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Summary
The incorporation of resistance genes into wheat commercial varieties is the ideal strategy to

combat stripe or yellow rust (YR). In a search for novel resistance genes, we performed a large-

scale genomic association analysis with high-density 660K single nucleotide polymorphism (SNP)

arrays to determine the genetic components of YR resistance in 411 spring wheat lines.

Following quality control, 371 972 SNPs were screened, covering over 50% of the high-

confidence annotated gene space. Nineteen stable genomic regions harbouring 292 significant

SNPs were associated with adult-plant YR resistance across nine environments. Of these, 14 SNPs

were localized in the proximity of known loci widely used in breeding. Obvious candidate SNP

variants were identified in certain confidence intervals, such as the cloned gene Yr18 and the

major locus on chromosome 2BL, despite a large extent of linkage disequilibrium. The number of

causal SNP variants was refined using an independent validation panel and consideration of the

estimated functional importance of each nucleotide polymorphism. Interestingly, four natural

polymorphisms causing amino acid changes in the gene TraesCS2B01G513100 that encodes a

serine/threonine protein kinase (STPK) were significantly involved in YR responses. Gene

expression and mutation analysis confirmed that STPK played an important role in YR resistance.

PCR markers were developed to identify the favourable TraesCS2B01G513100 haplotype for

marker-assisted breeding. These results demonstrate that high-resolution SNP-based GWAS

enables the rapid identification of putative resistance genes and can be used to improve the

efficiency of marker-assisted selection in wheat disease resistance breeding.

Introduction

Stripe rust or yellow rust (YR) caused by Puccinia striiformis f. sp.

tritici (Pst) is an important foliar disease that has been associated

with up to 100% yield losses in wheat (Chen, 2014). The

incorporation of resistance genes into commercial varieties is the

ideal strategy to combat YR. With our gradually improved

understanding of ’durable resistance’, greater emphases are

being placed on adult-plant resistance (APR) or high-temperature

adult-plant resistance (HTAPR), which are affected by actual

growth stage and temperature (Niks et al., 2015). Quantitative

genetics analyses have shown that APR is usually controlled by

multiple inherited loci (Chen, 2013). The best-known Pst-APR

genes are Yr18, Yr36 and Yr46, which confer a degree of

resistance to multiple races and have been cloned (Fu et al., 2009;

Krattinger et al., 2009; Moore et al., 2015). Studies on the

molecular genetics of APR have indicated that there is more than

one model for the mechanism of durable resistance (Brown,

2015). Thus, it is vital for researchers and breeders to understand

the genetic basis of stripe rust resistance in current elite breeding

populations and continuously search for novel genes.

However, quantitative resistance is based on multiple loci, each

with a small effect, thus increasing the difficulty of identification.

The large genome size and allopolyploidy of common wheat

result in complex quantitative inheritance of APR and cause slow

progress in breeding for APR (S�anchez-Mart�ın and Keller, 2019).

With important advances in high-throughput sequencing and

wheat genomic sequencing, large numbers of molecular markers

have been developed that facilitate the progress of more efficient

mapping techniques (Juliana et al., 2019). In particular, genome-

wide association studies (GWAS) can identify associations

between phenotypic variation and nucleotide polymorphisms

using a diverse population panel (Bazakos et al., 2017). As

numerous natural allelic variations can be simultaneously

detected in a single study and a large number of historical

chromosomal recombination events occur over multiple genera-

tions of natural populations, GWAS is becoming a powerful tool

to dissect the genetic basis of complex agronomic traits and

identify potential causal genes (Xu et al., 2017).

On the other hand, the identification of causal genes that

underlie agronomic traits directly from GWAS results remains

difficult. First, population genetic structure can limit the detection
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of rare allele variants and occasionally generate false associations

between phenotype and non-causal genes (Bazakos et al., 2017).

Although several statistically robust models have been built, such

as population structure assessment and correction, false positives

caused by population structure may not be entirely eliminated

(Kang et al., 2008; Yu et al., 2006). To address this problem,

another independent population can be reconstructed to validate

the resulting marker–trait associations (MTAs) (Lipka et al., 2015).

