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Introduction
Asthma is a common disease that affects the health 
of about 330 million people worldwide.1 As a 
chronic airway inflammation disease, it is charac-
terized by airway hyperresponsiveness and reversi-
ble airway obstruction, resulting in shortness of 
breath, recurrent wheezing, chest tightness, and 
coughing.2 Currently, the widely used diagnostic 
criteria for asthma, such as the Global Initiative for 
Asthma (GINA),3–6 mainly focus on the medical 
history of respiratory symptoms and lung function 

tests, for which there are also some drawbacks. For 
instance, asthma may be neglected when patients 
suffer from multiple diseases (heart failure, ane-
mia, etc.) which could cause dyspnea.7 Besides, 
forced expiratory volume in 1 s, acting as an effec-
tive way to detect airway obstruction and an 
important tool in the diagnosis of asthma,8 cannot 
be used alone for classification of different types 
and stages of asthma.9–11 Therefore, a universal 
and high-specificity biomarker to assist the diagno-
sis of asthma is required in clinical practice.
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miR-320a, miR-1246, miR-144-5p, and miR-1165-3p from peripheral blood could potentially 
act as a diagnostic biomarker for asthma.

The reviews of this paper are available via the supplemental material section.

Keywords:  asthma, diagnostic biomarker, microRNA

Received: 24 July 2020; revised manuscript accepted: 26 November 2020.

Correspondence to:	  
Yuan Zhang  
Department of Respiratory 
Medicine, Xiangya 
Hospital, Central South 
University, Changsha, 
Hunan 410008, China 

National Clinical Research 
Center for Geriatric 
Disorders, Xiangya 
Hospital, Central South 
University, Changsha, 
Hunan 410008, China 
zhangyuan9194@csu.
edu.cn

Li Xu  
Department of Respiratory 
Medicine, Xiangya 
Hospital, Central South 
University, Changsha, 
Hunan, China 

School of Life Sciences, 
Central South University, 
Changsha, Hunan, China 

National Clinical Research 
Center for Geriatric 
Disorders, Xiangya 
Hospital, Central South 
University, Changsha, 
Hunan, China

Minhan Yi 
Yun Tan 
Zixun Yi  
School of Life Sciences, 
Central South University, 
Changsha, Hunan, China

*Li Xu and Minhan Yi 
contributed equally to 
this work and are co-first 
authors

981863 TAR0010.1177/1753466620981863Therapeutic Advances in Respiratory DiseaseL Xu, M Yi
research-article20202020

Meta-analysis

https://journals.sagepub.com/home/tar
https://uk.sagepub.com/en-gb/journals-permissions
https://uk.sagepub.com/en-gb/journals-permissions
mailto:zhangyuan9194@csu.edu.cn
mailto:zhangyuan9194@csu.edu.cn


Therapeutic Advances in Respiratory Disease 14

2	 journals.sagepub.com/home/tar

MicroRNA (miRNA) is a class of endogenous 
non-coding small RNAs of approximately 19–22 
nucleotides in length, which serve as posttran-
scriptional regulators of gene expression.12,13 
Studies have shown that miRNAs can be involved 
in the pathogenesis of a variety of allergic dis-
eases, such as asthma, allergic rhinitis,14 eosino-
philic esophagitis,15,16 and eczema.17,18 miRNA 
may play a role in coordinating the phenotypic 
programming of immune and airway epithelial 
cells to increase the production of cytokines and 
other mediators, leading to inflammatory charac-
teristics. Niu et  al.19 found that miR-33b can 
inhibit mast cell degranulation by inhibiting the 
release of calcium and the inhibitory pathway of 
antigen- and IgE-dependent aggregation of the 
high-affinity IgE receptor (FcεRI), and could also 
play a role in airway inflammation of asthma and 
mast cell biology. miR-21 was shown to target 
and inhibit the expression of IL-12p35, induce 
dendritic cells to produce more IL-12 and CD4+ 
T cells, and thus reduce the production of inter-
feron-g (IFN-g) and IL-4.20

