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Abstract

The molecular mechanisms underlying the diverse psychiatric and neuropathological sequalae 

documented in subsets of athletes with concussion have not been identified. We have previously 

reported elevated quinolinic acid (QuinA), a neurotoxic kynurenine pathway metabolite, acutely 

following concussion in football players with prior concussion. Similarly, work from our group 

and others has shown that increased functional connectivity strength, assessed using resting state 

fMRI, occurs following concussion and is associated with worse concussion-related symptoms and 

outcome. Moreover, other work has shown that repetitive concussion may have cumulative effects 

on functional connectivity and is a risk factor for adverse outcomes. Understanding the molecular 

mechanisms underlying these cumulative effects may ultimately be important for therapeutic 

interventions or the development of prognostic biomarkers. Thus, in this work, we tested the 

hypothesis that the relationship between QuinA in serum and functional connectivity following 

concussion would depend on the presence of a prior concussion. Concussed football players with 

prior concussion (N=21) and without prior concussion (N=16) completed a MRI session and 

provided a blood sample at approximately 1 days, 8 days, 15 days, and 45 days post-injury. 

Matched, uninjured football players with (N=18) and without prior concussion (N=24) completed 

similar visits. The association between QuinA and global connectivity strength differed based on 
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group (F(3, 127)=3.46, p=0.019); post-hoc analyses showed a positive association between QuinA 

and connectivity strength in concussed athletes with prior concussion (B=16.05, SE = 5.06, 

p=0.002, 95%CI[6.06, 26.03]), but no relationship in concussed athletes without prior concussion 

or controls. Region-specific analyses showed that this association was strongest in bilateral 

orbitofrontal cortices, insulae, and basal ganglia. Finally, exploratory analyses found elevated 

global connectivity strength in concussed athletes with prior concussion who reported depressive 

symptoms at the 1-day visit compared to those who did not report depressive symptoms 

(t(15)=2.37, mean difference=13.50, SE=5.69, p=0.032, 95%CI[1.36, 25.63], Cohen’s d =1.15.). 

The results highlight a potential role of kynurenine pathway (KP) metabolites in altered functional 

connectivity following concussion and raise the possibility that repeated concussion has a 

“priming” effect on KP metabolism.
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1. Introduction

Reports of increased psychiatric (e.g., major depressive disorder [MDD]) and 

neurodegenerative disease (e.g., chronic traumatic encephalopathy) in retired and deceased 

athletes have led to an increase in public concern regarding the potential adverse, long-term 

effects of sport-related concussion (SRC) on athletes of all ages (Guskiewicz et al., 2007; 

Manley et al., 2017; McKee et al., 2013). However, the molecular mechanisms underlying 

the diverse psychiatric and neuropathological sequalae documented in subsets of athletes 

with concussion have yet to be definitively determined. Here, we focus on the kynurenine 

pathway (KP; Supplementary Figure 1), a key energy-regulating pathway that has been 

hypothesized to link inflammation and glutamatergic signaling in numerous psychiatric 

(e.g., MDD) and neurodegenerative diseases (e.g., Alzheimer’s disease) (Savitz, 2020).

Activated immune cells require more energy than naïve cells and the KP is the major 

endogenous source of nicotinamide adenine dinucleotide (NAD+). Inflammatory mediators 

increase the catabolism of tryptophan (TRP) into kynurenine (KYN) via the enzyme 

indoleamine 2,3-dioxygenase (IDO). Kynurenine-3-monooxygenase (KMO), which is also 

activated by inflammatory cytokines, converts KYN into 3-hydroxykynurenine (3HK), 

ultimately leading to the formation of quinolinic acid (QuinA) and NAD+. 3HK is a potent 

free-radical generator while QuinA is a N-methyl-D-aspartate (NMDA) receptor agonist that 

potentiates the release and impairs the reuptake of glutamate (Guillemin, 2012). 

Alternatively, KYN is metabolized by kynurenine aminotransferase (KAT) enzymes into 

kynurenic acid (KynA), a competitive antagonist of ionotropic excitatory amino acid 

receptors, including NMDA, that is generally considered to be neuroprotective (Foster et al., 

1984; Kessler et al., 1989). As an illustrative example, we have previously shown reductions 

in KynA relative to QuinA (KynA/QuinA; a putative neuroprotective index) in MDD 

patients compared to controls (Savitz et al., 2015c, 2015b), and decreases in KynA and/or 

elevations in QuinA have been reported in several neurodegenerative disorders (Heilman et 

al., 2020; Sorgdrager et al., 2019).
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Evidence suggests that after concussion, and traumatic brain injury (TBI) of all severities, 

the KP is activated and metabolism down the QuinA/NAD+ branch of the KP is favored - 

although the increase in QuinA could also arise from decreased breakdown of QuinA into 

NAD+, as has been shown in a number of in vitro and non-TBI preclinical models (Jones et 

al., 2015; Minhas et al., 2019; Poyan Mehr et al., 2018; Sahm et al., 2013). Irrespective, 

elevated KYN relative to TRP (KYN/TRP; a proxy for IDO activity) has been reported in 

chronic TBI patients (Mackay et al., 2006) and acutely injured TBI patients have elevated 

QuinA in cerebral spinal fluid compared to controls (Bell et al., 1999; Sinz et al., 1998; Yan 

et al., 2015). Regarding concussion, our group has previously shown decreased KynA/

QuinA and elevated QuinA in plasma in concussed football players at approximately 1 day, 

1 week and 1 month post-concussion relative to uninjured football players (Singh et al., 

2016). Likewise, we have reported elevated plasma QuinA in football players with a remote 

history of concussion (i.e., latest concussion on average 10 months prior to visit) versus 

football players without prior concussion (Meier et al., 2016b). Finally, we have recently 

shown in an independent cohort of high school and collegiate athletes that recently 

concussed football players with a prior concussion had reduced serum KynA/QuinA and 

elevated QuinA across multiple time points up to 45 days post-injury compared to controls 

and acutely concussed athletes without a prior concussion (Meier et al., 2020b). Taken 

together, these findings suggest that prior concussion may result in a predisposition towards 

metabolism down the QuinA pathway or its preferential accumulation.

