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Abstract

Background: Individualized hemodynamic monitoring approaches are not well validated. Thus, 

we evaluated of the discriminative performance improvement that might occur when moving from 

non-invasive monitoring (NIM) to invasive monitoring and with increasing levels of featurization 

associated with increasing sampling frequency and referencing to a stable baseline to identify 

bleeding during surgery in a porcine model.

Methods: We collected physiologic waveform data (250Hz) from NIM, central venous (CVC), 

arterial (ART) and pulmonary arterial (PAC) catheters, plus mixed venous O2 saturation and 

cardiac output from 38 anesthetized Yorkshire pigs bled at 20 mL/min until a mean arterial 

pressure of 30 mmHg following a 30-min baseline period. Pre-bleed physiologic data defined a 

personal stable baseline for each subject independently. Nested models were evaluated using 

simple hemodynamic metrics (SM) averaged over 20 second windows and sampled every minute, 

beat-to-beat (B2B) and waveform data (WF) using random forest classification models to identify 

bleeding with or without normalization to personal stable baseline, using a leave-one-pig-out 

cross-validation to minimize model overfitting. Model hyperparameters were tuned to detect stable 

or bleeding states. Bleeding models were compared use both each subject’s personal baseline and 

a grouped average (universal) baseline. Timeliness of bleed onset detection was evaluated by 

comparing the tradeoff between a low false positive rate (FPR) and shortest time to bleed 

detection. Predictive performance was evaluated using a variant of the Receiver Operating 

Characteristic focusing on minimizing FPR and false negative rates (FNR) for true positive and 

true negative rates, respectively.

Results: In general, referencing models to a personal baseline resulted in better bleed detection 

performance for all catheters than using universal baselined data. Increasing granularity from SM 

to B2B and WF progressively improved bleeding detection. All invasive monitoring out-performed 

NIM for both time to bleeding detection and low FPR and FNR. In that regard, when referenced to 
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personal baseline with SM analysis, PAC and ART+PAC performed best; for B2B CVC, PAC and 

ART+PAC performed best; and for WF PAC, CVC, ART+CVC and ART+PAC performed equally 

well and better than other monitoring approaches. Without personal baseline NIM performed 

poorly at all levels, while all catheters performed similarly for SM, with B2B PAC and ART+PAC 

were best, and for WF PAC, ART, ART+CVC and ART+PAC performed equally well and better 

than the other monitoring approaches.

Conclusions: Increasing hemodynamic monitoring featurization by increasing sampling 

frequency and referencing to personal baseline markedly improves the ability of invasive 

monitoring to detect bleed.
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Introduction

Hemodynamic monitoring is often done to identify the onset of cardiovascular insufficiency, 

its progression and response to treatment. However, hemodynamic monitoring is not 

performed using a single device, measure or sampling rate. It reflects a variety of invasively 

and non-invasively physiologic sensors collected both intermittently and continuously, and 

often processed to create fused parameters. No systematic evaluation of their utility has been 

done, either alone or in combination, at varying levels of featurization and relative to a stable 

baseline to identify cardiovascular insufficiency. Hypovolemia is the most common cause of 

cardiovascular decompensation in the operating room. Its magnitude and duration predict 

acute kidney injury, prolonged length of stay and mortality.1 Hypotension is often due to 

hypovolemia. Overt signs of progressive hypovolemia can be obscure. Yet delayed treatment 

of hypovolemia is associated with poor outcomes.1,2 Since clinicians tend to progress from 

non-invasive to more invasive monitoring and at greater measurement frequencies if they 

feel the patient is at increased risk of cardiovascular insufficiency, we examined the 

discriminative impact of such a strategy in our animal model of hemorrhage.

This study addresses monitoring knowledge gaps of surgical patients at risk of hypovolemia. 