Recently, miRNA is proposed to be effective in 
the diagnosis of asthma based on a series of stud-
ies.19 Suojalehto et al.21 found that the expression 
of miR-155 was downregulated in the nasal 
mucosa of asthmatic patients. Furthermore, the 
decrease of let-7a-5p in asthma was associated 
with peripheral blood eosinophil ratio.22 
Compared with non-asthmatics and mild-to-
moderate asthmatics, plasma miR-155 level was 
significantly elevated in patients with severe 
asthma.23 Besides, the increased expression of 
miR-146 was known to inhibit the nuclear factor-
kappa B factor (NF-κB), this limiting to inflam-
matory responses in plasma from asthma.24 The 
over-expression of miR-126 in acute asthma was 
found to be correlated with signs of immune 
imbalance and could predict the severity of child-
hood asthma.25

However, the position that miRNAs could be a 
group of good biomarker candidates for asthma is 
inconsistent. Tang et  al.26 pointed out that the 
expression of miR-1268 was higher in the bron-
choalveolar lavage fluid (BALF) of asthmatic adults, 
while Levänen et  al.27 reported no significant 
changes of miR-1268 in BALF in asthmatic adult 
patients compared with the control group. As for 
the let-7 family, the expression of let-7f was upregu-
lated in bronchial epithelial cells (BECs) from asth-
matic patients,28 whereas let-7f was downregulated 

in CD4+ T cells from peripheral blood mononu-
clear cells (PBMCs).28,29 Furthermore, the miR-
146a was decreased in bronchial biopsies from 
Australian patients with asthma;30 however, it was 
increased in plasma from asthma in Egypt.31 All 
these may partly be explained by different ethnici-
ties, applications for different diagnosis criteria, 
different sample sources, detection methods, and  
so on.

To determine whether miRNA could be a good 
biomarker candidate for the diagnosis of asthma 
or not, we conducted a comprehensive qualita-
tive and combined quantitative research of the 
diagnostic value of miRNAs in asthma. We found 
that more than 100 miRNAs were reported dif-
ferently expressed in asthma, and the combined 
miRNAs of miR-185-5p, miR-155, let-7a, miR-
21, miR-320a, miR-1246, miR-144-5p, and 
miR-1165-3p from peripheral blood could play a 
role as diagnostic biomarkers for asthma from 
our analysis.

Materials and methods

Search strategy
We searched databases including PubMed, 
Embase, Web of Science, and Cochrane Library 
through 31 May 2020, with the key terms 
“asthma,” “miRNA” and “microRNA”. At the 
same time, the references of relevant literature 
were manually searched. The whole process of lit-
erature searching and screening was done by two 
independent staff. When there was a dispute, it 
was discussed with a third party.

Inclusion criteria based on PICOS
The inclusion criteria for the selection of eligible 
studies were according to the PICOS principle as 
follows:

(1)	 Participants (P): the study included asthma 
patients of different ages, including chil-
dren and adults. All cases were reported as 
asthma based on GINA,4–6 American 
Thoracic Society Guidelines (ATSG),32 
National Heart, Lung, and Blood Institute 
(NHLBI),33 Spanish guidelines of the 
management of Asthma (GEMA),34 
International Study of Asthma and Allergies 
in Children (ISAAC),35 Chinese guideline 
for the prevention and management of 
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bronchial asthma (CGBS),36 Guidelines for 
Diagnosis and Prevention of Bronchial 
Asthma in Pediatric Group (GDPB),37,38 
Guideline of Severe Asthma Research 
Program (GSARP)39 and asthma patients 
diagnosed by physician.

(2)	 Intervention (I): specific designed or com-
mercial arrays, quantitative real-time poly-
merase chain reaction (qRT-PCR), or 
next-generation sequencing (NGS) were 
used to detect the miRNAs expression lev-
els in all participants.

(3)	 Control (C): all controls were from healthy 
people or non-asthmatic controls.

(4)	 Outcomes (O): (1) Qualitative analysis: 
publications reported the specific miRNA 
types which were differently expressed 
between cases and controls. (2) Quantitative 
analysis: publications reported specific dif-
ferently expressed miRNAs with data for 
diagnosis evaluation among all participants, 
including true positive (TP), false positive 
(FP), false negative (FN), and true negative 
(TN).

(5)	 Studies (S): Case-control design or cohort 
design.

Exclusion criteria
Studies were excluded if: (1) the literature was 
not in English; (2) the type of the research was 
a review, case report, or conference summary; 
(3) the publication was a small-sized study on 
the same topic from the same team which also 
shared overlapped participants with large-sized 
studies; (4) the data were incomplete for 
analysis.