Second, a large extent of linkage disequilibrium (LD) can give rise

to a single LD block that displays a remarkable association with

the trait of interest but harbours a variety of candidate genes

(Schaid et al., 2018). Typically, the extent of LD in self-pollinating

crops spans several hundred kilobases (kb), as documented in rice

(Huang et al., 2011), and can occasionally reach megabases (Mb),

as in wheat (Cheng et al., 2019; Wu et al., 2020). Thus, with

high-level LD, further investigation is necessary to conclusively

identify the causal gene(s). Recently, an efficient GWAS method

using whole-genome sequencing (WGS) was developed in rice for

the rapid identification of trait causal genes without the need for

additional experiments, based on the estimated functional

importance of each nucleotide polymorphism (Yano et al.,

2016). Similar practices have been used in wheat. For example,

four stem rust resistance genes were rapidly cloned through a

combination of association genetics and R gene enrichment

sequencing (AgRenSeq) (Arora et al., 2019). Exome association

mapping provided another route for the detection of functional

SNP variants in wheat leaf rust resistance (Liu et al., 2020). In

addition, high-density SNP array analysis has also become an

alternative approach for the refinement of candidate genes. The

updated version of the wheat 660K SNP array includes 660 009

SNP sites distributed over all chromosomes and encompassing the

majority of genes (Sun et al., 2020). It has been widely used in

many genetic studies that are focused on gene fine-mapping and

cloning in China (Li et al., 2019; Rasheed et al., 2017).

Recently, members of the post-Yr26-virulent races group

(herein referred to as post-V26) have become the most prevalent

forms of Pst that threaten wheat production in China (McIntosh

et al., 2018). Unexploited wheat germplasm is a potentially

valuable source of genetic diversity that can enhance and enrich

breeding germplasm with needed traits for the sustainable

improvement of modern cultivars (Hao et al., 2011; Zhuang,

2003). Here, a diversity panel of 411 advanced breeding lines

were collected from International Maize and Wheat Improvement

Center (CIMMYT) and International Centre for Agricultural

Research in the Dry Areas (ICARDA) bread-wheat breeding

programmes, which were expected to have effective and novel

resistance genes, thus making them ideal for association map-

ping. Then, they were evaluated for their responses to post-V26

races in seedling and in multi-location field trials with plants either

artificially or naturally inoculated over three cropping seasons.

Subsequently, we used GWAS to dissect the genetic architecture

of these lines and detect QTL associated with variation in stripe

rust resistance. Using high-resolution SNPs from the wheat 660K

SNP array, resequencing data and PCR-based sequencing data,

we attempted to refine the number of causal alleles based on

analysis of another independent validation panel of over 1000

wheat accessions, as well as analysis of the estimated functional

importance of each nucleotide polymorphism. Our study

describes promising results that will accelerate marker-assisted

selection for the improvement of stripe rust resistance in Chinese

wheat breeding programmes and delineate prospective targets

for the cloning of novel resistance genes.

Results

Genotyping by SNP array reveals abundant genetic
diversity

After filtering out low-quality SNP markers, a total of 378,441

SNPs were retained and used for the following analyses. A

position could be assigned to 371,972 SNPs, which were

distributed over each of the 21 chromosomes (Figure S1a;

Table 1; Table S2). Marker density varied among chromosomes

with a minimum of 7.19 markers per Mb on chromosome 4D and

a maximum of 53.54 markers per Mb on chromosome 3B

(Table 1; Figure S1b). In addition, these filtered SNPs were used in

a BLAST analysis of the ‘Chinese Spring’ reference genome to

analyse and predict their effects on gene structure and function.

BLAST analysis revealed that out of the 378 441 SNPs, 41 588

(10.99%) were intron variants and 162 080 (42.82%) mapped

within 2 kb upstream or downstream of genic regions. The

remaining SNPs were located in gene exons, with 28 728

(7.59%) of these SNPs causing non-synonymous mutations.

Finally, we identified the SNPs associated with 57 833 genes,

which accounted for 53.6% of all high-confidence genes, and

found that 36 042 genes (62.32%) possessed at least two SNPs

(Table S3; Figure S1c).