Most patients have continuous non-invasive electrocardiogram (ECG) and pulse oximetry 

monitoring, while invasive monitoring is less common and inconsistently applied3 or used.
4,5 Central venous catheters (CVCs) are commonly placed and measure central venous 

pressure, often used to identify volume status and guide fluid therapy,4 though it poorly 

defines volume status or volume responsiveness.6 Arterial catheters (ART) are used less 

often3,4 and primarily to assess mean arterial pressure (MAP) as a surrogate for organ 

perfusion pressure. ART pressure waveform beat-to-beat (B2B) parameters, like pulse 

pressure variation (PPV), cardiac output (CO) and stroke volume variation (SVV) predict 

volume responsiveness,7 and when coupled with resuscitation protocols reduce perioperative 

complications8 and mortality.9 Finally, the pulmonary artery catheter (PAC) continuously 

report central venous and pulmonary artery pressures, CO, and mixed venous O2 saturation 

(SvO2). Although useful in the diagnosis and management of heart failure and pulmonary 

hypertension,10 its value in the assessment of hemorrhagic shock is undefined. Finally, 

invasiveness delays surgery and carries risk of the procedures, making their universal use 
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unwise. We hypothesized that for each hemodynamic monitoring modality, the more closely 

we look at in terms of sampling frequency, data featurization and subject-specific baseline, 

the more accurately we may discriminate between stable and hemorrhage states.

Methods

Overview:

The experiment was designed to study the discriminative impact of three factors: data 

normalization, granularity, and sensing modalities, on our ability to detect hemorrhage. Our 

design moved through three stages: data collection and preprocessing; model training; and 

evaluation. Physiologic data were collected from pig models of hypovolemia both while the 

pig was hemodynamically stable then bled at a constant rate. Hemodynamic data were 

filtered for artifacts and then multiple derived metrics (referred to as features) were 

computed. Subsets of these features were generated by grouping on normalization (either 

using a universal baseline or personal subject-specific baselines), granularity (simple metrics 

(SM) only, beat-to-beat (B2B) metrics, or waveform (WF)-based metrics), and available 

sensing modalities (non-invasive only (NIM), adding CVC, PAC, and/or ART). For each 

subset of features, a classification model (referred to here as a classifier) to discriminate 

between the stable and bleeding periods was trained and validated in a leave-one-pig-out 

cross-validation (LOOCV) framework to minimize model overfitting. Normal ROC area 

under the curve (AUC) only describes overall model sensitivity and specificity, it does not 

highlight model performance at both very low false positive (FPR) and false negative rate 

(FNR), two characteristics important in an alert monitor. Thus, the results of this evaluation 

are presented through modified Receiver Operating Characteristic (ROC) curves 

highlighting positive and negative predictive performance, and Activity Monitoring 

Operating Characteristic (AMOC) curves to present the tradeoff between time to detection 

(TTD) (how fast bleeding can be detected after starting) and false alarm rate.11

Experimental model and data collection:

The protocol was approved by the University of Pittsburgh IACUC and previously 

described.12 Briefly, 46 female Yorkshire pigs (wt. 21.3 ± 0.65 kg) were anesthetized 

(ketamine, xylazine, and telazol) for induction, intubated and ventilated (8 mL/kg tidal 

volume, FiO2 0.4, 3 cmH2O PEEP) on maintenance anesthesia (2.0–3.0% isoflurane). 0.9% 

NaCl solution was infused at 1 mL/kg/h prior to the study. A PAC (Edwards LifeSciences, 

Irvine, CA) equipped with distal fiberoptics to continuously measure SvO2 was inserted via 

internal jugular vein and central venous and pulmonary artery pressures measured. A triple 

lumen 18-ga femoral artery catheter was placed to measure arterial pressure and an 8 Fr 

femoral vein introducer placed for blood removal. The arterial pressure signal was 

simultaneously recorded on a LiDCOplus™ (LiDCO Ltd., London, UK) monitor. Triplicate 

bolus thermodilution cardiac output calibrated the PAC continuous cardiac output and 

LiDCO monitors. A pulse oximeter (Masimo, Irvine CA) was placed on the tail and the 

pulse oximeter O2 saturation and plethysmographic (pleth) waveform collected. Following 

surgery, the pigs were rested 30 minutes without further manipulation to establish a baseline, 

then bled using a roller pump (Masterflex L/S easy-load II, Cole-Parmer; Vernon Hills, IL) 
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at 20 mL/min until the MAP decreased to 30 mmHg. Data were collected during a 

stabilization period to the end of the bleed.

