), dual-boost GaMD 

(GaMD_Dual), non-bonded potential boost GaMD (GaMD_NB) and non-bonded dual-boost 

GaMD (GaMD_Dual_NB) (Table 1). Repetitive binding and unbinding of guest molecules 

were observed in 300 ns LiGaMD and LiGaMD_Dual simulations, except for the binding of 

1-butanol to CD that was modeled with the GAFF force field (Fig. S1). In comparison, no 

guest dissociation and/or binding was observed in one or more of the 300 ns GaMD 

simulations using the other algorithms (Table 1).

Provided improved sampling in the LiGaMD and LiGaMD_Dual simulations, we computed 

potential of mean force (PMF) free energy profiles to characterize the host-guest binding 

quantitatively (Fig. 1). The host-guest distance (dHG) was chosen as a reaction coordinate. 

The PMF profiles calculated from three 300 ns LiGaMD or LiGaMD_Dual simulations were 

compared with those from microsecond-timescale cMD simulations of CD using the GAFF 

force field with aspirin (Fig. 1C), CD using the GAFF force field with 1-butanol (Fig. 1D), 

CD using the q4MD force field with aspirin (Fig. 1E), and CD using the q4MD force field 

with 1-butanol (Fig. 1F). For binding of 1-butanol to CD modeled with GAFF, while 300 ns 

LiGaMD and LiGaMD_Dual simulations sampled the system unbound (dHG > ~15 Å) and 

intermediate (dHG = ~10 Å) states, being closely similar to the 6500 ns cMD simulations, 

the bound state (dHG = ~0.5 Å) was poorly sampled in the LiGaMD simulations (Fig. 1D). 

This correlated with the above finding that the guest dissociation and binding were seldomly 

observed in these simulations (Table 1 and Figs. S1C–S1D). For the other three systems, 300 

ns LiGaMD and LiGaMD_Dual simulations sampled the same bound (dHG = ~0.5–2 Å), 

intermediate (dHG = ~10 Å) and unbound (dHG > ~15 Å) low-energy states as in the 

microsecond timescale cMD simulations (Figs. 1C, 1E and 1F). Their global energy minima 

were all identified in the bound state. However, differences were found in the magnitudes of 
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PMF profiles near the intermediate, unbound and energy barrier regions. Overall, the 

LiGaMD_Dual simulations showed better agreements with the long-timescale cMD 

simulations than LiGaMD, especially for binding of 1-butanol to CD modeled with q4MD 

(Fig. 1F). The LiGaMD_Dual provided the most efficient sampling of host-guest binding 

and dissociation events (Table 1 and Fig. S1) and the closest free energy profiles as 

compared with the reference cMD simulations (Fig. 1).

Next, we analyzed conformational changes of the CD host modeled with GAFF (Fig. 2) and 

q4MD (Fig. 3) upon guest binding. PMF profiles were calculated for the radius of gyration 

(Rg) of the CD host modeled with GAFF from the cMD simulations in the ligand-free (apo), 

aspirin and 1-butanol binding forms (Fig. 2A). Two low-energy states, including “Compact” 

(Rg = ~5.7 Å) and “Open” (Rg = ~5.9 Å), were identified for the CD host. While the apo and 

1-butanol bound CD predominantly adopted the compact conformational state, binding of 

aspirin biased conformational ensemble of CD towards the open state. In this regard, aspirin 

(Fig. 1A) appeared to be larger in size than 1-butanol (Fig. 1B). Furthermore, we calculated 

2D profiles of (dHG, Rg) and identified low-energy conformational states of the system. For 

aspirin binding, three low-energy states were found from the 9500 ns cMD simulation, 

including the “Bound (B)”, “Intermediate (I)” and “Unbound (U)” states, in which the CD 

host adopted primarily the Open, Compact and Compact conformations, respectively (Figs. 

2B and 2C). The 2D PMF profile of aspirin binding calculated from three 300 ns 

LiGaMD_Dual simulations combined was highly similar to that from 9500 ns cMD 

simulation, depicting the same three low-energy conformational states (Figs. 2C and 2D). In 

comparison, only the Bound and Unbound low-energy states were clearly identified for 

binding of 1-butanol in the 2D PMF profiles of both 6500 ns cMD (Fig. 2E) and three 300 

ns LiGaMD_Dual simulations (Fig. 2F), while the intermediate state was hardly observed 

with apparently a very shallow energy well as shown in the 1D PMF profiles (Fig. 1D).

Furthermore, we evaluated the effects of different force field parameters for the CD host. 

With the q4MD force field, the CD host adopted predominantly the Open conformation with 

Rg = ~6.1 Å in PMF profiles of both the apo and guest-bound forms, although it still 

sampled the Compact conformation with a shallow and broad energy well in the apo form 

(Fig. 3A). This was in contrast to the above findings that the CD host using the GAFF force 

field preferred the Compact conformation in the apo form, while guest binding especially 

aspirin induced the host to open (Fig. 2). Therefore, the usage of different force fields 

generated distinct structural dynamics and free energy profiles of host-guest binding. 

Nevertheless, consistent results were obtained from LiGaMD_Dual and cMD simulations 

provided the same system setup and force field. In this context, LiGaMD only enhanced 

conformational sampling of the studied systems, yielding similar results as obtained from 

significantly longer cMD simulations.

In 6000 ns cMD simulation of aspirin binding to CD modeled with q4MD, three low-energy 

conformational states were identified from 2D PMF profiles of the host-guest distance dHG 

and host Rg, including the “Bound (B)”, “Intermediate (I)” and “Unbound (U)” states, in 

which the CD host all adopted primarily the Open conformation (Figs. 3B and 3C). A 

closely similar 2D PMF profile was obtained from three 300 ns LiGaMD_Dual simulations 

combined (Figs. 3D). Similar 2D profiles were obtained for 1-butanol binding from three 
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300 ns LiGaMD_Dual simulations combined and 5000 ns cMD simulation, during which 

CD was open in both the guest bound and unbound states (Figs. 3E and 3F).

In addition to the 1D and 2D PMF profiles, we computed 3D PMF profiles of guest binding 

to the CD host in the X, Y and Z directions and then the guest binding free energies (see 

details in Methods). The host-guest binding free energies calculated from LiGaMD and 

LiGaMD_Dual simulations were compared with those obtained from previous cMD 

simulations and experimental data (Tables 2 and S1). Compared with experimental data, 

LiGaMD_Dual provided generally more accurate estimates of the guest binding free 

energies than LiGaMD (Table 2A), being consistent with the finding that improved sampling 

with more dissociation and binding events was observed in the LiGaMD_Dual simulations 

(Table 1). For aspirin, the binding free energy errors were reduced from −1.16 ± 0.03 

kcal/mol to 0.85 ± 0.18 kcal/mol with the CD host modeled from GAFF and from −1.00 ± 

0.53 kcal/mol to 0.40 ± 0.15 kcal/mol with CD modeled using q4MD. For 1-butanol, the 

binding free energy error was calculated from only the simulations with CD modeled using 

q4MD, during each of which multiple dissociation and binding events were observed (Table 

1). The binding free energy error of 1-butanol decreased from −1.17 ± 0.61 kcal/mol in 

LiGaMD simulations to 0.33 ± 0.21 kcal/mol in LiGaMD_Dual simulations (Table 2A). 

Overall, the guest binding free energy errors from the LiGaMD_Dual simulations were less 

than 1.0 kcal/mol in comparison with experimental data.