Data extraction
The extracted data consisted of two parts: the 
first part contains basic information such as the 
first author, the year and region of publication, 
the numbers and ages of participates, and the 
details of differently expressed miRNA, includ-
ing the specific miRNA types, the sources of 
researched samples, detection methods of 
reported miRNAs, and expression trend between 
cases and controls. The second part is the diag-
nostic data used for quantitative analysis, includ-
ing TP, FP, FN, and TN for all participants. 
Two independent researchers extracted the data. 
Disagreements were discussed and resolved with 
the third researcher.

Quality assessment for publications
We used the Newcastle–Ottawa Scale (NOS),40 a 
common tool for quality evaluation of non-
randomized study, to estimate all qualitative and 
quantitative studies included. The total score of 
the NOS evaluation is 9 points. Five points or more 
is considered not of low quality. Besides, we also 
evaluated the papers applied for quantitative analysis 
by the Quality Assessment of Diagnostic Accuracy 
Studies-2 (QUADAS-2)41 through RevMan5.3 with 
the levels of “high,” “low” and “unclear.”

Data analysis
In this research, we used the bivariate model for 
quantitative analysis of the diagnostic value of 
miRNAs in asthma.42 To test whether the study 
effect size could be combined or not, the 
Spearman correlation coefficient was used to 
determine whether there was a threshold effect in 
the study. Generally, r = 0.6 is taken as the criti-
cal value, and if the Spearman correlation coef-
ficient value is greater than this value, the 
threshold effect is considered to exist.43 Then, 
Stata 14.0 statistical software (Stata Corporation, 
College Station, TX, USA) was used for data 
analysis and to calculate the pooled sensitivity 
(Sen), specificity (Spe), positive likelihood ratio 
(PLR), negative likelihood ratio (NLR), diagnos-
tic odds ratio (DOR) the area under curve (AUC) 
and corresponding 95% credible interval (CI). 
To show the clinical utility of miRNAs for 
asthma, Fagan analysis was used to prove the 
relationship among prior probability, likelihood 
ratio, and posterior probability under the pre-test 
probabilities of 25%, 50% and 75% which pre-
sented for clinical suspicion of asthma at 25%, 
50% and 75%, respectively.

I2 is applied to measure the heterogeneity, which 
describes the percentage of variation between 
analyzed studies.44 If I2 = 25%, it means that slight 
heterogeneity existed; I2 = 50% meant moderate 
heterogeneity; high heterogeneity was present 
when I2 = 75%.45 Next, subgroup analysis and 
meta-regression analysis were used to find the 
sources of heterogeneity, which we performed 
from the aspect of sample sources (serum versus 
plasma) and ages (adults versus children), respec-
tively. If there was a significant decrease in heter-
ogeneity in either subgroup, it would be 
considered as the source of heterogeneity. 
Additionally, meta-regression analysis was car-
ried out by taking age and sample sources as 
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covariables respectively and using the restrictive 
maximum likelihood method to establish the 
regression model of effect size to a single covari-
able. When the tau2, which represented the esti-
mate of between-study variance, decreased 
significantly in a covariable (sample sources or 
ages), this covariable would be considered as the 
source of heterogeneity.45

Sensitivity analysis, which is conducted by exclud-
ing one of the included studies in turn, was used 
to determine whether a single study has an undue 
influence on the overall result. We used the 
Funnel plot to evaluate the publication bias. 
Generally speaking, when the Funnel plot is basi-
cally symmetrical, it is considered that there may 
be no publication bias; otherwise, it may indicate 
the existence of publication bias.46

Results

Publication selection and quality assessment
Through the literature retrieval method men-
tioned above, a total of 3091 studies were initially 
obtained. According to the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses 
(PRISMA) standard,47 the standard literature selec-
tion process was conducted as shown in Figure 1. 
We finally included 72 articles21,22,25–31,48–110 with 
4143 patients and 2188 controls based on the 
inclusion and exclusion criteria. The features of 
the included research are presented in Table 1. 
For the quality of all publications included, 36 
studies had NOS scores higher than 7, 30 studies 
had a NOS score of 7, and six studies had a score 
of 6, indicating that the none of included studies 
were of low quality.

Figure 1.  Flowchart of study selection based on the inclusion and exclusion criteria.
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In particular, there were five publications51,53,55,61,92 
among the 72 articles with the data details required 
for quantitative diagnosis analysis for miRNAs in 
asthma (Table 2). There is no threshold effect 
based on the analysis of Spearman (Spearman 
correlation = 0.5946) which means that the study 
effect size could be combined. Through the 
QUADAS-2 quality evaluation of these five stud-
ies, we rated that the research quality at the mid-
dle and upper grades (Supplemental Figure 1).