Data acquisition:

All monitored outputs were collected at 250 Hz. B2B heart rate, systolic and diastolic 

arterial and pulmonary arterial pressures, MAP and mean pulmonary artery pressures were 

calculated and SvO2 was recorded. B2B CO, stroke volume (SV), PPV and SVV were 

recorded (LiDCOplus). Twelve additional arterial pressure features including heart rate 

variability (HRV) parameters, such as R-R interval standard deviation, entropy, Fournier 

analysis, etc., were obtained on B2B data. For comparison between modalities, we assumed 

that SvO2 approximated central venous O2 saturation, and included PAC SvO2 in the CVC 

features. NIM included all data from ECG and pulse oximetry, whereas invasive monitoring 

was as defined by parameters available from the specific catheter plus NIM. Data are 

reported as mean±SD.

Nested models:

We started with one model including only NIM measurements and progressively added 

additional signals to compare performance. NIM comprised ECG, HR, Pleth, HRV and 

SpO2. All invasive models included NIM data. CVC comprised central venous pressure and 

SvO2; ART comprised arterial pressures and CO; and PAC comprised central venous and 

pulmonary artery pressures, CO and SvO2, with ART+CVC and ART+PAC each comprising 

a union of the two catheter-related inputs.

Features by data density:

To assess the impact of data granularity on our ability to detect bleed onset, we trained 

multivariable models using data at three levels of granularity: twenty second averages of 

simple hemodynamic metrics (SM) sampled every minute, B2B, and waveform (WF), with 

each level conveying increasing richness of data features, with each higher granularity set 

including lower granularity features.

Personal baseline normalization or universal normalization:

We trained models which incorporated features normalized either by all subjects (universal) 

or by each subject individually (personal). The clinical interpretation of the different 

normalization schemes contrasts scenarios where knowledge of the patient’s stable vitals 

(personal) is available versus when it is not (universal). Normalization was performed for 

each feature independently by centering on the mean and scaling by the SD in the same way 

a Z-score would be computed. The mean±SD used were computed using ten minutes of data 

captured in the stable (pre-bleed) period. For the universal baseline, a single mean±SD was 

computed for each feature across all pigs in the training set. For the personal baseline the 

parameters were computed for each pig individually.

Evaluation methods:

Each data model configuration contained several time series (e.g. for the ART+PAC model 

with personalized baseline: SM=26, B2B=48 and WF=354), reflecting increasing extents of 
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data featurization. We used machine learning methodology to automatically define optimal 

bleeding alert criteria for each group. Features were computed in rolling time windows and 

updated at 2 Hz. Classifiers were trained separately for each feature set configuration to 

predict bleeding, with data prior to the start of bleed labeled as “Stable” and after as 

“Bleeding”. Although we evaluated several machine learning algorithms, we used only the 

random forest classifiers as the evaluation platform because they have been shown to 

perform consistently well across the range of considered feature sets compared to other 

classifiers11,13 and allowed us to focus on analyzing relative value of those different 

featurizations. The model predictions were validated using a LOOCV to mitigate effects of 

over-fitting: similar to splitting data into training and testing sets repeated on multiple splits 

(i.e. folds) of the data to control for the uncertainty in training and testing set selection. In 

our LOOCV procedure, the models generalize their utility to never before seen individuals. 

We use a rolling window approach to compute features in the data. For example, we 

compute a metric multiple times at different points in the data using samples in a specific 

interval. The size of the window used depends on the feature (e.g. a mean maybe computed 

using thirty seconds of data and another mean two minutes of data). All test results were 

agglomerated into overall performance metrics for each model configuration. In order to 

quantify relative importance of individual features of data, we quantified the amount of 

information they provide when test data is being assessed using information gain, and 

accumulated these gains per feature across all samples of the test data used in LOOCV 

(results reported as IGmax in Table 1).