Genetic diversity was analysed using markers with known

chromosomal positions. Overall, the spring wheat diversity panel

showed relatively high genetic diversity, with He and PIC values of

all genomes of 0.69 and 0.28, respectively (Table 1; Figure S1d,

e). Although the D genome possessed fewer markers than the A

and B genomes, there was little difference in genetic diversity

among the three genomes. The mean values of He and PIC for

the three subgenomes were 0.68–0.70 and 0.27–0.28, respec-
tively (Table 1). The genetic diversity results of the validation

panel of 1,045 accessions with 660K SNP array data are provided

in Table S4. Approximately 75% of the markers displayed PIC

values exceeding 0.20, demonstrating the informativeness of

these markers.

Estimation of population structure and linkage
disequilibrium

According to the DK method of Bayesian clustering, hierarchi-

cal clustering, kinship analysis, phylogenetic tree construction

and PCA analyses, geographical origin (Africa and America) and

historical era (old landraces to modern elite lines) were the two

major factors that determined the classification of diversity in

this panel. The population of 411 accessions was first struc-

tured into two main subpopulation groups based on geo-

graphical distribution (herein referred to as Sp1 and Sp2)

(Figure 1a–e). Sp1 was frequently associated with Mediter-

ranean countries such as Morocco and Egypt, whereas Sp2

predominantly included accessions from countries in America,

South Asia and Oceania, such as Mexico, the United States,

India and Australia. In view of different eras, Sp1 and Sp2 were

further subdivided into two and three distinct subgroups

(herein referred to as Sp1-1, Sp1-2, Sp2-1, Sp2-2 and Sp2-3),

respectively (Figure 1c–e). Sp1-1 consisted of 68 early ICARDA

varieties, and Sp1-2 included a mixture of 176 modern varieties

and breeding lines. Sp2-1, Sp2-2 and Sp2-3 contained a

mixture of 88 modern varieties and breeding lines, 37 genetic

stocks, and a mixture of 42 landraces and earlier varieties. The

STRUCTURE membership coefficients revealed a high degree of

admixture in a large number of accessions, particularly among
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cultivars and modern breeding materials, which was mainly

observed in a number of lines from other breeding pro-

grammes in each cluster. This result is consistent with the

shuttle breeding of CIMMYT and ICARDA and the frequent

germplasm exchange that characterizes modern wheat breed-

ing worldwide.

LD analysis was assessed based on 717 701 068 pairwise

comparisons of 371,972 SNPs, and pairwise LD was estimated

using the squared-allele frequency correlation (r2). A plot of the

LD estimates (r2) as a function of physical distance in Mb indicated

that there was a clear decay of LD with physical distance

(Figure S2). Comparison of LD among subgenomes and chromo-

somes showed that the LD decay was varied. Overall, the average

LD decay distance for the whole genome was approximately

3.2 Mb. LD decayed faster in the D genome (1.3 Mb) than in the

A (2.6 Mb) and B (5.5 Mb) genomes (Figure S2b–d). We believe

that faster LD decay in the D genome is compatible with wheat

evolutionary history (Dubcovsky and Dvorak, 2007). The D

genome was the last be incorporated into common wheat and

was therefore subjected to less artificial selection than the A and

B genomes. Several haplotype blocks harbouring favourable

alleles or combinations of alleles tend to be stable, and the LD

decay distance is increased through artificial selection-driven

evolution. For example, in this study, the LD decay of all

chromosomes ranged from 0.62 Mb to over 7.45 Mb, indicating

that different genomic regions have been subjected to various

artificial selections and that the haplotype diversity is expansive in

this diversity panel (Figure S2).