Furthermore, we compared the LiGaMD and LiGaMD_Dual simulations with previous 

microsecond-timescale (5–9.5 μs) cMD simulations that could be considered as “converged” 

for sampling with tens to hundreds of guest binding and unbinding events captured (Table 

1B). Two different algorithms were applied to compute the guest binding free energies from 

the cMD simulations in the previous study: ΔGcomp1 was computed using the estimated 

guest binding enthalpy and entropy, while ΔGcomp2 was computed using the guest 

dissociation and binding rate constants21. All the ΔGcomp2 estimates exhibited significantly 

smaller standard deviations (error bars) than the ΔGcomp1 (Table 1B). Compared with 

experimental data, the guest binding free energies calculated using the q4MD force field for 

CD were more accurate than using the GAFF force field with the only exception of the 

ΔGcomp1 estimate for aspirin (Table 2A). Therefore, the guest binding free energies obtained 

from cMD simulations using the q4MD force field for CD and ΔGcomp2 estimates were used 

for further comparison, for which the errors mostly due to force field inaccuracy were −0.37 

± 0.05 kcal/mol for aspirin and −0.60 ± 0.19 kcal/mol for 1-butanol (Table 2A). Provided the 

same computational model and force field, the LiGaMD and LiGaMD_Dual simulations 

were then compared with the converged cMD simulations to examine their sampling errors. 

Relative to cMD simulations using the q4MD force field for CD and ΔGcomp2 estimates, 

LiGaMD_Dual simulations showed < 1.0 kcal/mol guest binding free energy differences 

with 0.77 ± 0.16 kcal/mol for aspirin and 0.93 ± 0.10 kcal/mol for 1-butanol, and their 

standard deviations were significantly smaller than those of LiGaMD simulations (Table 

2B). Taken together, LiGaMD_Dual achieved improved sampling than LiGaMD and the 

sampling errors were < 1.0 kcal/mol compared with converged cMD simulations.

In summary, the PMF profiles and binding free energies of guest molecules in the CD host 

calculated from hundreds-of-nanosecond LiGaMD_Dual simulations agreed excellently with 
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those from experimental data and previous microsecond-timescale cMD simulations21. 

Compared with the experimental data, errors in the guest binding free energies were smaller 

than 1.0 kcal/mol from the LiGaMD_Dual simulations. Compared with converged 

microsecond-timescale cMD simulations, the errors of LiGaMD_Dual simulations resulted 

from sampling were also smaller than 1.0 kcal/mol (Table 2). Therefore, both efficient 

enhanced sampling and accurate free energy calculations of host-guest binding were 

achieved through the LiGaMD_Dual simulations.

Kinetics of Host-Guest Binding

In addition to the thermodynamic free energies, kinetic dissociation and binding rate 

constants (koff and kon) were further derived from the relevant LiGaMD and LiGaMD_Dual 

simulations and compared with those from cMD simulations (Table 3). Note that variations 

were observed in the kinetic rate constants, especially the koff (Table 1), which appeared to 

result from high statistical fluctuations in recording of the relatively short binding time 

periods (τB) of the guest molecules (Table S1). While the binding rate constants of guest 

molecules decreased to ~30%−90% of those calculated from cMD simulations21, the 

dissociation rate constants increased by ~1.7–15 times in LiGaMD simulations and ~11–18 

times in LiGaMD_Dual simulations (Table 3). In this context, long-timescale cMD 

simulations with repetitive host-guest binding and unbinding were available for comparison. 

However, in most protein-ligand binding studies (e.g., the trypsin-benzamidine binding 

described below) such cMD simulations are often not available, due to the extreme challenge 

of sampling free ligand binding and dissociation over long timescales. In this regard, we 

sought to reweight kinetics of LiGaMD and recover the original kinetic dissociation and 

binding rate constants from only the LiGaMD enhanced sampling simulations as follows.

Two algorithms were implemented using the transition state theory (TST) and Kramers’ rate 

theory for reweighting kinetics of the LiGaMD simulations (see details in Methods). In both 

algorithms, the energy barriers of ligand binding and dissociation were calculated from the 

original (reweighted) and modified (no reweighting) free energy profiles of the LiGaMD 

simulations. Since the reweighted PMF profiles were already obtained for the host-guest 

distances from the LiGaMD and LiGaMD_Dual simulations (Fig. 1), we also calculated the 

corresponding modified PMF profiles without energetic reweighting for comparative 

analysis (Fig. 4). Note that the bound state of 1-butanol in CD modeled with GAFF was 

poorly sampled in the LiGaMD and LiGaMD_Dual simulations (Figs. 1D, S1 and S2). This 

system was thus excluded for both binding free energy and kinetics calculations. For the 

other three systems, the energy barriers were significantly reduced in the modified PMF 

profiles of both the LiGaMD and LiGaMD_Dual simulations for guest dissociation (Fig. 4 

and Table S2). In LiGaMD_Dual simulations of aspirin binding to CD modeled with GAFF, 

the dissociation free energy barrier (ΔFoff) decreased by 73% from 2.06 ± 0.28 kcal/mol in 

the reweighted PMF profile to 0.59 ± 0.37 kcal/mol in the modified PMF profile (Fig. 4B). 

In the other LiGaMD and LiGaMD_Dual simulations, ΔFoff mostly decreased by ~50% 

(Fig. 4 and Table S2). Correspondingly, koff estimated using the TST increased by ~9–22 

times in the LiGaMD simulations of aspirin and 1-butanol binding to CD and ~6–41 times in 

the LiGaMD_Dual simulations (Table 3). On the other hand, the free energy barrier for 

ligand binding (ΔFon) actually increased in all modified PMF profiles of the LiGaMD and 
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LiGaMD_Dual simulations than in the reweighted profiles (Fig. 4 and Table S2). According 

the TST, the corresponding binding rate constant (kon) decreased by a factor ~0.1–0.4 in 

LiGaMD simulations and ~0.1–0.2 in LiGaMD_Dual simulations (Table 3). Despite the 

slower binding, significant accelerations were achieved in the rate-limiting dissociation of 

guest molecules during LiGaMD and LiGaMD_Dual simulations. Therefore, the guest 

dissociation and binding appeared to be more balanced in LiGaMD than in cMD, thereby 

resulting in overall improved sampling.

For applying the Kramers’ rate theory, curvatures of the reweighed (w) and modified (w*, no 

reweighting) free energy profiles were further calculated near the guest bound (“B”) and 

unbound (“U”) energy minima and the energy barrier (“Br”), as well as the ratio of apparent 

diffusion coefficients calculated from the LiGaMD and LiGaMD_Dual simulations with 

reweighting (D) and without reweighting (modified, D*) (Table S2). The resulting numbers 

were plugged into the Kramers’ rate equation to estimate accelerations of the guest binding 

and dissociation rate constants. Particularly, the koff increased by ~8–12 times in LiGaMD 

simulations and ~6–23 times in LiGaMD_Dual simulations (Table 3). The kon decreased by 

a factor of 0.02–0.55 in LiGaMD simulation. In LiGaMD_Dual simulations, kon remained 

the same for 1-butanol binding to CD modeled with q4MD, but also decreased by factors of 

0.06 and 0.23 for aspirin binding to CD modeled with GAFF and q4MD force fields, 

respectively (Table 3).

In summary, accelerations of host-guest dissociation and binding obtained from LiGaMD 

and LiGaMD_Dual simulations were derived using the TST and Kramers’ Rate Theory. 

Compared with cMD simulations, while the binding rates decreased to a certain extent, guest 

unbinding was significantly accelerated by ~1.7–15 times in LiGaMD and 11–18 times in 

LiGaMD_Dual. Overall, the Kramers’ rate theory provided more accurate estimates of the 

ligand kinetic rate accelerations in the LiGaMD simulations than the TST (Table 3). It was 

thus applied for reweighting of ligand kinetics in analysis of further LiGaMD simulations.