Model performance:

First, we used a variant of the ROC curves plotting either true positive rate (TPR) as a 

function of FPR, or true negative rate (TNR) as a function of FNR. The TPR versus FPR is 

the traditional ROC approach. Since precise monitoring aims to minimize FPR to reduce 

inappropriate false alerts and low FNR so that if the monitor reports stability, stability is 

present, we displayed the ROC curves in two simultaneous back-to-back views (referred to 

here as the ROCOR) with the x-axes scaled logarithmically to focus on model performance 

at very low FPR and FNR, respectively. Second, with AMOC curves we plotted FPR as a 

function of average time to detection (TTD) from the onset of bleeding given a specific 

minimum detection rate. The AMOC presents the tradeoff between detection latency and 

FPR, both of which we wanted to minimize, but as the detection threshold increases (i.e. 

fewer false positives) so does the time it takes to identify bleeding. Sensitivity of detection 

was defined as the earliest time of class separation (non-bleeding v. bleeding) with the 

lowest FPR. In the case of the AMOC and the ROCOR plots (ribbons depict the 95% 

confidence intervals). We used a threshold of 80% detection (TPR) rate for reference 

purposes between models. ROCOR curves expressed much of the same relations as the 

AMOC curves, except they addressed the tradeoff between prediction performance (bleed or 

no bleed) and error (or alarm) rates, whereas the AMOCs reported the tradeoff between 

timeliness of detection of bleeding and false alarm rate. Because our objective in this 

analysis was not to develop models that present the probability of bleeding, but rather 

present trade-offs between prediction performance, detection latency, and FPR, model 

calibration was not required as it would not affect the ordering of comparative results.
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Model optimization:

The random forest model used allowed for the specification of a few different parameters 

(which we refer to as hyperparameters), for example the number of trees and maximum tree 

depth. To select the optimal hyperparameters for each data configuration (i.e. modality, 

granularity, and baseline), a grid-search hyperparameter selection was conducted to select 

optimal hyperparameters for each model. Each hyperparameter selection was evaluated 

using LOOCV. For any configuration, two models were selected: one that optimizes 

performance of positive (bleed) detection, which was selected based on AMOC and ROC 

performance; and another that optimized performance of negative (stable) detection, selected 

based on ROC performance alone. The simultaneous use of two such models enables 

confident identification of both test subjects who bleed and those who do not. This 

symmetric assessment capability is useful to guide clinical resource allocation based on 

confident adjudication of both the positive and negative cases (Figure 1E). As illustrated, 

most models performed similarly down to FPR of one in fifty, but degraded thereafter. 

Similarly, most models had a short TTD at a high FPR but at a TTD <4 minutes at a FPR 

<10−3 marked performance differences occurred. Positive prediction models were selected to 

minimize TTD at low error rates while not sacrificing TPR (an indication of overfitting in 

this selection process). Negative prediction models were selected using a similar process, but 

only TNR at low error rates (FNR) was evaluated.

Results

Baseline hemodynamics prior to bleed reflected normal post-induction values for pigs with a 

MAP 68±9.3 mmHg CVP 3.4±1.6 mmHg, PAP 13.8±1.9 mmHg, HR 91.3±10.9 1/min, CO 

4.24±1.46 L/min, and SvO2 76.6±6.4%. These baseline values of individual hemodynamic 

measures using threshold values not referenced to a personalized baseline did not identify 

the onset of hypovolemia until approximately 10–15 minutes after the start of bleeding 

(Figure 1). Using personal baseline references improved detection for arterial pressure-

related parameters. The multivariable B2B and WF models performed better than raw data 

threshold alert at time to detection for less than one in one hundred (10−2) error rate.

Nested Model optimization and performance:

The classification performance for the SM, B2B and WF models with and without 

personalized baseline normalization is shown in Figures 2 and 3, respectively. We defined 

better model performance on the ROCOR as higher TNR or TPR for the lower FNR or FPR, 

respectively. Area Under the ROC Curve (AUC) for each model is presented in Table 1. The 

AMOC curves for the SM, B2B and WF models with and without personal baseline 

normalization are shown in Figures 4 and 5, respectively. We defined better model 

performance as a lower FPR for the shorter time to detection. ROCOR and AMOC curves 

with and without personal baseline normalization, as data granularity is varied for each 

monitoring modality separately, are reported in Figures E2–E15 and the specific features 

used for each model that impacted performance are reported in Table E1.
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Universal baseline normalization analyses:

Under most conditions, invasive monitoring outperformed NIM. Performance at predicting 

absence of bleeding was difficult with SM (Figure 2, left) improving with B2B and WF for 

all but the NIM model, which itself did not improve until WF granularity was used. For 

identifying bleeding (Figure 2, right), NIM performed worse than invasive monitoring. With 

SM models, CVC did not perform better than the NIM with minimal separation across 

monitoring inputs, but in B2B and WF PAC and ART+PAC performed best, with ART and 

ART+CVC becoming less different with WF analyses. While B2B provided a boost from 

ART to ART+PAC models, minimal boost in performance was seen with the ART to ART

+CVC or PAC to ART+PAC models. Thus, there appears to be minimal benefit from adding 

universally baselined CVP to ART. SM inputs did not differ across monitoring modalities 

TTD and FPR (Figure 3). However, with both B2B and WF, PAC, ART+PAC and ART 

markedly improved performance. At higher FPR the models performed similarly, but as the 

FPR decreases in the B2B granularity PAC and ART+PAC improved substantially, allowing 

a short TTD of ~7 minutes at 10−3 FPR.

Personal baseline normalization analyses:

Personal baseline normalization for ROCOR and AMOC analyses Figures 4 and 5, 

respectively), improved the performance of all models compared to universally baselined 

data. Despite CVC performing poorly when using the universal baseline normalization, 

when personalized CVC outperformed all universally normalized models at a 10−2 FPR, 

even at the SM granularity, underscoring the need for personalized baseline referencing prior 

to monitoring for potential deterioration, independent of monitoring modality. Similarly, 

although the performance of the NIM SM and B2B models remained poor, NIM WF 

markedly improved its positive predictive performance and equaled ART for negative 

predictive performance (Figure 3C). Although PAC, ART+PAC and ART+CVC 

demonstrated better performance at all levels of granularity, their positive predictive 

performance separation across modalities was minimal, unlike the negative predictive 

performance. At SM ART+PAC and PAC, TTD was shorter at lower FPR than all other 

modalities (Figure 5). At B2B ART+PAC markedly reduced its FPR while CVP and ART-

CVP also improved performance to similar TTD. With WF granularity, ART+PAC, PAC, 

CVC, and ART+CVC all TTD <5 minutes with extremely low FPRs.

Discussion

This study had four fundamental findings. First, increasing sampling frequency by allowing 

for more extensive data featurization improves model performance for all modalities. The 

marked improvement of the CVC model when moving from SM to either B2B or WF when 

using personal baseline normalization underscores the power of this analysis to use 

commonly available physiologic data streams in novel ways to accurately define stability 

and bleed onset. This is in contradistinction to raw CVP values which are not useful in 

defining intravascular volume status.4 At a FPR of 10−2, the CVC B2B model can detect 

bleed in >80% of pigs in <4 minutes, and the FPR can be decreased to 10−3 with an 

additional minute of detection latency. The NIM model also performed well when WF 

featurizations were used, detecting bleed onset in ~7 minutes at 10−2 FPR. The PAC 
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predictive performance deserves special mention. Prior clinical literature failed to 

demonstrate the clinical usefulness of PAC-related monitoring.14 However, the data used 

from such monitoring was not analyzed on featurized data or with B2B or WF granularity. 

Considering the utility of CVP, pulmonary vascular pressures, CO and SvO2 in defining 

cardiovascular stability (Table E1) it is not surprising that PAC out-performed other 

individual monitoring devices improving slightly by adding ART.