Parallel findings demonstrate that acute concussion is associated with differences in intrinsic 

brain connectivity as measured by resting state functional magnetic resonance imaging (rs-

fMRI). Functional connectivity abnormalities have been repeatedly demonstrated acutely 

and sub-acutely following SRC, though specific findings have varied across studies likely 

due to differences in methodology (e.g., selection of seed-regions or networks versus global 

metrics), differences in cohorts, and differences in study design (e.g., time since injury, 

comparison groups) (for review; [Mayer et al., 2015; McCrea et al., 2017]). In an 

overlapping sample with the aforementioned study investigating KP metabolites in football 

players up to 45 days post-injury, we recently found elevated global connectivity strength at 

the sub-acute phase in concussed football players relative to controls, with sub-analyses 

demonstrating that this effect was driven by symptomatic athletes after concussion, rather 

than those that no longer reported symptoms (Kaushal et al., 2019). Additional work further 

supports the hypothesis that hyperconnectivity (i.e., stronger connectivity relative to 

controls) may be pathological following concussion (i.e., is associated with poorer recovery 

or more symptoms) (N. W. Churchill et al., 2017; Meier et al., 2020a; van der Horn et al., 

2017), though opposite patterns have also been reported (for review; (Puig et al., 2020)).

There is also evidence of altered functional connectivity due to chronic or repetitive SRC. 

Prior work has shown both positive and negative associations between connectivity and prior 

concussion. For example, retired football players with multiple prior concussions had 

increased connectivity between the anterior temporal lobe and orbitofrontal cortex relative to 

healthy controls (Goswami et al., 2016). Asymptomatic hockey players with prior 

concussion had region specific increases and decreases in connectivity of the default mode 

network relative to players with no prior concussion (Orr et al., 2016). Finally, the number of 

Meier et al. Page 3

Brain Behav Immun. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prior concussions was inversely or positively associated with connectivity across several 

seed regions in men and women collegiate athletes (N. Churchill et al., 2017).

We have previously reported increased connectivity between the motor cortex and 

supplementary cortex in football players with prior concussion relative to those without 

(Meier et al., 2017). Moreover, in that same work we identified associations between rs-

fMRI and neuroactive KP metabolites in collegiate athletes with varying concussion history, 

consistent with the indirect relationship between glutamatergic neurotransmitter flux (i.e., 

cycling of glutamate and glutamine) and the blood-oxygen-level-dependent (BOLD) signal 

(Hyder et al., 2002; Smith et al., 2002). Specifically, across all participants, lower plasma 

KynA/QuinA was associated with greater functional connectivity between the anterior 

cingulate cortex, orbitofrontal cortex, hippocampus, and motor cortex to several regions 

including the insula, superior temporal gyrus, and visual cortex. Most relevant to the current 

work, prior concussion status moderated the association between connectivity and KP 

metabolites. That is, football players with prior concussion predominantly showed an inverse 

association between KynA/QuinA and connectivity of the ACC (to frontal cortex and 

anterior insula) as well as connectivity of the hippocampus (to visual cortex) (Meier et al., 

2017).

The current study expands upon the aforementioned findings of increased functional 

connectivity and elevated QuinA (and reduced KynA/QuinA) following concussion in 

overlapping samples of high school and collegiate athletes (Kaushal et al., 2019; Meier et 

al., 2020b). Our goal was to determine the extent to which associations between functional 

connectivity and neuroactive KP metabolites differ based on acute concussion status (i.e., 

recent concussion versus. no recent concussion) and prior concussion history (i.e., prior 

concussion versus no prior concussion). Based on our prior work (Kaushal et al., 2019; 

Meier et al., 2020b, 2017, 2016b; Singh et al., 2016), we hypothesized that elevated QuinA 

and lower KynA/QuinA would be associated with increased global functional connectivity 

in acutely injured athletes with prior concussion.

2. Materials and Methods

2.1 Participants

High school and collegiate football players were enrolled as part of a prospective study of 

concussion, which has been detailed previously (Kaushal et al., 2019; Meier et al., 2020b). 

Exclusion criteria for the current study included: injury precluding participation in the study 

or other contraindications to study procedures, current narcotic use, conditions known to 

cause cognitive dysfunction (e.g., moderate to severe TBI, epilepsy), psychopathology (e.g., 

mood disorders), migraines or recurrent headaches, attention deficit/hyperactivity disorder, 

memory difficulties, structural MRI findings that required clinical follow-up (Klein et al., 

2019), and a history of a potentially confounding illness/disease (e.g., meningitis; full list of 

exclusionary diseases can be found in Supplementary Table 1). The study was approved by 

the institutional review board at the Medical College of Wisconsin. Adult participants and 

parents of minors provided written informed consent; minors provided written assent.
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Football players completed preseason baseline clinical assessments. Players that sustained a 

concussion during the study period completed up to four follow-up visits that included an 

MRI session and blood collection: approximately 24–48 hours (1d), 8 days (8d), 15 days 

(15d), and 45 days (45d) post-injury. Certified athletic trainers or team physicians trained in 

sports medicine initially identified and diagnosed concussions. Study investigators screened 

all injuries to ensure they met the study definition of concussion, which was based on the 

Centers for Disease Control and Prevention HEADS UP educational initiative: “An injury 

resulting from a forceful bump, blow, or jolt to the head that results in rapid movement of 

the head and causes a change in the athlete’s behavior, thinking, physical functioning, or the 

following symptoms: headache, nausea, vomiting, dizziness/balance problems, fatigue, 

difficulty sleeping, drowsiness, sensitivity to light/noise, blurred vision, memory difficulty, 

and difficulty concentrating”.

Uninjured football players without concussion in the last 6 months were selected from 

enrolled athletes to match injured athletes based on the following criteria: level of 

competition, institution, team, estimated intellectual functioning (word reading performance 

at baseline), race, handedness, concussion history, and position. Control participants 

completed the same study protocol as concussed participants at similar intervals.