Thermodynamics of Ligand Binding to the Trypsin Model Protein

In addition to host-guest binding, LiGaMD was further tested on protein-ligand binding 

using trypsin as a model system. Initial testing simulations suggested the following setup for 

proper simulations of benzamidine binding to trypsin: First, residue His57 at the protein 

active site was protonated at the Nδ atom rather than the default Nε atom, which was also 

depicted for the catalytic triad at the active site of proteases56. Testing simulations with the 

Nε atom protonated in residue His57 showed that the benzamidine inhibitor could not bind 

to the protein target site as in the X-ray crystal conformation with ~4.3 Å minimum root-

mean square deviation (RMSD). In comparison, simulations with Nδ atom could capture 

repetitive binding of benzamidine to the target site with ~1.0 Å minimum RMSD compared 

with the X-ray conformation (Fig. S3). Second, the threshold energy for applying boost 

potential to the ligand non-bonded interaction energy was set to the upper bound (i.e., E = 

Vmin+1/k). This enabled high enough boost potential to dissociate the ligand from the 

protein active site. In comparison, the bound ligand maintained the X-ray conformation 

during ~200 ns testing simulations with the threshold energy set to the lower bound (i.e., E = 

Vmax). Moreover, higher acceleration was observed for the bound ligand as the input 
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parameter σ0P was increased from 1.0 kcal/mol to 6.0 kcal/mol and the ligand started to 

dissociate from the target site during the LiGaMD equilibration simulation with σ0P = 4.0 

kcal/mol (Fig. S3), which was thus used for production simulations. Third, a total of 10 

ligand molecules (one in the X-ray bound conformation and another nine placed randomly in 

the solvent) were included in the system to facilitate ligand rebinding. This design was based 

on the fact that the ligand binding rate constant kon is inversely proportional to the ligand 

concentration. The higher the ligand concentration, the faster the ligand binds, provided that 

the ligand concentration is still within its solubility limit. By applying the second boost 

potential to the unbound ligand molecules, protein and solvent, ligand rebinding could be 

sampled even during the LiGaMD equilibration simulations (Figs. S3D and S3F).

With the above settings, LiGaMD_Dual simulations were able to capture repetitive 

dissociation and binding of the benzamidine inhibitor in trypsin within 1 μs simulation time 

(Figs. 5A, S4 and S5 and Movies S1–S5). In five independent LiGaMD_Dual simulations as 

summarized in Table 4, the average of the GaMD boost potential ΔV was ~21–22 kcal/mol 

with ~4.2–4.3 kcal/mol standard deviation. The ligand dissociated for 3–11 times and 

rebound for 3–10 times during the five 1 μs LiGaMD_Dual simulations. In the X-ray bound 

conformation, the distance between the amidine C atom in benzamidine and CG atom of 

Asp189 in trypsin was 3.9 Å. During the LiGaMD_Dual simulations, the bound ligand 

dissociated from the protein and diffused into the bulk solvent with the benzamidine:C – 

ASP189:CG distance increased up to ~60 Å (Figs. 5A and S5), similarly for the ligand 

RMSD relative to the X-ray conformation (Fig. S4). Then after sufficient sampling of the 

bulk solvent space, one of the ten ligand molecules rebound to the protein with a salt bridge 

formed between the charged benzamidine and side chain of protein residue Asp189, for 

which the benzamidine:C – Asp189:CG distance and ligand RMSD dropped back to ~3.9 Å 

(Fig. 5A) and ~1.0 Å (Fig. S4), respectively. When the benzamidine:C – Asp189:CG 

distance dropped below a threshold value (3.7 Å defined here), atomic coordinates, 

velocities and forces of the bound ligand were swapped with those of the original bound 

ligand in the simulation starting structure (denoted “Lig0”). Upon dissociation of Lig0 from 

the protein, the high concentration of ten ligand molecules in the solvent facilitated ligand 

rebinding to the protein. Through such cycles, repetitive dissociation and binding of the 

benzamidine ligand in trypsin were efficiently sampled in the LiGaMD_Dual simulations.

Next, we calculated PMF free energy profiles to characterize ligand binding to trypsin. Since 

plots of the benzamidine:C – Asp189:CG distance and ligand RMSD depicted the ligand 

binding processes similarly (Figs. S4 and S5) and extra efforts were needed to calculate 

symmetry-corrected RMSD of benzamidine, the PMF profiles were calculated for the 

benzamidine:C – Asp189:CGdistance. The resulting reweighted and modified 1D PMF 

profiles were shown in Fig. 5B. In the reweighted PMF profile, three low-energy wells were 

identified for the ligand in the Bound, Intermediate and Unbound states, for which the 

benzamidine:C – Asp189:CG distance was centered around ~4.5 Å, ~15 Å and ~35 Å, 

respectively. A high energy barrier of 12.17 ± 1.54 kcal/mol was observed for the ligand 

dissociation (Table S4). In the modified PMF profile without reweighting, the energy barrier 

decreased to 1.37 ± 0.56 kcal/mol for ligand dissociation and the energy wells became 

significantly shallower for the ligand in the Bound, Intermediate and Unbound states. This 
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justified enhanced sampling of protein-ligand binding and unbinding in the LiGaMD_Dual 

simulations.

Furthermore, we computed 2D PMF profiles to analyze conformational changes of the 

protein upon ligand binding. Upon close examination of the system trajectories, residue 

Trp215 and its associated loop in trypsin underwent the largest conformational changes 

during ligand binding (Movies S1–S5). In this regard, a distance between the Nε atom in the 

Trp215 side chain and CG atom of Asp189 was selected as another reaction coordinate. The 

calculated reweighted and modified 2D PMF profiles of the benzamidine:C – Asp189:CG 

and Trp215:NE – Asp189:CG atom distances are plotted in Fig. 5C and 5D, respectively. 

Five 1000 ns LiGaMD_Dual simulations were combined for calculating the PMF profiles. 

The reweighted and modified 2D PMF profiles calculated from five individual 

LiGaMD_Dual simulations separately are also shown in Figs. S6 and S7, respectively.

In the reweighted 2D PMF, low-energy wells were identified for the trypsin-benzamidine 

system in the Bound, Intermediate I1, Intermediate I2, Unbound U1 and Unbound U2 states, 

for which the (benzamidine:C – Asp189:CG, Trp215:NE – Asp189:CG) atom distances 

were centered around (4.0 Å, 12.5 Å), (17.0 Å, 12.5 Å), (7.5 Å, 7.5 Å), (35.0 Å, 12.5 Å) and 

(35.0 Å, 8.0 Å), respectively (Fig. 5C). In the modified 2D PMF profile (Fig. 5D), low-

energy wells were also identified for the system in the Bound, Intermediate I1, Unbound U1 

and Unbound U2 states in similar locations as in the reweighted 2D PMF. A distinct low-

energy well was identified for the system in an Intermediate I3 state in the modified PMF 

with (14.0 Å, 9.0 Å) for the (benzamidine:C – Asp189:CG, Trp215:NE – Asp189:CG) atom 

distances, rather than the I2 state in the reweighted 2D PMF. These low-energy wells were 

also observed in the reweighed and modified PMF profiles of five individual LiGaMD_Dual 

simulations (Figs. S6 and S7).

Next, we extracted six representative low-energy conformations of the trypsin-benzamidine 

system as identified from the PMF profiles, including the “Bound” (Fig. 6A), “Intermediate 

I1” (Fig. 6B), “Intermediate I2” (Fig. 6C), “Intermediate I3” (Fig. 6D), “Unbound U1” (Fig. 

6E), and “Unbound U2” (Fig. 6F). In the Bound conformational state, the benzamidine 

ligand bound to protein residue Asp189 in the S1 pocket as in the X-ray crystal structure. 