Second, referencing hemodynamic data to personal baselines markedly improves bleeding 

detection for all devices. This is a clinically reasonable scenario for elective surgery where 

stable post-induction baseline values usually exist. Third, combining data from different 

devices differently improves performance depending on sampling frequency and availability 

of personalized baseline references. Thus, there is no one single monitoring approach that 

will be effective in identifying hypovolemia across all surgical conditions, but for similar 

conditions a common approach is possible. Fourth, performance of models varies depending 

on how the performance is measured. If the goal is to minimize FNR avoiding reporting a 

subject as stable when they are not, versus minimizing the latency of detection of bleeding 

with few false alerts (low FPR), then the choice of the optimal monitoring configuration may 

differ. Importantly, as the model granularity and the type of baseline used change, the most 

useful features in driving model performance also vary. Thus, one model alone cannot 

perform optimally to address both detection of stability (TNR) and bleeding (TPR) at low 

error rates as the monitoring device, granularity and access to personal baselines vary.

Model performance assessment methods:

We assessed model performance in identifying active bleeding using ROCOR curves that 

display performance simultaneously for true positives (real bleeding) and true negatives (not 

bleeding). Usually, such analyses report only AUC as a measure of model performance. But 

AUC metric alone is inadequate to assess model performance in specific operating 

conditions because it reports expected model performance across all operational settings, 

whereas in clinical practice only one or two decision thresholds (one for positive and one for 

negative case determination, at low error rates) would be used. Since a major monitoring 

fear is in reporting no bleed in a bleeding patient (i.e. false negative), it is important to make 

the FNR low. Our ROCOR display, by expanding the FNR and FPR into log scale, 

graphically magnifies the performance differences across models at the operationally 

relevant low FNR and FPR settings. These analyses demonstrate that increasing data 

granularity and referencing to a stable personal baseline minimize both FNR and FPR for 

the same probability of detection. ROC analysis does not address the timeliness of alerts. 

AMOC analysis compares TTD versus FPR, with FPR plotted in log scale to highlight 

operationally relevant performance ranges. There are tradeoffs between timeliness of 

detection and the number of false alerts. When clinicians are continually at the bedside or if 

the event if unattended would rapidly lead to catastrophic consequences, a higher FPR may 

be tolerated to enable faster detection. Whereas for remote monitoring with limited clinical 

resources and a slower expected pathologic decline rates and lesser immediacy of demise, a 

delayed detection time but at a lower FPR may be preferred. Thus, the operationally optimal 

settings of each model, as defined by the AMOC and ROCOR, will be condition- and 

situation-specific. However, in our study, the normalized WF models performed excellently 

Pinsky et al. Page 8

Anesth Analg. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with a very low FPR and rapid detection of >80% of subjects, suggesting that at some point 

very sensitive and specific models may create a universal alert algorithm across clinical 

environments with a limited device monitoring dataset.

Limitations:

This study has several limitations. First, we used an anesthetized porcine model at a fixed 

bleeding rate from an initial stable cardiovascular state. Surgical bleeding and hypovolemia, 

if present, is rarely at a fixed rate and a baseline is often unavailable for emergency surgery. 

However, these baseline conditions closely mimic routine surgical patients and would be 

applicable to identifying when stability was lost, independent of the bleeding rate. Second, 

we used machine learning approaches to plumb the physiologic signatures and manually 

tuned our models for optimal performance for both TNR and TPR for the lowest FNR and 

FPR. These models will be dependent of the quality of the physiologic data available and 

clinicians may accept different tradeoffs of precision and accuracy. Still, this approach 

represents a robust and easily duplicated method of making such assessments of information 

utility. As described above there is no one level of stability or instability that would to 

optimal for all patients, care environments and conditions. Thus, the levels of performance 

and utility of any predictive model will be patient, procedure, location and care specific. We 

specifically chose models with extremely low FPR and FNR which needed to be associated 

with slightly prolonged TTD. To the extent that excessive false alerts do not promote alarm 

fatigue, and if early detection of hypovolemia is required, then the faster detecting models 

would still be operationally useful. Thus, this study provides a roadmap to tailor models 

specifically to the clinician’s individual monitoring needs. Third, we had only 38 animals 

during a post-induction pre-bleed interval to define a universally-baselined normalization. If 

a much larger clinical database of stable post-induction data were available and able to be 

stratified by patient, surgery and co-morbidities, universally-baselined normalization 

performance may improve significantly. This is one of the promises of big data and data 

mining in healthcare what will need to be studied. Next, we used machine learning 

approaches to create unique models from our existing database. We do not report the specific 

output code making its direct reapplication limited. However, we used standard modeling 

methodologies and model types. Given that machine learning is a mature scientific field and 

readily available through computer science resources, reproducibility of our results should 

be straightforward.