Profile of miRNAs in asthma
Here, we conducted a qualitative analysis from all 
included studies. Firstly, we found that there 
were more than 100 miRNAs differently expressed 
between asthma and controls in all included pub-
lications (Table 1). Then we created a category 
for miRNAs that were studied in more than two 
articles. We summed up that there were three 
miRNAs families (miR-34 family, miR-27 family, 
and miR-570 family) and two miRNAs (miR-192 
and miR-18a) consistently downregulated. 
Besides, there were two miRNAs (miR-98 and 
miR-145) and two miRNA families (miR-148 
family and miR-223 family) upregulated in 
asthma. However, the expression trends were dif-
ferent in the other four miRNAs (miR-155, miR-
126, miR-19a, and miR-224) and nine miRNA 

families (let-7 family, miR-21 family, miR-146 
family, miR-200 family, miR-221 family, miR-
449 family, miR-125 family, miR-181 family, 
miR-30 family) (Figure 2a).

Then, we analyzed the distribution characteristics 
for the sources of all specimens. Since asthma is a 
kind of respiratory system disease, upper or lower 
airway-derived sample sources containing BECs 
(13%), airway biopsies (7%), nasal mucosa (6%), 
sputum (5%), airway smooth muscle cells 
(ASMCs) (4%), BALF (13%), bronchial biopsy 
(2%), and lung tissue (1%), could directly reflect 
the pathologic change of the disease and have a 
good representative role (Figure 2b). We also 
found that blood or specific part separated from 
plasma (21%), peripheral blood including serum 
(13%), and PBMCs (12%) are possible good 
options for candidate biomarker sources as they 
are easy and non-invasive to access (Figure 2b).

From Figure 2a, we discovered that the most 
widely reported differently expressed miRNAs in 
asthma were the let-7 family (let-7a, let-7d, let-
7e, and let-7f), miR-155, and miR-21 family 
(miR-21 and miR-21-5p). When we tried to 
explore the relationships between these differ-
ently expressed miRNAs and their specimen 
sources, we found that the expression levels of 

Table 2.  Basic diagnostic data extracted from the five articles included in the quantitative analysis.

Study ID No. of 
case/
control

miRNA Level Sample Diagnostic power

  TP FP FN TN DOR Sen Spe

Rodrigo-Muñoz et al.55a 138/39 miR-320a ↑ Serum 130 19 8 20 21.95 0.941 0.514

Rodrigo-Muñoz et al.55b 138/39 miR-185-5p ↑ Serum 123 9 15 30 32.5 0.89 0.8

Rodrigo-Muñoz et al.55c 138/39 miR-144-5p ↓ Serum 81 9 57 30 24.73 0.587 0.774

Rodrigo-Muñoz et al.55d 138/39 miR-1246 ↑ Serum 68 5 70 34 24.14 0.496 0.865

Karam and Abd Elrahman61a 100/100 miR-155 ↑ Plasma 80 11 20 89 33.04 0.8 0.89

Karam and Abd Elrahman61b 100/100 Let-7a ↓ Plasma 85 10 15 90 85 0.85 0.9

Elbehidy et al.92 95/80 miR-21 ↑ Serum 88 18 7 62 45.55 0.93 0.78

Wu et al.53 53/47 miR-1165-3p ↑ Serum 44 7 9 15 10.83 0.83 0.69

ElKashef et al.51a 30/30 miR-21 ↑ Serum 30 2 0 29 NA 1 0.95

ElKashef et al.51b 30/30 miR-155 ↑ Serum 30 0 0 30 NA 1 1

a, b, c, dIndependent study from the same article.
TP, true positive; FP, false positive; FN, false negative; TN, true negative; DOR, diagnostic odds ratio; Sen, sensitivity; Spe, specificity
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miR-155 and let-7 family were differently 
expressed in sputum, BECs, BALF, plasma, 
serum, and PBMCs of asthma patients, which 
reflects the specificity of these miRNAs in differ-
ent sample sources.