Protein residue Trp215 closed the S1* pocket, but left the S1 pocket open, which was 

located between the Asp189 loop and the Trp215 loop (Fig. 6A). In the Intermediate I1 state, 

the benzamidine ligand bound to a site out of the Trp215 “gate”, being close to the His57-

Asp102-Ser214 catalytic triad (Fig. 5B). In the Intermediate I3 state, residue Trp215 flipped 

its side chain to close the S1 pocket, while the S1* pocket became open with rearrangement 

of the Trp215 loop compared with the X-ray structure. The benzamidine ligand bound to the 

open S1* pocket (Fig. 6C). In the Intermediate I3 state, the side chain of protein residue 

Trp215 rotated to a conformation perpendicular to the X-ray conformation such that both S1 

and S1* pockets became open and the benzamidine ligand bound to a site in close proximity 

of Trp215 and catalytic residues Asp102 and Ser214 (Fig. 6D). In the Unbound U1 state, 

trypsin adopted a conformation similar to the X-ray structure with the S1 pocket open and 

the S1* pocket closed by Trp215, while the benzamidine ligand was found far away from the 

protein (Fig. 6E). In the Unbound U2 state, trypsin flipped its side chain to close the S1 
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pocket, similar to the Intermediate I2 conformation, while the benzamidine ligand stayed far 

away from the protein (Fig. 6F).

In addition to the 1D and 2D PMF profiles, 3D PMF was calculated from each individual 1 

μs LiGaMD_Dual simulation of benzamidine binding to trypsin in terms of displacements of 

the amidine C atom of benzamidine from the CG atom in protein residue Asp189 in the X, Y 

and Z directions. We then calculated the ligand binding free energy from each 3D 

reweighted PMF (see Methods). The average of resulting free energy values was −6.13 

kcal/mol and the standard deviation was 0.35 kcal/mol. This was in excellent agreement with 

the experimental value of −6.2 kcal/mol for the ligand binding free energy of benzamidine in 

trypsin57 (Table 5).

Pathways and kinetics of Ligand Binding to Trypsin

With accurate prediction of the ligand binding free energy, we analyzed the LiGaMD_Dual 

simulations further to determine the pathways and kinetic rate constants of benzamidine 

binding to trypsin. For each 1 μs simulation trajectory, structural clustering was performed 

on snapshots of the diffusing ligand molecules using the DBSCAN algorithm and the 

resulting structural clusters were reweighted to obtain energetically significant pathways of 

the ligand (see Methods). Fig. 7 depicts the dissociation and binding pathways of the 

benzamidine ligand in trypsin obtained from the five individual LiGaMD_Dual simulations. 

The ligand clusters along each pathway were colored according to the reweighted PMF 

values in a blue (0 kcal/mol)-white (7.5 kcal/mol)-red (15.0 kcal/mol) scale. The lowest-

energy ligand cluster was consistently identified at the target site with benzamidine forming 

ionic interaction with trypsin residue Asp189 as determined in the X-ray crystal structure 

(Fig. 7).

During the LiGaMD_Dual simulations, benzamidine first dissociated predominantly through 

the protein opening between the Asp189 loop and the Trp215 loop, denoted pathway “P1” 

(Fig. 7). Then benzamidine molecules could rebind spontaneously to trypsin. Negatively 

charged residues on the protein surface, including Glu70, Asp71, Glu77, Glu80 and Asp153, 

appeared to steer the positively charged ligand towards the enzyme catalytic site formed by 

residues His57-Asp102-Ser214. This was consistent with previous findings of “electrostatic 

steering” in ligand recognition by proteins58. Subsequently, the ligand bound to the target 

site via two pathways, one being the pathway “P1” and the other connecting the S1* pocket 

and the Trp215 side chain gate as closed in the X-ray structure (denoted pathway “P1*”) 

(Fig. 7). In Sim1 and Sim2, because the Trp215 side chain maintained the X-ray 

conformation and closed the S1* pocket, the benzamidine ligand dissociated and bound to 

the S1 pocket repetitively through the P1 pathway (Figs. 7A and 7B and Movies S1 and S2). 

In the other three simulations Sim3-Sim5, the Trp215 side chain underwent conformational 

changes to open either the S1 or S1* pocket or both pockets. Benzamidine dissociated and 

bound to the protein via either of the P1 and P1* pathways (Figs. 7C–7E and Movies S3–

S5). Notably, binding of the ligand was able to switch from pathway P1* to pathway P1 via 

the S1* binding pocket to the final target site in the S1 pocket as observed near 286 ns in the 

Sim5 trajectory (Movie S5). In addition, two ligand molecules were found to bind both the 
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S1 and S1* pockets simultaneously during 310.5 ns-333.5 ns in the Sim5 trajectory (Movie 

S5 and Fig. S5E).

To calculate kinetic rate constants of benzamidine binding to trypsin, we recorded the time 

periods for the ligand found in the bound (τB) and unbound (τU) states throughout the 

LiGaMD_Dual simulations (Table S3). Since a total of 10 ligand molecules and 10,478 

water molecules were included in the simulation system, the ligand concentration was 0.053 

M in the simulations. Without reweighting of the LiGaMD_Dual simulations, the 

benzamidine ligand binding (kon*) and dissociation (koff*) rate constants were calculated as 

1.58 ± 1.09 × 108 M·s−1 and 3.40 ± 1.36 × 107 s−1, respectively.

Following the same protocol as described for analyzing the host-guest binding simulations, 

we reweighted the trypsin-benzamidine binding simulations to calculate acceleration factors 

of the ligand binding and dissociation (Table S4) and recover the original kinetic rate 

constants using the Kramers’ rate theory. The original (reweighted) and modified PMF 

profiles of protein-ligand distance are shown in Fig. 5B. The dissociation free energy barrier 

(ΔFoff) decreased by ~90% from 12.17 ± 1.54 kcal/mol in the reweighted PMF profile to 

1.37 ± 0.56 kcal/mol in the modified PMF profile (Table S4). On the other hand, the free 

energy barrier for ligand binding (ΔFon) decreased from 3.04 ± 2.04 kcal/mol in the 

reweighted profile to 2.40 ± 0.41 kcal/mol in the modified PMF profile (Fig. 5B and Table 

S4). Furthermore, curvatures of the reweighed (w) and modified (w*, no reweighting) free 

energy profiles were calculated near the guest bound (“B”) and unbound (“U”) low-energy 

wells and the energy barrier (“Br”), as well as the ratio of apparent diffusion coefficients 

calculated from the LiGaMD_Dual simulations with reweighting (D) and without 

reweighting (modified, D*) (Table S4). According to the Kramers’ rate theory, the ligand 

binding and acceleration were accelerated by 13.76 and 9.62 × 107 times, respectively. 

Therefore, the reweighted kon and koff were calculated as 1.15 ± 0.79 × 107 M−1·s−1 and 

3.53 ± 1.41 s−1, respectively. They were comparable to the experimental data57 of 

kon
exp = 2.9 × 107 M−1 ⋅ s−1 and koff

exp = 600 ± 300 s−1 (Table 5).

Discussion

A new LiGaMD method has been developed to selectively boost the ligand non-bonded 

interaction potential energy, which enables enhanced sampling simulations of repetitive 

ligand dissociation and binding as demonstrated on the host-guest and protein-ligand 

binding model systems. LiGaMD provides a promising approach for simultaneously 

calculating the free energy and kinetic rate constants of ligand binding.

For host-guest binding, LiGaMD and dual-boost LiGaMD (LiGaMD_Dual) significantly 

improved the sampling efficiency compared with the previous GaMD_Tot, GaMD_Dual, 

GaMD_NB and GaMD_NB_Dual algorithms (Table 1). For simulations that captured 

multiple events of ligand binding and dissociation, the accuracy of calculated ligand binding 

free energies and kinetic rate constants was similar to those obtained from much longer cMD 

simulations as compared with the experimental data. Notably, the CD host exhibited distinct 

structural dynamics when modeled with the different GAFF and q4MD force fields. 

Nevertheless, similar results were obtained from LiGaMD and cMD simulations provided 
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the same force field. Therefore, LiGaMD only enhanced conformational sampling of the 

studied systems, but did not change statistics related to the force field. Apart from enhanced 

sampling, it remains critical to develop accurate force fields for systems of our interest such 

as the proteins and ligand molecules.