Finally, for any smart alarm-based monitoring to be useful, it must be linked to actionable 

events whose reversal improves outcome. Recent large observational data analyses 

underscore the clinical significance of increasing levels of arterial hypotension both in 

magnitude and duration.1,2 Futier et al.15 randomized 298 intraoperative patients into tight 

blood pressure control using SM of arterial pressure monitored continuously and found a 

decreased incidence of composite complications. As shown for AMOC curve analyses, our 

SM models when normalized detected >80% of bleeds at a mean TTD in <8 minutes for 

invasive monitoring, decreasing TTD even further with B2B and WF analysis. Thus, these 

models report clinically relevant alerts superior to simple threshold monitoring even in the 

setting of pre-existing mild hypotension. Although we chose bleeding as it is a common 

cause of intraoperative cardiovascular instability, hypotension also occurs because of loss of 
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vasomotor tone, vascular obstruction and primary cardiac dysfunction. Thus, any alerting 

system needs to be used within the clinical context to maximize its usefulness. Our results 

consistently demonstrate that as data granularity increases, more invasive monitoring data is 

added, and a personal baseline is used, the models progressively and markedly improved 

their performance.
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Glossary of Abbreviations

AMOC Activity monitoring operating characteristic

AUC Area under the curve

ART Arterial catheter

B2B Beat-to-beat

CVC Central venous catheter

CO Cardiac output

ECG Electrocardiogram

FNR False negative rate

FPR False positive rate

FiO2 Fractional concentration of oxygen

HRV Heart rate variability

LOOCV Leave-one-pig out cross-validation

MAP Mean arterial pressure

SvO2 Mixed venous oxygen saturation

NIM Non-invasive hemodynamic monitoring

pleth Plethysmographic

PEEP Positive end-expiratory pressure

PAC Pulmonary artery catheter

PPV Pulse pressure variation

ROC Receiver operator characteristic
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ROCOR Receiver operator characteristic combining FPR/TPR+FNR/TNR

SM Simple metrics

SVV Stroke volume variation

TTD Time to detection

TNR True negative rate

TPR True positive rate

WF Waveform
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Key Points

Question;

Are all monitoring modalities equally effective at identifying bleeding onset during 

surgery?

Findings:

Invasive pulmonary artery and arterial catheter parameters performed best with central 

venous catheter data improving with greater featurization, whereas referencing to a stable 

baseline markedly improve d the performance of all monitoring devices.

Meaning:

Increasing featurization of pressure waveform data and referencing it to an individual 

baseline markedly improves detection of bleeding at a low false positive rate across all 

monitoring devices.
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Figure 1. 
AMOC curves generated using primary hemodynamic parameters as the predictors using 

either universal (A) or personal (B) baseline normalization.
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Figure 2. 
ROCOR showing (A) Simple Metrics, (B) Beat-to-Beat, and (C) Waveform model 

classification performance for each monitoring modality or combination of modalities 

optimized for detection of stability (TNR vs FNR, left) and detection of bleeding (TPR vs 

FPR, right) for models using universal baseline normalization.
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Figure 3. 
AMOC showing (A) Simple Metrics, (B) Beat-to-Beat, and (C) Waveform model detection 

performance for each monitoring modality or combination of modalities optimized to detect 

bleeding onset with the lowest FPR for universal baseline normalization.
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Figure 4. 
ROCOR showing (A) Simple Metrics, (B) Beat-to-Beat, and (C) Waveform model 

classification performance for each monitoring modality or combination of modalities 

optimized for detection of stability (TNR vs FNR, left) and detection of bleeding (TPR vs 

FPR, right) for models using personal baseline normalization.
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Figure 5: 
AMOC showing (A) Simple Metrics, (B) Beat-to-Beat, and (C) Waveform model detection 

performance for each monitoring modality or combination of modalities optimized to detect 

bleeding onset with the lowest FPR for personal normalization.
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