The diagnostic value of combined different 
miRNAs for asthma
Based on the listed criteria for the diagnostic data, 
we evaluated the diagnostic value of a combina-
tion of eight miRNAs (miR-185-5p, miR-155, 
let-7a, miR-21, miR-320a, miR-1246, miR-
144-5p, and miR-1165-3p) for asthma (Table 2) 
from all reported differently expressed miRNA in 
five articles included for quantitative analysis. We 
analyzed that the pooled sensitivity and specificity 
of the above miRNAs are 0.87 (95%CI: 0.72–
0.95) and 0.84 (95%CI: 0.74–0.91) respectively 
(Figure 3). The pooled AUC is 0.93 (95%CI: 
0.89–0.94) (Figure 4). Additionally, we calcu-
lated that the pooled PLR, NLR, and DOR of the 
eight miRNAs for asthma were 5.5 (95%CI: 3.1–
9.7), 0.15 (95%CI: 0.07–0.36), and 35 (95%CI: 
10–127) individually, which indicates that the 
probability of asthma increased by 5.5 times when 
the miRNA test was positive, while the incidence 
of asthma only increased by 0.15 times when 
miRNA was negative. This information supports 
that the combination of these miRNAs has a rela-
tively good biomarker role in asthma.

When testing the possibility of application, we 
deduced that given a pre-test probability (Prob) of 
25% (low clinical suspicion of asthma: 25%), the 
posterior probability positive and negative were 
65% and 5%, respectively (Figure 5a). Similarly, 
the combination of these miRNAs could increase 
the diagnosis of asthma to 85% (Figure 5b) and 
94% (Figure 5c) separately when setting the pre-
test prob at 50% (clinical suspicion of asthma: 
50%) or 75% (high clinical suspicion of asthma: 
75%). These results indicate that the combination 
of these miRNAs could increase the diagnosis 
rates of asthma, and imply the potential applica-
tion value of these miRNAs in the future.

Subgroup analysis and meta-regression 
analysis
To explore the sources of heterogeneity for com-
bined effect size (I2 = 79.3%), we performed a 
subgroup analysis firstly from the aspect of sam-
ple sources. We found that the combination of 
the above eight miRNAs from serum performed 
better in Sen than plasma (0.89, 95%CI: 0.77–
1.00 versus 0.83, 95%CI: 0.54–0.96), and plasma 
performed better in Spe than serum (0.90, 
95%CI: 0.79–1.00 versus 0.81, 95%CI: 0.72–
0.91). The I2 of the serum group was 0.0%; how-
ever, the I2 value in the plasma group was still 
high (I2 = 77.3%) (Supplemental Figure 2a), 
which indicated the sample sources might be one 

Figure 2.  Profile of miRNAs in asthma. (a) differentially expressed miRNAs between asthma patients and controls reported in more 
than two studies. The orange and blue individually represent upregulated and downregulated miRNA in asthma patients compared with 
controls; (b) distribution of the specimen for all differently expressed miRNA between asthma patients and controls, and each color 
stands for a specific sample source. All these data were summarized from 72 included publications according to our listed criteria.
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of the sources of heterogeneity and needed to be 
further confirmed by regression analysis. Then, in 
terms of ages, we found that children with asthma 
had higher Spe (0.87, 95%CI: 0.75–0.98 versus 
0.86, 95%CI: 0.74–0.98) than adults with 
asthma. Adults and children have same Sen (0.87, 
95%CI: 0.69–1.00 versus 0.87, 95%CI: 0.87–
1.00). Similarly, the I2 of the children group was 
0.0%, but the I2 in the adult group was still high 
(I2 = 81.6%) (Supplemental Figure 2b), suggest-
ing age might be one of the sources of heterogene-
ity and needed further exploration.

Next, meta-regression analysis was used to further 
verify the source of heterogeneity and explore the 
heterogeneity contribution of ages and sample 
sources. Sample sources (serum and plasma) and 
ages (adults and children) were taken as covaria-
bles, respectively. Through the regression analysis 
of age, it was found that the tau2 (represent for vari-
ance) decreased from 0.9775 (p = 0.000) to 0.04453 
(p = 0.035), a decrease of 95.44%, indicating that 

age could explain the 95.44% of heterogeneity 
source. However, from the aspect of sample types, 
there was no significant change in tau2 (0.9775  
versus 0.9055), suggesting that the specimen types 
may not be a main source of heterogeneity 
(Supplemental Figure 3).