A total of 37 football players with concussion and 42 uninjured football players met the 

study criteria and had MRI and blood data from at least one follow-up visit. For the purposes 

of the current study, concussed and uninjured athletes were further characterized based on 

concussion history, as in our prior work (Meier et al., 2020b). Final groups included 

concussed athletes without prior concussion (SRC-; n=16), concussed athletes with prior 

concussion (SRC+; n=21), contact controls without prior concussion (CC-; n=24), and 

contact controls with prior concussion (CC+; n=18). The demographic details for each group 

are presented in Table 1.

2.2 Clinical battery

The clinical battery has been described in detail previously (Kaushal et al., 2019; Meier et 

al., 2020b). Data collected at baseline included demographic and health information and the 

Wechsler Test of Adult Reading to estimate intellectual functioning, (WTAR). In addition, 

athletes were asked about their concussion history at baseline after being provided with a 

standard definition based on the United States Department of Defense (Carney et al., 2014). 

The clinical battery included measures of psychological distress (Brief Symptom Inventory–

18; BSI-18), concussion symptom severity (The Sport Concussion Assessment Tool–3rd 

Edition symptom; SCAT), balance deficits (Balance Error Scoring System; BESS), and 

neurocognitive performance (Standardized Assessment of Concussion; SAC). Information 

regarding acute injury characteristics and length of recovery was collected at follow-up 

visits.

2.3 Blood biomarker data

Venous blood was collected using Red Top BD Vacutainer tubes, left to clot at room 

temperature for 30 min, centrifuged at 1,500 RCF for 15 min and stored at -80 °C. 

Quinolinic acid (QuinA), kynurenic acid (KynA), 3-hydroxykynurenine (3HK), tryptophan 
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(TRP), and kynurenine (KYN) concentrations were determined from serum blind to 

diagnosis using high-performance liquid chromatography with tandem mass spectrometry 

detection by Charles River Laboratories, Inc. according to their standard protocol.

2.4 Imaging parameters and processing

Imaging data were obtained on a 3 Tesla General Electric MR750 whole‐body MR scanner 

using 32‐channel receiver coil array. Rs-fMRI data were collected using a gradient‐echo 

echo‐planar image (EPI) with the following parameters: 501 volumes, FOV=210 mm, 

acquisition matrix=104 × 104, slice thickness=2 mm, 72 sagittal slices, TR/TE=720/30 ms, 

flip angle=50°, hyperband acceleration factor=8. During the rs-fMRI scan, participants were 

instructed to keep their eyes open and think of nothing in particular. A reverse phase‐
encoded scan was collected to allow susceptibility‐induced distortion correction. High‐
resolution T1‐weighted structural images were obtained for anatomical reference using a 

magnetization‐prepared rapid gradient‐echo sequence with the following parameters: 

FOV=256 mm, acquisition matrix=256, slice thickness=1 mm, 160 slices, TR/TE/

TI=7.592/3.008/900 ms, flip angle=8°.

Unless otherwise noted, preprocessing was performed using Analysis of Functional 

NeuroImages programs (AFNI) (Cox, 1996) as previously described (Kaushal et al., 2019). 

Anatomical images were skull‐stripped in native space using a union mask of segmented 

gray matter and white matter from SPM 12. The skull‐stripped brain was registered to the 

MNI‐152 template using an affine registration with correlation ratio cost function and 

trilinear interpolation followed by a nonlinear warp, implemented in FSL (Jenkinson et al., 

2002). The first 29 volumes of the resting‐state scan were removed to account for auto‐
calibration data and allow for stabilization of longitudinal magnetization, and the AFNI 

program 3dDespike was used to remove signal spike artifacts. Susceptibility‐induced 

distortion correction was performed using FSL’s topup (Andersson et al., 2003). Volumes 

were registered to the first volume to account for head motion. A single transformation 

matrix was created for spatial normalization by concatenating the anatomy-to-MNI‐152 

matrix and the matrix resulting from a 6°‐of‐freedom registration of the rs-fMRI volume to 

the anatomical scan calculated using FSL’s FLIRT with the boundary‐based registration 

cost‐function (Greve and Fischl, 2009; Jenkinson et al., 2002). The resulting matrix and the 

nonlinear warp from the anatomy-to-MNI‐152 brain were applied to the motion corrected 

image to bring the image in standard space with 2 mm isotropic resolution.

Signals of no‐interest, including the average CSF signal, average white matter signal, the six 

motion parameters and their derivatives, and the zero‐ through third‐order polynomial trends 

were then regressed from the rs-fMRI data. Volumes with excessive head motion (i.e., 

Euclidian norm of the six motion parameters >0.30) were removed along with the preceding 

volume and replaced using interpolation. Denoised images were then bandpass filtered (0.01 

to 0.10 Hz). Resting‐state scans with visually-identified artifacts and scans in which the 

average Euclidian norm of motion parameters was greater than 0.2 were excluded from 

analyses to minimize potential effects of motion on group analyses. Table 1 shows the 

sample size with usable data at each time point.
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The AFNI program 3dNetCorr was used to calculate a connectivity matrix for each 

participant at each time point using regions-of-interest (ROI; or nodes) derived from the 

automated anatomical labeling atlas (AAL2) (Rolls et al., 2015; Taylor and Saad, 2013). The 

connectivity strength (i.e., nodal strength) of each individual ROI was calculated from the 

weighted connectivity matrices as the sum of weights of all connections to that ROI, 

implemented in the BRain analysis using GraPH theory (BRAPH) software (Mijalkov et al., 

2017; Rubinov and Sporns, 2010). The average strength across all ROIs was calculated as a 

measure of global connectivity strength (i.e., average nodal strength). Negative correlations 

were not included in calculations of connectivity strength. To ensure that the observed 

results were not sensitive to the selected brain atlas, identical procedures were performed 

using the Craddock whole-brain functional atlas (200 ROI atlas based on rt 2-level 

parcellation) (Craddock et al., 2012).