Phenotypic variation in response to stripe rust

In the stripe rust resistance tests with six Pst races at the seedling

stage, the infection type (IT) distributions skewed towards

susceptible scores with mean IT values of 7.6–8.1 on a 0–9 scale

(Figure S3; Table S5). In the spring wheat diversity panel assessed

here, because less than 5% of individuals exhibited resistant

reactions (IT 0–3) to each of the tested Pst races, the seedling

phenotypes were not used for GWAS analysis to minimize false

positive errors. By contrast, greater stripe rust resistance was

observed in the field tests at the adult-plant stage, although the

susceptibility checks always indicated high rates of infection. The

IT and DS distributions were skewed towards low values in all

resistance trials, ranging from 4.4 to 4.9, and 30.0% to 34.7%,

respectively (Figure S4a, b; Table S5). IT and DS values were

continuous in all environments, indicating that the effects were

conferred by APR and the responses were quantitative. Pearson’s

correlation coefficients were 0.78–0.95 for IT and 0.88–0.96 for

DS across all environments (Figure S5a, b). Such significant

correlations (P < 0.0001) indicated that stripe rust responses

were consistent across the environments and most likely same

resistance genes conferred resistance in all environments. As

expected, the correlation between IT and DS was highest within

the same environment, ranging from 0.80 to 0.91 (Figure S4c).

The broad-sense heritability H2 was calculated as 0.48 � 0.07

and 0.55 � 0.07 for the IT and DS data, respectively (Table S5).

The extent to which stripe rust responses of the 411 different

accessions were influenced by population structure was analysed,

Table 1 Summary of the genetic diversity in the subgenomes and chromosomes of 411 wheat accessions and evaluation of the effective number

of independent SNPs, including suggested P-value thresholds

Chromosome No. of markers Effective number Suggested P-value % markers Length (Mb) Marker density He PIC LD (Mb)

1A 23,120 5,255 1.90E-04 6.11 594.02 38.92 0.68 0.27 2.37

2A 26,079 5,825 1.72E-04 6.89 780.76 33.40 0.75 0.30 2.38

3A 16,040 4,234 2.36E-04 4.24 750.73 21.37 0.70 0.28 1.64

4A 19,191 4,170 2.40E-04 5.07 744.54 25.78 0.66 0.27 4.06

5A 20,430 4,533 2.21E-04 5.40 709.76 28.78 0.74 0.30 4.14

6A 15,935 3,554 2.81E-04 4.21 617.97 25.79 0.69 0.28 2.40

7A 24,184 6,124 1.63E-04 6.39 736.69 32.83 0.65 0.26 2.03

1B 19,684 4,748 2.11E-04 5.20 689.38 28.55 0.68 0.27 4.15

2B 27,097 6,988 1.43E-04 7.16 801.25 33.82 0.70 0.28 2.88

3B 44,479 7,352 1.36E-04 11.75 830.7 53.54 0.57 0.23 7.45

4B 12,690 2,231 4.48E-04 3.35 673.47 18.84 0.71 0.28 3.09

5B 31,251 6,135 1.63E-04 8.26 713.02 43.83 0.72 0.29 4.35

6B 21,231 5,523 1.81E-04 5.61 720.95 29.45 0.72 0.29 2.95

7B 16,396 3,221 3.10E-04 4.33 750.61 21.84 0.68 0.27 3.29

1D 10,210 2,561 3.90E-04 2.70 495.44 20.61 0.71 0.28 1.98

2D 10,119 3,453 2.90E-04 2.67 651.81 15.52 0.72 0.29 3.28

3D 6,748 6,424 1.56E-04 1.78 615.48 10.96 0.62 0.25 2.29

4D 3,664 1,024 9.77E-04 0.97 509.85 7.19 0.68 0.27 0.89

5D 7,190 2,227 4.49E-04 1.90 566.04 12.70 0.66 0.27 0.86

6D 7,052 2,242 4.46E-04 1.86 473.56 14.89 0.69 0.27 0.62

7D 9,182 1,010 9.90E-04 2.43 638.65 14.38 0.67 0.27 1.09

A genome 144,979 38.31 4934.47 29.38 0.70 0.28 2.60

B genome 172,828 45.67 5179.38 33.37 0.68 0.27 5.50

D genome 54,165 14.31 3950.83 13.71 0.68 0.27 1.30

Total 371,972 14064.68 26.45 0.69 0.28 3.20

Average 3.23E-04
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and the accessions in Sp1 generally displayed more resistance

than those in Sp2 (Figure S4d, e).