Detailed analysis showed that the guest binding free energies calculated using the q4MD 

force field for CD appeared to be more accurate than using the GAFF force field. 

LiGaMD_Dual provided more powerful sampling than LiGaMD with significantly smaller 

standard deviations of free energy estimates. Compared with the experimental data, errors in 

the guest binding free energies calculated from the LiGaMD_Dual simulations were smaller 

than 1.0 kcal/mol. Compared with converged microsecond-timescale cMD simulations, the 

sampling errors of LiGaMD_Dual simulations were also smaller than 1.0 kcal/mol. With the 

availability of both experimental data and converged cMD simulations, simulations on the 

host-guest binding model systems thus enabled us to examine sampling accuracy of the new 

LiGaMD method. Moreover, accelerations of the guest dissociation and binding rate 

constants in LiGaMD simulations were found to be properly estimated using the Kramers’ 

rate theory. Compared with cMD simulations, while the binding rates decreased to a certain 

extent, guest unbinding was significantly accelerated by ~1.7–15 times in LiGaMD and 11–

18 times in LiGaMD_Dual.

For the trypsin model protein-ligand binding system, the threshold energy for applying 

LiGaMD boost potential to non-bonded potential energy of the bound ligand was set to the 

upper bound so that high enough acceleration was obtained to allow for ligand dissociation. 

Multiple ligand molecules (e.g., 10 in the present simulations) were included in the system 

to facilitate binding. This was based on the fact that higher ligand concentration would lead 

to faster binding rate constant kon. Multiple events of ligand dissociation and binding were 

observed in each of the five independent 1 μs LiGaMD_Dual simulations of the trypsin-

benzamidine system. Trypsin residue Trp215 appeared to be a gate for ligand binding 

through the P1 and P1* pathways.

The low-energy conformational states (Fig. 6) and ligand pathways (Fig. 7) of the trypsin-

benzamidine system identified from LiGaMD_Dual simulations were mostly consistent with 

those obtained from previous simulation studies, especially the MSM22. However, 

LiGaMD_Dual simulations further revealed two novel findings. First, two benzamidine 

molecules were able to bind both the S1 and S1* pockets simultaneously during one of the 

five LiGaMD_Dual simulation trajectories (Movie S5). While this finding could result from 

a relatively high ligand concentration (0.053 M) with 10 benzamidine molecules in the 

simulation system, such rare event is worthy further investigation in the future. Second, 

binding of the benzamidine ligand was able to switch from the P1* pathway to the P1 

pathway in the LiGaMD_Dual simulations. The ligand bound to the S1 pocket via an 

intermediate site in the S1* pocket. LiGaMD_Dual appeared to provide improved sampling 

compared with MD simulations used in the MSM so that such binding process could be 

captured. This LiGaMD_Dual simulation finding also suggested that the final target binding 

site of benzamidine is located in the S1 pocket as determined in the X-ray crystal structure. 

Ligand binding in the X-ray conformational state corresponded the global free energy 

minimum in the calculated PMF profiles.
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Furthermore, we compared the trypsin ligand binding free energy and kinetic rate constants 

with experimental data57 and computational predictions from previous enhanced 

sampling8, 16a, 24 and MSM14, 22 studies since converged cMD simulations were not 

available yet on this system. The ligand binding free energy calculated from five 1 μs 

LiGaMD_Dual simulations ΔG0 = −6.13 ± 0.35 kcal/mol was in excellent agreement with 

the experimental value ΔGexp
0 = − 6.2 kcal/mol. The ligand kinetic rate constants calculated 

by reweighting of the LiGaMD_Dual simulations were kon = 1.15 ± 0.79 × 107 M−1 ⋅ s−1 and 

koff = 3.53 ± 1.41 s−1. The binding rate constant kon agreed excellently with the 

experimental value kon
exp = 2.9 × 107 M−1 ⋅ s−1, while the dissociation rate constant koff 

appeared to be slower than the experimental value koff
exp = 600 ± 300 s−157 (Table 5). In 

comparison, the ligand dissociation rate constant estimated from five 1 μs LiGaMD_Dual 

simulations koff = 3.53 ± 1.41 s−1 was similar to the value of koff = 9.1 ± 2.5 s−1 obtained 

from previous metadynamics simulations also performed at a total of 5 μs length16a. 

However, the benzamidine binding free energy calculated from LiGaMD_Dual simulations 

ΔG0 = −6.13 ± 0.35 kcal/mol was more accurate than the values of −8.5 ± 0.7 kcal/mol 

obtained from separate funnel metadynamics simulations8 and −5.06 kcal/mol from the 

SITSMD simulations24, as compared with experimental data ΔGexp
0 = − 6.2 kcal/mol. In this 

regard, the more recent MSM predicted accurate ligand binding free energy ΔG0 = −6.05 ± 1 

kcal/mol and binding rate constant kon = 6.4 ± 1.6 × 107 M−1·s−1, while the model predicted 

koff = 131 ± 109 × 102 s−1 appeared to be faster than the experimental value22. Both MSM 

and LiGaMD_Dual could be applied to calculate the ligand binding free energy and kinetic 

rate constants simultaneously, but more expensive and significantly longer simulations were 

needed for the MSM (~150 μs in total) than for the LiGaMD_Dual simulations (1 μs × 5).

In summary, LiGaMD provides a powerful enhanced sampling approach to calculating both 

free energies and kinetic rate constants of ligand binding simultaneously. By physically 

capturing repetitive ligand binding and unbinding through unconstrained enhanced 

sampling, LiGaMD allows us to calculate ligand binding free energies from 3D PMF 

profiles, being distinct from previous methods such as the TI3, FEP4 and funnel 

metadynamics8. In particular, funnel metadynamics also provides an efficient approach to 

calculating ligand binding free energy based on physical PMF profiles8, but it requires 

carefully selected, pre-defined collective variables and relies on restraint potential to confine 

the ligand in a funnel shaped space (increase local ligand concentration) to enhance 

sampling of ligand binding. In comparison, LiGaMD does not require pre-defined collective 

variables. Multiple ligand molecules are added to directly increase ligand concentration in 

the solvent and enhance ligand binding in LiGaMD simulations. LiGaMD thus allows for 

free sampling of the ligand binding and unbinding processes without any constraints. 

Notably, low-energy wells could be clearly identified for the ligand in the unbound state 

from LiGaMD simulations of trypsin (Fig. 5), but not in the funnel metadynamics 

simulations8. Therefore, LiGaMD appears to simulate diffusion of the unbound ligand in 

solvent more properly. Beyond thermodynamics, LiGaMD also presents, to the best of our 

knowledge, the first approach to estimate the ligand kinetic dissociation and binding rate 

constants using the Kramers’ rate theory. In this context, metadynamics simulations have 
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been applied to calculate the ligand dissociation rate constant16, but not for the binding rate 

constant. Funnel metadynamics has not been applied to study ligand binding kinetics8. 

Taken together, a more comprehensive picture of ligand binding involving thermodynamics, 

kinetics and the newly revealed ligand pathways and mechanisms have been obtained with 

the new LiGaMD method.