2.5 Statistical analysis

Statistical analyses were conducted using IBM SPSS Statistics version 24 (Armonk, NY) 

unless otherwise indicated. Analyses of variance, Kruskal-Wallis tests, chi-square tests, or 

Fisher’s exact tests compared demographic variables, clinical measures, and head motion 

during scanning across groups. For descriptive purposes, clinical variables (i.e., BSI-18 

global severity index, SCAT, BESS, SAC) were compared between groups at baseline and at 

the 1d visit. Individual KP markers (e.g., QuinA) and the relevant ratios (e.g., KynA/QuinA) 

were natural log-transformed to normalize their distribution. Linear mixed-effects (LME) 

models were fit to determine the interaction between group (SRC+, SRC-, CC+, CC-) and 

log-transformed KP metabolite (each metabolite and ratio run separately) on the global 

connectivity strength measure; the main effects of group and KP metabolite were included. 

To account for repeat scans and KP measurements, visit was modeled and participant was 

included as a random factor. Primary analyses focused on the global connectivity strength 

measure derived using the AAL2 parcellation. To confirm that the results were not biased by 

the parcellation scheme, identical LME were fit using the Craddock parcellation as 

sensitivity analyses. An alpha of 0.05 was used for primary KP metabolites (QuinA, KynA/

Quin); while an alpha of 0.0083 (Bonferroni corrected 0.05/6) was considered significant for 

secondary KP outcomes (KynA/3HK, KynA, 3HK, KYN/TRP, KYN, TRP).

Based on significant global connectivity results of the above analyses, LME were fit in the 

SRC+ group to characterize the association between QuinA and connectivity strength of 

each individual node from the AAL2 parcellation. Visit was modeled and participant treated 

as a random factor as above. For these analyses, Benjamini-Hochberg False-Discovery Rate 

(FDR) of q<0.05 determined significance to account for multiple testing across 120 nodes 

(i.e., regions).

Given the known associations between QuinA and depression (Savitz, 2017), additional 

exploratory analyses were conducted in SRC+ participants to determine if either global 

connectivity strength or connectivity strength of individual ROI (limited to those showing 

associations with QuinA, see Results) were associated with BSI-18 depression sub-scale 

scores. SRC+ were differentiated into two subgroups based on the presence (n=8) or absence 

(n=9) of depressive symptoms from the BSI depression sub-scale at the 1d visit (i.e., the 
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visit with the most severe post-concussion depressive symptoms). Exploratory independent 

samples t-tests compared connectivity strength at the 1d visit in SRC+ athletes with or 

without depressive symptoms. For individual ROI, an FDR of q<0.05 determined 

significance to account for multiple testing.

3. Results

3.1 Demographic and clinical data

Groups did not differ in demographic information or clinical data at baseline (Table 1), with 

the exception of number of prior concussions (p<0.001). By design, SRC+ and CC+ had 

more prior concussions than SRC- and CC- (all p<0.001). There were no group differences 

in head motion during the rs-fMRI scan at any visit (all p>0.10). Acutely following injury 

(i.e., 1d visit), SRC+ and SRC- reported more severe SCAT and BSI-GSI symptoms than CC

+ and CC- (all p<0.05); SRC- reported less severe BSI-GSI symptoms than SRC+ (p<0.05). 

One SRC+ reported post-traumatic amnesia and one SRC- reported retrograde amnesia 

following their current injury; no injured athletes reported loss of consciousness due to their 

current injury.

3.2 Association of KP markers and global connectivity strength

There was a significant interaction between group and QuinA on connectivity strength, F(3, 

127)=3.46, p=0.019. Follow-up analyses showed that this effect was driven by a significant 

association between QuinA and connectivity strength in SRC+, B=16.05, SE = 5.06, 

p=0.002, 95%CI[6.06, 26.03] (Figure 1). The association between QuinA and connectivity 

was not significant in SRC-, B=-2.76, SE=4.11, p=0.50, 95%CI[-10.91, 5.38], CC-, B=4.22, 

SE=4.41, p=0.34, 95%CI[-4.54, 12.97], or CC+, B=-4.28, SE=5.64, p=0.45, 95%CI[-15.42, 

6.86]. There were no significant main effects or interactions for KynA/QuinA or any 

secondary KP marker (all p>0.10; Table 2).

Sensitivity analyses were performed as above using an alternative atlas to define ROI. As in 

the primary analysis, there was a significant interaction between group and QuinA on 

connectivity strength, F(3, 123.34)=3.27, p=0.024. As above, SRC+ had a significant 

association between QuinA and connectivity strength, B=27.92, SE=9.22, p=0.003, 

95%CI[9.71, 46.12] (Figure 1). There were no significant associations for SRC-, B=-3.39, 

SE=7.44, p=0.65, 95%CI[-18.15, 11.38], CC-, B=7.72, SE=7.99, p=0.34, 95%CI[-8.14, 

23.57], or CC+, B=-10.44, SE=10.29, p=0.31, 95%CI[-30.76, 9.88]. As in the primary 

analysis, there were no significant main effects or interactions for KynA/QuinA or any 

secondary KP marker (all p>0.10; Table 2).

3.3 Association of QuinA and connectivity strength in individual regions

Analyses were performed to determine the association between QuinA and connectivity 

strength in individual regions-of-interest in SRC+ given the observed association between 

global QuinA and global connectivity strength. There was a significant association in 31 of 

the 120 regions following FDR correction (Table 3). As seen in Figure 2, several of the 

strongest associations were observed bilaterally in the orbitofrontal cortices, insulae, and 

basal ganglia.

Meier et al. Page 8

Brain Behav Immun. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.4 Association between connectivity strength and depressive symptoms

Exploratory analyses were conducted to determine if connectivity strength was association 

with post-concussion depressive symptom status in SRC+ participants, limited to the global 

connectivity measure and individual ROIs that showed associations with QuinA (see above). 

Global connectivity strength was significantly higher in SRC+ athletes with depressive 

symptoms compared to those without, t(15)=2.37, mean difference=13.50, SE=5.69, 

p=0.032, 95%CI[1.36, 25.63], Cohen’s d =1.15. Several individual ROI showed similar 

associations with depressive symptom status at 1d post-concussion (Table 4), though they 

did not survive FDR correction at q<0.05 despite several having large effect sizes (i.e., 

Cohen’s d > 1.0).