Sensitivity analysis and publication bias
Through sensitivity analysis, we found that there is 
no significant variation of the compiled value when 
excluding one study in turn for all included data, 
indicating that the results for the overall studies were 
not overly dependent on one study (Supplemental 
Table 1). Moreover, the Funnel plot was symmetri-
cal and showed no significant publication bias in the 
present analysis (Supplemental Figure 4).

Discussion
We conducted a qualitative and combined quan-
titative study to evaluate the diagnostic value of 

Figure 3.  Forest plots for the diagnostic value of the combination of eight miRNAs in asthma. Left is the 
pooled sensitivity analysis. Right is the pooled specificity analysis. The combined miRNAs contain miR-185-5p, 
miR-155, let-7a, miR-21, miR-320a, miR-1246, miR-144-5p, and miR-1165-3p.
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miRNA in asthma. To sum up, there were more 
than 100 miRNAs from all included studies dif-
ferently expressed in asthma. Though the expres-
sion levels and trends were different depending 
on different publications, we found that the 
pooled miRNAs (miR-185-5p, miR-155, let-7a, 
miR-21, miR-320a, miR-1246, miR-144-5p, and 
miR-1165-3p) had a high diagnostic value 
(Sen = 0.87, 95%CI: 0.72–0.95; Spe = 0.84, 
95%CI: 0.74–0.91; AUC = 0.93, 95%CI: 0.89–
0.94). As far as we know, this is the first compre-
hensive analysis of the diagnostic value of miRNA 
for asthma.

It is reported in many studies that microRNA 
could act as a new potential biomarker for a series 
of respiratory diseases. The role of miRNAs in 
lung cancer has been confirmed. In 2018, Pan 
et al.112 found that miR-33a-5p and miR-128-3p 
had high sensitivity and specificity in the early 

diagnosis of lung cancer, either in combination or 
alone. The diagnostic value of miR-339-5p and 
miR-21 in lung adenocarcinoma, especially in 
early stage, has also been demonstrated in the 
study of Zhang et  al.113 Additionally, Wang 
et al.114 proposed that miR-210 was significantly 
decreased in peripheral blood of patients with 
chronic obstructive pulmonary disease, and had a 
high diagnostic value of Sen (85.6%), Spe 
(72.6%), and AUC (0.821). Similar situations 
were reported in pulmonary tuberculosis (PTB). 
According to the research of Zhang et al.,113 six 
kinds of serum-derived miRNAs (miR-378, miR-
483-5p, miR-22, miR-29c, miR-101, and miR-
320b) were significantly different in PTB 
compared with healthy people, and other respira-
tory diseases had a high Sen, Spe, and AUC of 
95.0%, 91.8%, and 95%, respectively. 
Furthermore, by comparing acute lung injury 
(ALI) and healthy patients, the application of 
miR-140 from peripheral blood had a high AUC 
of 93.5% in ALI.115 To some extent, the evidence 
supports the potential and possibility of miRNA 
in the application of diagnosis for asthma.

Related function and mechanism studies also 
support the pathogenesis role for miRNAs, such 
as miR-185-5p, miR-155, let-7a, miR-21, and 
miR-1165-3p, as biomarkers for asthma. Studies 
have shown that miR-155 could inhibit interleu-
kin 13 (IL-13)-induced bronchial smooth muscle 
cell proliferation and migration by targeting TAB2 
and affecting asthma signaling pathways, and  
also participates in allergic airway inflammation 
by regulating the transcription factor PU1.111,116 
miR-21 could stimulate fibroblasts through  
TGF-1, affecting relevant targets of the Wnt 
pathway, and thereby affect lung disease, espe-
cially lung fibroblast function in asthma accord-
ing to the study of Ong et al.117 Besides, Kumar 
et  al.118 reported that Let-7a could regulate the 
imbalance of T-lymphocyte subsets in asthma 
and changes the expression of Th2 and Th17-
related cytokines IL-13 and IL-17. Furthermore, 
the upregulation of miR-1165-3p could lead to a 
decrease in airway hyperreactivity and airway 
inflammation through directly targeting IL-13.119 
As for miR-185-5p, it participates in calcium 
signaling by targeting NFAT and CaMKII pro-
teins in cardiomyocytes, and may play a role in 
muscle cell hypertrophy, proliferation, and cell 
contraction in asthma.120,121 These results suggest 
that these biomarker candidates play a role in the 
pathogenesis of asthma.