In this study, LiGaMD has been demonstrated on host-guest and trypsin protein-ligand 

binding model systems. Nevertheless, the method awaits further testing on many other 

ligand binding systems, notably membrane proteins. Although a total number of 10 ligand 

molecules has been included in the trypsin-benzamidine simulations to facilitate ligand 

binding, it will be more systematic to optimize the number of ligand molecules for future 

simulations according to the ligand solubility. Furthermore, the distance has been used in 

this study to determine when a ligand molecule binds to the protein target site and higher 

boost potential will be applied accordingly to enable ligand dissociation. Mean square 

displacement (MSD) has also been implemented to track ligand diffusion for LiGaMD 

implemented in AMBER 2059 (SI Methods). More metrics that can serve in this purpose for 

a wide range of ligand binding systems with different chemical and physical properties will 

be implemented in the future. These developments are expected to further improve the 

LiGaMD method for applications in characterizing both ligand binding thermodynamics and 

kinetics, which should facilitate computer-aided drug design.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Gaussian accelerated molecular dynamics (GaMD)

Consider a system with N atoms at positions r ≡ r 1, ⋯, r N . When the system potential 

V(r) is lower than a reference energy E, the modified potential V*(r) of the system is 

calculated as:

V *(r) = V (r) + ΔV (r),
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ΔV (r) =
1
2k(E − V (r))2, V (r) < E

0, V (r) ≥ E
(A1)

where k is the harmonic force constant. The two adjustable parameters E and k are 

automatically determined based on three enhanced sampling principles25. The reference 

energy needs to be set in the following range:

V max ≤ E ≤ V min + 1
k , (A2)

where Vmax and Vmin are the system minimum and maximum potential energies. To ensure 

that Eqn. (A2) is valid, k has to satisfy: k ≤ 1
V max − V min

 Let us define k ≡ k0 ⋅ 1
V max − V min

, 

then 0 < k0 ≤ 1. The standard deviation of ΔV needs to be small enough (i.e., narrow 

distribution) to ensure proper energetic reweighting60: σΔV = k(E − Vavg) σV ≤ σ0 where 

Vavg and σV are the average and standard deviation of the system potential energies, σΔV is 

the standard deviation of ΔV with σ0 as a user-specified upper limit (e.g., 10kBT) for proper 

reweighting. When E is set to the lower bound E=Vmax, k0 can be calculated as:

k0 = min 1.0, k0′ = min 1.0, σ0
σV

⋅ V max − V min
V max − V avg

. (A3)

Alternatively, when the threshold energy E is set to its upper bound E = V min + 1
k , k0 is set 

to:

k0 = k0" ≡ 1 − σ0
σV

V max − V min
V avg − V min

, (A4)

if k0" is found to be between 0 and 1. Otherwise, k0 is calculated using Eqn. (A3).

GaMD provides options to boost only the total potential boost (GaMD_Tot), only the 

dihedral potential energy (GaMD_Dih), both the total and dihedral potential energies 

(GaMD_Dual), the non-bonded potential energy (GaMD_NB), both the non-bonded 

potential and dihedral energies (GaMD_Dual_NB), only non-bonded potential energy of the 

bound ligand (LiGaMD), and both the ligand non-bonded potential energy of the bound 

ligand and the remaining potential energy of the entire system (LiGaMD_Dual). The dual-

boost simulation generally provides higher acceleration than the other single-boost 

simulations for enhanced sampling. The simulation parameters comprise of settings for 

calculating the threshold energy values and the effective harmonic force constants of the 

boost potentials.

Appendix B: Energetic reweighting of GaMD simulations

For energetic reweighting of GaMD simulations to calculate potential of mean force (PMF), 

the probability distribution along a reaction coordinate is written as p*(A). Given the boost 
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potential ΔV(r) of each frame, p*(A) can be reweighted to recover the canonical ensemble 

distribution, p(A), as:

p Aj = p* Aj
eβΔV (r) j

∑i = 1
M p* Ai eβΔV (r)

i
, j = 1, …, M, (A5)

where M is the number of bins, β = kBT and eβΔV (r) j is the ensemble-averaged Boltzmann 

factor of ΔV(r) for simulation frames found in the jth bin. The ensemble-averaged 

reweighting factor can be approximated using cumulant expansion:

eβΔV (r) = exp ∑k = 1
∞ βk

k!Ck , (A6)

where the first two cumulants are given by:

C1 = ΔV

C2 = ΔV 2 − ΔV 2 = σv2 .
(A7)

The boost potential obtained from GaMD simulations usually follows near-Gaussian 

distribution33a. Cumulant expansion to the second order thus provides a good approximation 

for computing the reweighting factor25, 60. The reweighted free energy F(A) = −kBT ln p(A) 

is calculated as:

F (A) = F*(A) − ∑k = 1
2 βk

k!Ck + Fc, (A8)

where F*(A) = −kBT ln p*(A) is the modified free energy obtained from GaMD simulation 

and Fc is a constant.

Appendix C: Reweighting of Biomolecular Kinetics with Kramers’ Rate 

Theory

A brief summary is provided here for reweighting of biomolecular kinetics from GaMD 

simulations with Kramers rate theory as described recently26. For a particle climbing over 

potential energy barriers, Kramers showed that the reaction rate depends on temperature and 

viscosity of the host medium61. The reaction rates were derived for both limiting cases of 

small and large viscosity. In the context of biomolecular simulations in aqueous medium, it 

is relevant for us to focus on the large viscosity limiting case. Biomolecules move in the 

high friction (“overdamping”) regime and energy barriers are much greater than kBT (kB is 

the Boltzmann’s constant and T is temperature). In this case, the reaction rate is calculated 

as:

kR ≅ 2πwmwb
ξ e−ΔF /kBT , (A9)
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where wm and wb are frequencies of the approximated harmonic oscillators (also referred to 

as curvatures of free energy surface44) near the energy minimum and barrier, respectively, ξ 
is the friction constant and ΔF is the free energy barrier of transition.

Without the loss of generality, we consider a 1D potential of mean force (PMF) free energy 

profile of a reaction coordinate F(A). Near minimum at Am, the free energy can be 

approximated by a harmonic oscillator61 of frequency wm, i.e., F (A) = 1
2 2πwm

2 A − Am
2. 

Near barrier at Ab, the free energy is approximated as F (A) = Fb − 1
2 2πwb

2 A − Ab
2, where 

Fb is the free energy at Ab and wb is the frequency of the approximated harmonic oscillator. 

Then we can calculate wm and wb as:

w = |F"(A)|
2π , (A10)

where F”(A) is the second-order derivative of the PMF profile.

The friction constant ξ or diffusion coefficient D with ξ = kBT/D can be estimated as 

follows. First, we calculate a survival function S(t) as the probability that the system remains 

in an energy well longer than time t. In a direct approach45, we count the events that the 

system visits the energy well throughout a simulation. We record and measure the time 

intervals of each visiting event until the system escapes over an energy barrier. Then we have 

a time series Ti, where i=1, 2, …, N, and N is the total number barrier transitions observed in 

the simulation. The time series is subsequently ordered such that T 1 ≤ T 2 ≤ ⋯ ≤ T N. With 

that, the survival function is estimated as S T i ≈ 1 − i/N, which is the probability that the 

system is trapped in the energy well for time longer than T i. Alternatively, we can 

numerically calculate the time-dependent probability density of reaction coordinate A, 

ρ(A,t) by solving the Smoluchowski equation along 1D PMF profile of the reaction 

coordinate:

∂ρ(A, t)
∂t = D ∂

∂A e−F (A)/kBT ∂
∂A eF (A)/kBTρ . (A11)

Then the survival function is calculated as S(t) = ∫t
∞∫Ab1

Ab2ρ(A, t)dAdt, where Ab1 and Ab2 are 

two boundaries of the energy well. The initial condition is often set as the Boltzmann 

distribution of reaction coordinate A in the energy well, i.e., ρ(A, 0) = e−F (A)/kBT .