4. Discussion

The current study in high school and collegiate football players tested the hypothesis that the 

association between neuroactive KP metabolites and a global metric of functional 

connectivity would depend on both acute injury status and prior concussion. Consistent with 

our hypothesis, QuinA was significantly associated with functional connectivity strength in 

acutely injured athletes with prior concussion across the acute to sub-acute phase post-

concussion, but not in injured athletes without prior concussion or in uninjured controls. 

Follow-up analyses identified several regions where this association was the strongest, 

including multiple regions in medial prefrontal cortex, insulae, and basal ganglia. Finally, 

exploratory analyses found that greater global connectivity strength was associated with the 

presence of acute depressive symptoms in concussed athletes with prior concussion. These 

results are discussed in detail in the following sections.

The positive association between QuinA and functional connectivity strength is mostly 

consistent with our work in an independent sample of collegiate athletes. In the prior work, 

the association between KynA/QuinA and connectivity of seed-regions in the anterior 

cingulate cortex and hippocampus to multiple brain regions differed based on concussion 

history as well as football exposure, with football players with prior concussion typically 

showing inverse associations between KynA/QuinA and connectivity (Meier et al., 2017). 

Although we did not observe any statistically significant effects for KynA/QuinA in the 

current study, the patterns of lower KynA/QuinA and higher QuinA are consistent (KynA/

QuinA is negatively correlated with QuinA). Moreover, the current results extend our prior 

work by focusing on a global metric of functional connectivity strength that did not require 

the a priori selection of a ROI, the inclusion of high school athletes in addition to collegiate 

athletes, and the availability of MRI and blood draws collected across multiple, longitudinal 

visits.

The current study critically extends upon our prior work in that, here, the association 

between connectivity and QuinA was only observed in recently concussed athletes with 

prior concussion, whereas prior work focused on prior concussion in isolation in an 

independent cohort (Meier et al., 2017). It is important to note that the same association was 

not observed in acutely injured athletes without prior concussion, suggesting that this effect 

was not solely due to acute injury. Similarly, the same association was also not observed in 

uninjured football players with prior concussion, highlighting the fact that the effect is not 
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solely due to prior injury. We hypothesize that this finding reflects a priming effect of prior 

concussion and acute/sub-acute concussion on the relationship between connectivity and 

QuinA. In our previous work in an overlapping sample, QuinA was elevated (and KynA/

QuinA reduced) at all visits in the recently concussed group with prior concussion (Meier et 

al., 2020b). Based on that finding, and the fact that QuinA is produced by microglia and 

macrophages (Espey et al., 1997; Guillemin et al., 2005), we hypothesized that the observed 

elevation in QuinA reflects the long-term priming of monocyte lineage cells by prior 

concussion. That is, chronic inflammation (e.g., due to prior concussion) may sensitize the 

immune system to subsequent triggers (e.g., recent concussion), resulting in a greater 

inflammatory response (Dilger and Johnson, 2008; Perry and Holmes, 2014; Witcher et al., 

2015). Nevertheless, we cannot rule out the possibility that association between QuinA and 

hyperconnectivity reflects the residual effect of multiple concussions.

Given the proposed association between glutamatergic neurotransmission and the BOLD 

signal (Hyder et al., 2002; Smith et al., 2002), one possible explanation for the observed 

association between QuinA and functional connectivity is that the effects of QuinA on the 

NMDA receptor (e.g., promotion of glutamate release and inhibition of reuptake) alters 

functional connectivity. In addition to its role in altering glutamatergic activity, QuinA has 

other deleterious effects that could impact intrinsic connectivity, including blood brain 

barrier disruption, the generation of reactive oxygen species, and the destabilization of 

cellular cytoskeletons (Guillemin, 2012). Regardless of the potential mechanisms, we cannot 

prove a causal relationship. Nevertheless, current results are consistent with abnormalities in 

QuinA (elevated QuinA, reduced KynA/QuinA) reported in a variety of psychiatric and 

neurodegenerative diseases that are associated with brain injury (Amaral et al., 2013; 

Guskiewicz et al., 2007; Savitz, 2020).

Hyperconnectivity has been posited to be a common response of the brain to neurological 

injuries with a known inflammatory component (i.e., multiple sclerosis and TBI) (Hillary et 

al., 2015). Although there are reports of hypoconnectivity following concussion (for review, 

see (Puig et al., 2020)), hyperconnectivity has been documented in several studies at the 

acute, sub-acute, and chronic phase following concussion and is associated with worse 

symptoms or prolonged recovery time (N. W. Churchill et al., 2017; Goswami et al., 2016; 

Kaushal et al., 2019; Meier et al., 2020a, 2017; van der Horn et al., 2017). The current work 

provides further support that hyperconnectivity is pathological based on our finding in 

concussed athletes with prior concussion that greater connectivity strength was associated 

with greater global functional connectivity strength. Therefore, in the context of the primed 

immune system hypothesis outlined above, the increased release of QuinA in concussed 

athletes with prior concussion leads to greater glutamatergic dysregulation that is ultimately 

reflected in the rs-fMRI BOLD signal connectivity and potentially mood dysregulation. 

Additional work is needed to directly test this proposed pathway. However, it should be 

noted that we cannot rule out that the observed hyperconnectivity is not pathological, per se, 

but rather reflects a compensatory increase in connectivity strength in response to elevated 

symptoms.