Figure 4.  The summary receiver operating 
characteristic curve for the diagnosis value of the 
combination of the eight miRNAs in asthma. The 
combined miRNAs contain miR-185-5p, miR-155, 
let-7a, miR-21, miR-320a, miR-1246, miR-144-5p, 
and miR-1165-3p. The red diamond represents the 
pooled analysis of all included studies. The number 
of each black circle represents each separate study 
as follows: ① 2020, ElKashef, Smmae.(miR-21); ② 
2020, ElKashef, Smmae.(miR-155); ③ 2019, Wu, C. 
(miR-1165-3p); ④ 2019, Rodrigo-Muñoz, J. M. (miR-
320a); ⑤ 2019, Rodrigo-Muñoz, J. M. (miR-185-5p); 
⑥ 2019, Rodrigo-Muñoz, J. M. (miR-144-5p); ⑦ 2019, 
Rodrigo-Muñoz, J. M. (miR-1246); ⑧ 2019, Karam, R. 
A. (miR-155); ⑨ 2019, Karam, R. A. (Let-7a); ⑩ 2016, 
Elbehidy, R. M. (miR-21).
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According to our results, the combined miRNAs 
(miR-185-5p, miR-155, let-7a, miR-21, miR-
320a, miR-1246, miR-144-5p, and miR-1165-3p) 
could be a potential biomarker for the diagnosis 
of asthma based on a relatively high Sen of 0.87, 
Spe of 0.84, and high AUC of 0.93. Sensitivity is 
the ability to correctly find an individual with a 
specific disease, while specificity is to correctly 
classify the person as disease-free. When faced 
with inconsistent trends of Sen and Spe, we need 
to consider the diseases themselves in the clinical 
setting. For instance, for diseases with high mor-
tality like cancers, biomarkers with high sensitiv-
ity are essential for early screening. Meanwhile, in 
the course of disease diagnosis and treatment, 
especially for those with obvious side effects, a 
tool with high specificity is required. Besides, the 
value of AUC can directly reflect the diagnostic 
effect. AUC between 0.5 and 0.7 indicates a low 
diagnostic value, a value between 0.7 and 0.9 is 
good, and above 0.9 is considered very good.

However, there was some heterogeneity in the 
pooled quantitative statistics for the combination 
of the above eight miRNAs. From the results of 
subgroup analysis and meta-regression analysis, 
we found that age may be one of the main causes 

of heterogeneity, which suggested that it would be 
better to perform analyses in different age groups 
to explore the diagnosis role of miRNAs for asthma 
in future research. Besides, the qualitative analysis 
also provided some evidence for understanding the 
origin of heterogeneity to some extent. For 
instance, the expression level for miR-155 could 
go in a different direction when compared with dif-
ferent control groups.49,72 Moreover, depending 
on the cut-off of expression value of miRNAs, the 
Sen and Spe for miR-155 could be as high as 
100%51 or go down to 80% and 89%, respec-
tively.61 Similar situations of samples derived from 
different regions or different cut-off also affect the 
results of miR-21 for asthma.26,27,51,92 These indi-
cate that further research could be optimized from 
the above aspects to increase the homogeneity.

There are still some limitations to this analysis. 
Firstly, there were only five studies available for 
quantitative analysis, resulting in a small sample 
size of patients and controls included in the study, 
which may weaken the diagnostic value of miR-
NAs in asthma. Besides, due to the limited amount 
of available data, we were unable to explore the 
diagnostic value of individual miRNAs for asthma. 
Nor can we compare the diagnostic power between 

Figure 5.  Fagan plots of the combined of eight miRNAs for asthma. (a–c) were performed under the prior probability value of 25%, 
50%, and 75%, respectively. The combined miRNAs contain miR-185-5p, miR-155, Let-7a, miR-21, miR-320a, miR-1246, miR-144-5p, 
and miR-1165-3p.
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a single miRNA and the combination of specific 
miRNAs in asthma. Additionally, we did not 
explore the relationship between miRNAs and 
related clinical phenotypes. Finally, although the 
bivariate model is widely used in diagnostic meta-
analysis,122–125 we were not able to verify the 
results in an independent data set due to the limi-
tations of the included data.

In conclusion, this study suggests that the combi-
nation of miR-185-5p, miR-155, let-7a, miR-
320a, miR-1246, miR-144-5p, miR-21, and 
miR-1165-3p may have a potential diagnostic 
value for asthma.
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