Second, using the above survival functions, we estimate the effective kinetic rates as the 

negative of the slopes in linear fitting of the ln[S(t)] versus t, i.e., k = −dln[S(t)]/dt. This is 

based on the assumption that the survival function exhibits exponential decay as observed in 

earlier studies45, 62. Finally, the apparent diffusion coefficient D is obtained by dividing the 

kinetic rate calculated directly using the transition time series collected from the simulation 

by that using the probability density solution of the Smoluchowski equation45.
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The curvatures and energy barriers of the reweighted and modified free energy profiles, as 

well as the apparent diffusion coefficients, are calculated and used in Kramers’ rate equation 

to determine accelerations of biomolecular kinetics in the GaMD simulations26.
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Fig. 1. 
Comparison of potential of mean force (PMF) free energy profiles calculated from 

conventional MD (cMD), LiGaMD and dual-boost LiGaMD (LiGaMD_Dual) simulations of 

host-guest binding: (A-B) Computational models of the β-cyclodextrin (CD) host (balls-and-

sticks) in the presence of guest (A) aspirin and (B) 1-butanol (thick sticks) in aqueous 

medium (cyan). (C-F) PMF profiles calculated from microsecond-timescale cMD 

simulations and three independent 300 ns LiGaMD and LiGaMD_Dual simulations of (C) 

CD using the GAFF force field with aspirin, (D) CD using the GAFF force field with 1-

butanol, (E) CD using the q4MD force field with aspirin, (F) CD using the q4MD force field 

with 1-butanol.
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Fig. 2. 
Free energy profiles and low-energy conformational states of guest binding to the CD host 

that was modeled with the GAFF force field: (A) PMF profiles of the host radius of gyration 

(Rg) calculated from cMD simulations in the ligand-free (apo), aspirin and 1-butanol binding 

forms. Two low-energy states (“Compact” and “Open”) are identified for the CD host. (B) 

Three representative conformational states observed in simulations of guest aspirin binding 

to CD modeled with GAFF: the “Bound (B)”, “Intermediate (I)” and “Unbound (U)”, in 

which the CD host adopted primarily the Open, Compact and Compact conformations, 

respectively. (C-E) 2D PMF profiles of the host Rg versus the center-of-mass distance 

between host-guest of (C) aspirin binding from 9500 ns cMD simulation, (D) aspirin binding 

from three 300 ns LiGaMD_Dual simulation combined, (E) 1-butanol binding from 6500 ns 
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cMD simulation, and (F) 1-butanol binding from three 300 ns LiGaMD_Dual simulation 

combined. The low-energy states are labeled.
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Fig. 3. 
Free energy profiles and low-energy conformational states of guest binding to the CD host 

that was modeled with the q4MD force field: (A) PMF profiles of the host radius of gyration 

(Rg) calculated from cMD simulations in the ligand-free (apo), aspirin and 1-butanol binding 

forms. Two low-energy states (“Compact” and “Open”) are labeled for the CD host. (B) 

Three representative conformational states observed in simulations of aspirin binding to CD 

modeled with q4MD: the “Bound (B)”, “Intermediate (I)” and “Unbound (U)”, in which the 

CD host all adopted primarily the Open conformation. (C-E) 2D PMF profiles regarding the 

host Rg versus center-of-mass distance between host-guest of (C) aspirin binding from 6000 

ns cMD simulation, (D) aspirin binding from three 300 ns LiGaMD_Dual simulation 
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combined, (E) 1-butanol binding from 5000 ns cMD simulation, and (F) 1-butanol binding 

from three 300 ns LiGaMD_Dual simulation combined. The low-energy states are labeled.
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Fig. 4. 
(A-F) The original (reweighted) and modified (no reweighting) PMF profiles of (A) 

LiGaMD simulations of CD using the GAFF force field with aspirin, (B) LiGaMD_Dual 

simulations of CD using the GAFF force field with aspirin, (C) LiGaMD simulations of CD 

using the q4MD force field with aspirin, (D) LiGaMD_Dual simulations of CD using the 

q4MD force field with aspirin, (E) LiGaMD simulations of CD using the q4MD force field 

with 1-butanol, and (F) LiGaMD_Dual simulations of CD using the q4MD force field with 

1-butanol.
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Fig. 5. 
LiGaMD_Dual simulations have captured repetitive binding and unbinding of the 

benzamidine ligand in the trypsin protein: (A) time courses of distances between the charge 

centers at the amidine C atom in benzamidine and CG atom of Asp189 in trypsin calculated 

from a representative 1 μs LiGaMD_Dual simulation (Sim2 in Table 5). Distance plots of the 

other simulations are provided in Figure S5. (B) The original (reweighted) and modified (no 

reweighting) PMF profiles of the distance between the amidine C atom of benzamidine 

ligand and CG atom of protein residue Asp189. (C) Reweighted and (D) modified 2D PMF 

profiles of the benzamidine:C – Asp189:CG and Trp215:NE – Asp189:CG atom distances. 

The PMF profiles were calculated by combining all five 1000 ns LiGaMD_Dual 

simulations.
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Fig. 6. 
Six representative low-energy conformational states as identified from PMF profiles of 

benzamidine (BEN) ligand (spheres) binding to trypsin (blue ribbons): (A) “Bound (B)”, (B) 

“Intermediate 1 (I1)”, (C) “Intermediate 2 (I2)”, (D) “Intermediate 3 (I3)”, (E) “Unbound 

(U1)”, and (F) “Unbound (U2)”. Reference X-ray conformations of the ligand and protein 

(PDB: 3PTB) are shown in green spheres and grey ribbons, respectively. Protein residues 

Asp189 and Trp215 that are important for ligand binding and those in the catalytic triad 

(His57, Asp102 and Ser214) are highlighted in thick sticks.
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Fig. 7. 
Pathways of the benzamidine (BEN) ligand (sticks) in trypsin (ribbons) obtained from 

structural clustering of five 1000 ns LiGaMD_Dual simulations: (A) Sim1, (B) Sim2, (C) 

Sim3, (D) Sim4 and (E) Sim5. The ligand is represented by sticks that are colored by 

reweighted PMF values of the ligand clusters in a blue (0 kcal/mol)-white (7.5 kcal/mol)-red 

(15.0 kcal/mol) scale. X-ray conformation of the ligand is shown in green spheres for 

reference. Protein residues Asp189 and Trp215 that are important for ligand binding and 

those in the catalytic triad (His57, Asp102 and Ser214) are highlighted in thick sticks. Other 

negatively charged residues in the protein including Glu70, Asp71, Glu77, Glu80 and 
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Asp153 are shown in thin sticks. The protein loops containing residues Asp189 and Trp215 

are highlighted in yellow and green, respectively.
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Table 1

Summary of host-guest binding thermodynamics and kinetics obtained from (A) experimental data, (B) cMD 

simulations from Ref.21 and (C) GaMD simulations on the binding of two guest molecules (aspirin and 1-

butanol) to the β-cyclodextrin (CD) host. In simulations, the CD host has been modeled with both the GAFF 

and q4MD force fields. ΔG is the ligand binding free energy. The ΔGcomp1 and ΔGcomp2 are ligand binding 

free energies with ΔGcomp1 computed using the guest binding enthalpy and entropy and ΔGcomp2 computed 

using the guest dissociation and binding rate constants estimated from the cMD simulations21. kon and koff are 

the kinetic dissociation and binding rate constants, respectively, with ND and NB being the number of host-

guest dissociation and binding events collected from individual simulations. ΔV is the system boost potential 

applied in GaMD simulations. kon* and koff* are the kinetic dissociation and binding rate constants, which are 

calculated from only the GaMD simulations with ND > 0 and NB > 0.