Finally, although we focused on a global connectivity metric, follow-up analyses 

demonstrated that the strongest associations with QuinA were observed in the medial and 
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orbital frontal cortex, insula, as well as the basal ganglia. We have previously shown that 

various KP measures are associated with striatal and medial PFC structure in patients with 

major depressive disorder (MDD) (Meier et al., 2016a; Savitz et al., 2015a). Specifically, 

neuroactive KP metabolites (KynA/3HK, KynA/QuinA) mediated group differences 

(controls versus MDD) in mPFC thickness, while KYN and KYN/TRP were inversely 

associated with striatal volume in MDD patients. Similarly, multiple papers have shown that 

inflammatory challenges (e.g., endotoxin, IFN-alpha) impact glucose metabolism, BOLD 

signal response, and glutamate levels in the medial frontal cortex, insula, and/or striatum 

(Capuron et al., 2007, 2005; Eisenberger et al., 2010; Hannestad et al., 2012; Haroon et al., 

2014; Harrison et al., 2009). Therefore, the current results add to the literature documenting 

associations between KP activity, as well as inflammation in general, with these brain 

regions. This is further supported by the finding that increased functional connectivity in 

several of these regions was also associated with the presence of depressive symptoms with 

large effect sizes, though none survived multiple comparison correction.

Current results were limited to male football players; therefore, we are unable to test for 

potential sex-differences in the associations between concussion, KP metabolites, and 

functional connectivity. Sex differences have been documented in previous concussion 

research, with indications that women report more symptoms following concussion, take 

longer to recover, and have higher risk of sustaining a concussion (Bretzin et al., 2018; 

Covassin et al., 2003; Iverson et al., 2017; Merritt et al., 2019; Zemek et al., 2016). 

Moreover, we have previously documented sex differences in serum KP metabolites, with 

women having lower KynA/QuinA and KynA/3HK, driven by lower KynA, compared to 

men (Meier et al., 2018). Given these differences, as well as the well-established sex 

differences in immune function, in general, future work is required to determine the extent to 

which sex moderates the associations observed in the current study (Klein et al., 2010; Klein 

and Flanagan, 2016; vom Steeg and Klein, 2016).

Finally, the current study investigated associations of KP metabolites and concussion with 

intrinsic brain connectivity as measured by rs-fMRI. Rs-fMRI, compared to task-based 

fMRI, allows for the mapping of intrinsic functional connectivity without confounds 

associated with tasks, such as performance or effort issues (for a review of fMRI use in TBI 

research, see (Mayer et al., 2015). There are alternative methods to assess intrinsic brain 

connectivity, such as electroencephalogram (EEG), magnetoencephalography (MEG), or 

functional near-infrared spectroscopy (fNIRS). While some of these methods provide more 

direct assessment of neural activity (i.e., EEG, MEG), the spatial resolution throughout the 

entirety of brain (including critical subcortical regions) is typically superior for fMRI. 

Finally, there are neuroimaging measures of brain microstructure that are sensitive to the 

effects of concussion, such as diffusion MRI (Gardner et al., 2012). The possible 

associations of concussion and KP metabolites with these alternative neuroimaging metrics 

merits future research.

4.1 Limitations

Current results were limited to high school and collegiate American football players and 

may not generalize to other sports, women, or athletes of different ages. The presence and 

Meier et al. Page 11

Brain Behav Immun. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number of prior concussions was based on participant self-report, which may be biased. 

Serum samples were non-fasting and collection time of blood samples was non-standardized 

across the study due to confines of the parent study. Although the repeated sampling over 

multiple visits could help mitigate these factors, they could impact KP measurements in 

blood. The extent to which serum KP metabolites reflect levels in the brain is uncertain, 

though blood and brain/CSF levels of QuinA have been shown to be significantly correlated 

(Haroon et al., 2020; Heyes et al., 1992; Heyes and Morrison, 1997; Raison et al., 2010). 

Finally, the sample size of participants with both blood and available scan data is relatively 

small in terms of individual participants. Because of the longitudinal design, however, KP 

metabolites and connectivity strength were measured in up to four visits per participants 

(e.g., 262 visits with blood and imaging). Nevertheless, it is likely that certain analyses (e.g., 

exploratory analyses in SRC+ group) were underpowered.

5. Conclusions

Elevated serum concentrations of QuinA are associated with increased functional brain 

connectivity in recently concussed athletes with a history of prior concussion. Future studies 

are needed to directly test the hypothesis that negative sequalae of multiple concussions may 

be, at least in part, mediated by a priming of the KP that triggers greater production of 

QuinA upon subsequent injury.
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Figure 1: 
Shown is the association between natural log transformed (ln) quinolinic acid and global 

connectivity strength for both the Automated Anatomical Labeling atlas, version 2 (AAL2) 

and the Craddock atlas for concussed participants with prior concussion. For illustrative 

purposes, individual participants are indicated using a single color, with smaller lines 

demonstrating the relationship between connectivity and quinolinic acid in each participant 

over the repeated sessions. The solid black line represents the association between 

connectivity and quinolinic acid across all participants and time points. nM = nanomolar
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Figure 2: 
Displayed are the regions of interest from the Automatic Anatomical Labeling atlas, version 

2 that showed a significant association between natural log transformed quinolinic acid and 

connectivity strength in concussed athletes with prior concussion following False Discovery 

Rate correction. Regions are labeled once. Color bar corresponds to the unstandardized Beta. 

L = left, R = Right, Paracen Lob = paracentral lobule, Fr = frontal, Sup = superior, Rol Oper 

= rolandic operculum, Occ = occipital, Mid = middle, Med = medial, Orb = orbital, OFC = 

orbitofrontal cortex, Cing = cingulate, Ant = anterior, Parahipp = parahippocampal, CBM = 

cerebellum, Post = posterior.
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Table 1:

Sample Characteristics and Demographics

SRC− SRC+ CC− CC+ Statistic

Total No. Participants 16 21 24 18

No. by Visit (1d/8d/15d/45d) 13/12/12/12 17/19/15/15 21/21/20/19 16/18/17/15 X2(9)=0.47, p=1.00

Age 17.81(1.83) 18.05(1.75) 18.08(1.47) 18.39(1.91) F(3, 75)=0.32, p=0.81

Race, No. White/Non-White, NR, or 
Unknown

10/6 15/6 14/10 15/3 X2(3)=3.33, p=0.34

Ethnicity, No. Not Hispanic/Hispanic, NR 
or Unknown

16/0 16/5 19/5 17/1 FET=6.06, p=0.08

WTAR Standard Score 99.94(18.88) 99.10(11.97) 98.17(12.40) 105.22(14.41) F(3, 75)=0.94, p=0.42

No. Participants in College 12 15 19 12 FET=0.99, p=0.86

Body Mass Index 27.68(4.83) 28.12(4.56) 30.31(5.74) 28.20(5.22) F(3, 75)=1.14, p=0.34

Years of Participation in Sport 7.13(2.50) 7.60(2.80) 7.83(2.33) 8.39(2.75) F(3, 74)=0.71, p=0.55

Median [IQR] No. of Prior Concussions 0 [0,0] 1 [1,2] 0 [0,0] 1 [1,2] H=69.59, p<0.001

Clinical Measures at Baseline

BSI-GSI Raw Score 1.88(2.68) 4.76(8.83) 2.79(3.22) 1.94(2.59) Welch’s F(3, 40)=0.94, 
p=0.43

SCAT-3 Symptom Severity 1.88(2.66) 3.24(6.46) 3.04(6.23) 1.83(2.62) F(3, 74)=0.41, p=0.74

BESS Total Score 12.87(2.80) 11.71(4.44) 12.04(3.11) 9.72(3.80) F(3, 74)=2.34, p=0.08

SAC Total Score 26.13(2.31) 26.19(2.02) 25.83(2.08) 25.78(2.96) F(3, 75)=0.15, p=0.93

Clinical Measures at 1d

BSI-GSI Raw Score 7.31(6.93) 4.24(5.07) 0.81(1.33) 1.00(1.63) Welch’s F(3, 28)=5.73, 
p=0.003

SCAT-3 Symptom Severity 25.08(23.31) 18.12(16.57) 2.24(3.42) 0.69(1.40) Welch’s F(3, 28)=11.25, 
p<0.001

BESS Total Score 13.00(6.81) 9.75(5.26) 9.50(4.21) 8.31(3.77) F(3, 60)=2.16, p=0.10

SAC Total Score 25.62 (2.22) 26.41(2.00) 25.71(2.63) 25.81(3.31) F(3, 63)=0.31, p=0.82

Median [IQR] Duration of Symptoms in 
Days

6.5 [4.75, 9.5] 7 [5, 12] - - H=0.14, p=0.71

Note: Values are expressed as mean (standard deviation) unless otherwise noted. SRC- = concussed participants without prior concussion, SRC+ = 
concussed participants with prior concussion, CC- = contact controls without prior concussion, CC+ = contact controls with prior concussion, No. 
= Number, 1d = 1 day visit, 8d = 8 day visit, 15d = 15 day visit, 45d = 45 day visit, NR = not reported, WTAR = Wechsler Test of Adult Reading, 
IQR = interquartile range, BSI-GSI = Brief Symptom Inventory Global Severity Index, SCAT = The Sport Concussion Assessment Tool, BESS = 
Balance Error Scoring System, SAC = Standardized Assessment of Concussion, FET = Fisher’s Exact Test, H = Kruskal-Wallis chi-square.
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Table 2:

Associated statistics for kynurenine pathway marker effects on global connectivity strength

AAL2 AAL2 Craddock Craddock

Measure Main Effect, KP marker KP marker × Group 
Interaction

Main Effect, KP marker KP marker × Group 
Interaction

Primary

QuinA F(1, 134)=1.86, p=0.18 F(3, 127)=3.46, p=0.019 F(1, 130)=1.53, p=0.22 F(3, 123)=3.27, p=0.024

KynA/QuinA F(1, 149)=0.00, p=0.99 F(3, 147)=0.32, p=0.81 F(1, 143)=0.00, p=0.96 F(3, 141)=0.26, p=0.86

Secondary

KynA/3HK F(1, 185)=0.01, p=0.94 F(3, 190)=1.00, p=0.39 F(1, 177)=0.00, p=0.98 F(3, 181)=0.92, p=0.43

KynA F(1, 243)=1.11, p=0.29 F(3, 241)=0.77, p=0.51 F(1, 240)=1.28, p=0.26 F(3, 238)=1.00, p=0.39

3HK F(1, 245)=1.60, p=0.21 F(3, 239)=0.44, p=0.73 F(1, 243)=2.16, p=0.14 F(3, 237)=0.63, p=0.60

KYN/TRP F(1, 212)=0.03, p=0.86 F(3, 179)=0.49, p=0.69 F(1, 207)=0.04, p=0.84 F(3, 173)=0.38, p=0.76

KYN F(1, 170)=0.86, p=0.35 F(3, 158)=0.15, p=0.93 F(1, 164)=0.79, p=0.38 F(3, 153)=0.24, p=0.87

TRP F(1, 228)=0.91, p=0.34 F(3, 223)=0.92, p=0.43 F(1, 221)=0.84, p=0.36 F(3, 216)=1.10, p=0.35

Note: AAL2 = Automated Anatomical Labeling atlas, Craddock = Craddock atlas, KP = kynurenine pathway, QuinA = quinolinic acid, KynA = 
kynurenic acid, 3HK = 3-hydroxykynurenine, KYN = kynurenine, TRP = tryptophan.
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Table 3:

Association of quinolinic acid and functional connectivity strength in SRC+

Region-of-Interest Beta SE t df p-value FDR-corrected p

Pallidum_R 27.66 7.18 3.85 43.12 < 0.001 < 0.001

Caudate_L 25.80 6.77 3.81 31.45 0.001 0.017

Olfactory_L 25.55 7.37 3.47 45.39 0.001 0.017

Caudate_R 25.30 7.22 3.51 46.09 0.001 0.017

Olfactory_R 25.04 7.38 3.39 39.94 0.002 0.018

Heschl_L 24.69 7.64 3.23 42.42 0.002 0.018

Frontal_Med_Orb_L 24.67 6.76 3.65 55.46 0.001 0.017

Frontal_Sup_2_R 24.16 7.08 3.41 56.49 0.001 0.017

Frontal_Med_Orb_R 23.62 7.01 3.37 47.39 0.001 0.017

Insula_L 22.00 7.22 3.05 40.95 0.004 0.030

Putamen_L 21.98 6.79 3.24 44.81 0.002 0.018

Frontal_Sup_Medial_L 21.68 7.33 2.96 51.57 0.005 0.034

Putamen_R 20.95 6.38 3.28 44.35 0.002 0.018

Cingulate_Ant_R 20.53 7.16 2.87 47.68 0.006 0.034

Rectus_R 20.46 6.74 3.04 47.94 0.004 0.030

Insula_R 19.68 7.14 2.76 33.43 0.009 0.043

Paracentral_Lobule_L 19.54 7.47 2.62 48.54 0.012 0.046

OFCmed_R 19.50 5.87 3.32 34.07 0.002 0.018

Cerebellum_9_R 19.42 6.06 3.21 60.94 0.002 0.018

Rolandic_Oper_L 19.33 6.85 2.82 32.92 0.008 0.042

Precuneus_L 19.10 7.06 2.70 48.82 0.009 0.043

Frontal_Sup_2_L 19.05 6.66 2.86 47.02 0.006 0.034

ParaHippocampal_L 18.99 6.55 2.90 44.99 0.006 0.034

OFCpost_R 18.93 6.98 2.71 36.45 0.010 0.044

Occipital_Mid_L 18.90 6.67 2.83 52.81 0.006 0.034

Calcarine_R 18.88 6.75 2.80 45.16 0.008 0.042

Angular_R 18.72 7.22 2.59 59.77 0.012 0.046

Lingual_L 18.64 7.12 2.62 44.09 0.012 0.046

Lingual_R 18.63 7.00 2.66 51.31 0.010 0.044

Cerebellum_Crus2_L 17.52 5.81 3.02 44.48 0.004 0.030

Cerebellum_Crus1_L 17.10 6.58 2.60 52.82 0.012 0.046

Note: Shown are the parameter estimates for the significant associations between natural log transformed quinolinic acid and connectivity strength 
for specific regions-of-interest from the Automated Anatomical Labeling (version 2) atlas following False Discovery Rate (FDR) correction. SE = 
standard error, df = degrees of freedom, t = t statistic, _R = right hemisphere, _L = left hemisphere, Med = medial, Orb = orbital, Sup = superior, 
Ant = anterior, Oper = operculum, Post = posterior, Mid = middle, OFC = orbitofrontal cortex.
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Table 4:

Differences in individual ROI connectivity strength based on depression symptom status in SRC+

Region-of-Interest MD* SE t df p-value FDR-corrected p Cohen’s d

Lingual_L −19.205 6.580 −2.919 15 0.011 0.075 −1.418

Cingulate_Ant_R −21.310 7.573 −2.814 15 0.013 0.075 −1.367

Heschl_L −20.173 7.575 −2.663 15 0.018 0.075 −1.294

Frontal_Sup_2_L −17.606 6.869 −2.563 15 0.022 0.075 −1.245

Occipital_Mid_L −15.896 6.243 −2.546 15 0.022 0.075 −1.237

Rolandic_Oper_L −17.910 7.033 −2.547 15 0.022 0.075 −1.237

Frontal_Med_Orb_R −18.290 7.194 −2.542 15 0.023 0.075 −1.235

Lingual_R −17.840 7.068 −2.524 15 0.023 0.075 −1.227

Pallidum_R −14.385 5.403 −2.662 9.540* 0.025 0.075 −1.348

Putamen_R −14.375 5.836 −2.463 15 0.026 0.075 −1.197

Putamen_L −13.683 5.659 −2.418 15 0.029 0.075 −1.175

Calcarine_R −15.678 6.629 −2.365 15 0.032 0.075 −1.149

ParaHippocampal_L −17.036 7.271 −2.343 15 0.033 0.075 −1.138

Frontal_Sup_Medial_L −17.932 7.665 −2.339 15 0.034 0.075 −1.137

Insula_L −14.768 6.474 −2.281 15 0.038 0.076 −1.108

Caudate_R −18.285 7.761 −2.356 9.827* 0.041 0.076 −1.191

Insula_R −15.070 6.760 −2.229 15 0.042 0.076 −1.083

Frontal_Med_Orb_L −14.993 6.830 −2.195 15 0.044 0.076 −1.067

Frontal_Sup_2_R −17.028 8.077 −2.108 15 0.052 0.085 −1.024

Paracentral_Lobule_L −16.507 8.003 −2.063 15 0.057 0.087 −1.002

Precuneus_L −16.238 7.941 −2.045 15 0.059 0.087 −0.994

Angular_R −15.685 8.577 −1.829 15 0.087 0.122 −0.889

Cerebellum_9_R −11.894 6.946 −1.712 15 0.107 0.142 −0.832

OFCpost_R −13.794 8.112 −1.700 15 0.110 0.142 −0.826

Olfactory_L −14.420 8.879 −1.624 15 0.125 0.150 −0.789

Cerebellum_Crus1_L −13.025 8.033 −1.621 15 0.126 0.150 −0.788

Olfactory_R −14.340 8.904 −1.610 9.495* 0.140 0.161 −0.816

Rectus_R −9.302 6.977 −1.333 15 0.202 0.223 −0.648

Caudate_L −11.613 8.566 −1.356 8.708* 0.209 0.223 −0.691

OFCmed_R −8.561 7.329 −1.168 15 0.261 0.270 −0.568

Cerebellum_Crus2_L −1.434 6.034 −0.238 15 0.815 0.815 −0.115

Note: Shown are the associated statistics for comparison of connectivity strength for specific regions-of-interest in concussed athletes with prior 
concussion based on depression symptom status at 1day post-injury. Asterisk indicates t-test with unequal variance, MD = mean difference, SE = 
standard error, DF = degrees of freedom, T = T-statistic, FDR = False Discovery Rate, _R = right hemisphere, _L = left hemisphere, Med = medial, 
Orb = orbital, Sup = superior, Ant = anterior, Oper = operculum, Post = posterior, Mid = middle, OFC = orbitofrontal cortex.

*
Comparison is athletes without versus those with depression symptoms.
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