Host Ligand ΔG (kcal/mol) kon (×108 M·s−1) koff (×106 s−1)

CD
Aspirin −3.74 ± 0.00 7.2 ± 0.04 1.3 ± 0.03

1-Butanol −1.67 ± 0.19 2.8 ± 0.8 38 ± 6

(A) Experimental data

Host Ligand cMD ND NB ΔGcomp1 (kcal/mol) ΔGcomp2 (kcal/mol) kon (×108 M·s−1) koff (×106 s−1)

CD: GAFF
Aspirin 9500 ns 133 133 −3.84 ± 0.35 −2.27 ± 0.06 11 ± 0.1 24 ± 3

1-Butanol 6500 ns 42 42 1.01 ± 0.59 −0.41 ± 0.10 2.2 ± 0.1 110 ± 20

CD: q4MD
Aspirin 6000 ns 17 18 −6.33 ± 0.37 −4.11 ± 0.05 32 ± 3 3.1 ± 0.9

1-Butanol 5000 ns 89 89 −1.33 ± 0.34 −2.27 ± 0.02 15 ± 0.3 33 ± 0.7

(B) cMD simulations

Host Ligand GaMD (300 ns × 3) ΔV (kcal/mol) ND NB
ΔG (kcal/

mol)
kon* (×108 M

−1·s−1)
koff* (×106 s

−1)

CD: GAFF

Aspirin

GaMD_Tot 6.48 ± 2.59 0, 2, 1 0, 1, 0 - - -

GaMD_Dual 10.37 ± 2.98 0, 3, 0 0, 3, 0 - - -

GaMD_NB 4.15 ± 2.26 1, 1, 2 1, 0, 1 - - -

GaMD_NB_Dual 8.75 ± 2.82 0, 1, 0 0, 1, 0 - - -

LiGaMD 2.60 ± 1.27 3, 1, 2 2, 1, 1 −4.90 ± 0.03 3.05 ± 0.92 40.67 ± 24.25

LiGaMD_Dual 9.18 ± 2.84 2, 4, 2 2, 3, 2 −2.89 ± 0.18 3.93 ± 0.98 275.6 ± 57.5

1-Butanol
LiGaMD 2.54 ± 1.00 1, 0, 0 1, 0, 0 - - -

LiGaMD_Dual 9.51 ± 2.85 1, 0, 1 1, 0, 1 - - -

CD: q4MD
Aspirin

GaMD_Tot 6.22 ± 2.52 0, 2, 0 0, 2, 0 - - -

GaMD_Dual 10.77 ± 3.02 1, 0, 0 1, 0, 0 - - -

GaMD_NB 4.13 ± 2.17 0, 2, 2 0, 2, 2 - - -

GaMD_NB_Dual 8.78 ± 2.83 0, 2, 2 0, 2, 2 - - -

LiGaMD 2.84 ± 1.34 4, 3, 2 3, 2, 2 −4.74 ± 0.53 8.99 ± 5.02 42.82 ± 15.41

LiGaMD_Dual 10.06 ± 3.15 8, 7, 4 8, 6, 3 −3.34 ± 0.15 10.37 ± 2.60 56.61 ± 19.05

1-Butanol LiGaMD 2.87 ± 1.12 9, 4, 7 9, 4, 7 −2.84 ± 0.58 8.76 ± 2.93 482.8 ± 246.3
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Host Ligand GaMD (300 ns × 3) ΔV (kcal/mol) ND NB
ΔG (kcal/

mol)
kon* (×108 M

−1·s−1)
koff* (×106 s

−1)

LiGaMD_Dual 9.74 ± 2.93 9, 13, 8 9, 13, 8 −1.34 ± 0.10 13.53 ± 2.15 436.8 ± 90.7

(C) GaMD simulations.
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Table 2

Comparison of the calculated host-guest binding free energies: (A) between simulations and experimental 

data21 and (B) between LiGaMD and cMD simulations21.

Host Ligand
ΔGsim − ΔGexp (kcal/mol)

cMD (ΔGcomp1) cMD (ΔGcomp2) LiGaMD LiGaMD_Dual

CD: GAFF
Aspirin −0.10 ± 0.35 1.47 ± 0.06 −1.16 ± 0.03 0.85 ± 0.18

1-Butanol 2.68 ± 0.62 1.26 ± 0.21 - -

CD: q4MD
Aspirin −2.59 ± 0.37 −0.37 ± 0.05 −1.00 ± 0.53 0.40 ± 0.15

1-Butanol 0.34 ± 0.39 −0.60 ± 0.19 −1.17 ± 0.61 0.33 ± 0.21

(A) Comparison of simulations with experimental data.

Host Ligand
ΔG − ΔGcomp1 (kcal/mol) ΔG − ΔGcomp2 (kcal/mol)

LiGaMD LiGaMD_Dual LiGaMD LiGaMD_Dual

CD: GAFF Aspirin −1.06 ± 0.35 0.95 ± 0.39 −2.63 ± 0.07 −0.62 ± 0.19

CD: q4MD
Aspirin 1.59 ± 0.65 2.99 ± 0.40 −0.63 ± 0.53 0.77 ± 0.16

1-Butanol −1.51 ± 0.67 −0.01 ± 0.35 −0.57 ± 0.58 0.93 ± 0.10

(B) Comparison of LiGaMD with cMD simulations.
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Table 3

Accelerations of host-guest dissociation and binding rate constants obtained from (A) LiGaMD and (B) 

LiGaMD_Dual simulations as compared directly with previous cMD simulations21 and those derived using the 

Transition State Theory and Kramers’ Rate Theory.

Host Ligand
LiGaMD vs. cMD Transition State Theory Kramer’s Rate Theory

kon*/kon koff*/koff kon*/kon koff*/koff kon*/kon koff*/koff

CD: GAFF Aspirin 0.28 ± 0.08 1.69 ± 1.03 0.12 ± 0.09 15.07 ± 12.94 0.20 ± 0.16 12.19 ± 10.47

CD: q4MD
Aspirin 0.28 ± 0.16 13.81 ± 6.39 0.19 ± 0.16 21.59 ± 16.11 0.02 ± 0.02 12.36 ± 9.22

1-Butanol 0.58 ± 0.20 14.63 ± 7.47 0.43 ± 0.34 8.77 ± 6.72 0.55 ± 0.43 7.91 ± 6.06

(A) LiGaMD simulations

Host Ligand
LiGaMD_Dual vs. cMD Transition State Theory Kramer’s Rate Theory

kon*/kon koff*/koff kon*/kon koff*/koff kon*/kon koff*/koff

CD: GAFF Aspirin 0.36 ± 0.09 11.48 ± 2.79 0.09 ± 0.07 11.89 ± 9.36 0.06 ± 0.05 7.97 ± 6.27

CD: q4MD
Aspirin 0.32 ± 0.09 18.26 ± 8.12 0.18 ± 0.14 41.37 ± 22.17 0.23 ± 0.18 22.82 ± 12.23

1-Butanol 0.90 ± 0.14 13.24 ± 2.76 0.23 ± 0.11 5.54 ± 2.73 1.03 ± 0.47 5.96 ± 2.94

(B) LiGaMD_Dual simulations
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Table 4

Summary of LiGaMD_Dual production simulations performed on the benzamidine ligand binding to trypsin. 

ΔV is the GaMD boost potential. ND and NB are the number of host-guest dissociation and binding events 

recorded from individual simulations.

System Method ID Length (ns) ΔV (kcal/mol) ND NB

Trypsin - benzamidine LiGaMD_Dual

Sim1 1000 20.93 ± 4.24 3 3

Sim2 1000 21.64 ± 4.67 5 4

Sim3 1000 20.99 ± 4.23 11 10

Sim4 1000 20.87 ± 4.18 4 4

Sim5 1000 20.94 ± 4.18 4 4
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Table 5

Comparison of trypsin protein-ligand binding free energy and kinetic rates obtained from experimental data 

and LiGaMD_Dual simulations. ΔG is the ligand binding free energy. kon and koff are the kinetic dissociation 

and binding rate constants, respectively, from experimental data or LiGaMD_Dual simulations with 

reweighting using Kramers’ rate theory. kon* and koff* are the accelerated kinetic dissociation and binding rate 

constants calculated directly from LiGaMD_Dual simulations without reweighting.

Method ΔG (kcal/mol) kon (M−1·s−1) koff (s−1) kon* (M−1·s−1) koff* (s−1)

Experiment −6.2 2.9 × 107 600 ± 300 - -

LiGaMD_Dual −6.13 ± 0.35 1.15 ± 0.79 × 107 3.53 ± 1.41 1.58 ± 1.09 × 108 3.40 ± 1.36 × 107
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