GWAS reveals several significant SNPs associated with
known stripe rust resistance loci

The stripe rust responses including IT and DS values of the 411

accessions across nine field environments and the best linear

unbiased predictions (BLUPs) were used in association tests based

on univariate linear mixed model analysis. Based on the suggested

threshold P-value < 2.90 9 10-4, 358–801 significant SNP–trait
associations were detected. In order to identify stable loci, only

QTL associated with APR within at least seven environments

including BLUP were considered as high-confidence QTL, which

filtered the common significant SNP–trait associations down to

292 (Table S6). For convenience, tagged SNPs for each QTL were

selected based on those exhibiting the strongest association with

stripe rust responses alongside the smallest SNP-associated P-

value, the largest phenotypic variance explained (R2) and the

largest number of environments in which significant trait asso-

ciations were detected. As a result, a total of 19 QTL regions were

identified on chromosome arms 1AL, 1BL, 2AS, 2AL, 2BS, 2BL,

3AL, 3BS, 3BL, 4BS, 4BL, 6BS, 6BL, 7AL, 7BL and 7DS (Figure 2a-j;

Figure S6a-j; Figure S7). The frequency of SNP marker alleles

associated with resistance ranged from 0.06 to 0.93, although

marker alleles are not necessarily indicative of functional resis-

tance alleles (Table 2). The phenotypic variation explained (PVE)

by individual QTL was 1.5–9.6%, and the total value of PVE

contributed by all QTL was 57.8–74.1%. Of the 19 assigned QTL,

five loci were potentially novel based on their unique chromoso-

mal locations, determined by referring to the consensus and

physical maps, and two of these had been mapped in our

previous studies. Among the other 14 QTL, nine were co-located

Figure 1 Population structure of the 411 included wheat accessions. (a) Principal components analysis (PCA). (b) Neighbour-joining tree analysis. (c, d, e)

Subgroups inferred by hierarchical clustering, kinship and structure analysis. Vertical lines indicate genetic similarity thresholds used to classify accessions

into two main groups (dashed lines) and five subgroups (dotted lines). (d) 411 9 411 kinship matrix based on a simple matching of genetic similarities (IBS,

identity by state). Separations among hierarchical-based groups are shown as horizontal dashed lines for main groups and as dotted-dashed lines for

subgroups. (e) Matrices of membership coefficients of accessions corresponding to 2–5 hypothetical subpopulations derived from the STRUCTURE analysis.
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with characterized Yr genes, namely Yr29 on chromosome arm

1BL, Yr17 on 2AS, Yr32 on 2AL, Yr30 on 3BS, Yr80 on 3BL, Yr78

on 6BS, Yr75 on 7AL, Yr39 or Yr2 on 7BL and Yr18 on 7DS

(Figure 2a–j; Figure S7; Table 2). The remaining five QTL identi-

fied in this GWAS were in agreement with the candidate regions

reported in previous QTL mapping or GWAS studies (Figure S7;

Table 2). Moreover, YrNP63-2BS, YrSnb.1-2BL, YrRC-4BL and

YrSnb.2-6BL had been mapped using CIMMYT-derived bi-parent

populations in our previous studies (Wu et al., 2017, 2018a; Zeng

et al., 2019).

Haplotype and candidate gene analysis for the cloned
gene Yr18

To verify the accuracy, reliability and validity of these multi-

environment significant SNPs, the cloned locus Yr18 was selected

as an example to demonstrate the a priori experiment of

haplotype analysis and revalidation. At the proximal end of the

short arm of chromosome 7D, there was a peak close to Yr18. A

total of 26 polymorphisms were mapped to a candidate region

from 47.379 to 47.711 Mb (332 kb) estimated using pairwise LD

correlations (r2 ≥ 0.6) (Figure 3a-c). Among these polymorphisms

in the candidate region, only one polymorphism was classified as

G1 (AX-94713206) and G3 (AX-111197303), respectively, no G2

polymorphisms were found, two polymorphisms (AX-89378255

and AX-109857040) were classified as G4, and the others were

classified as G5. The G1 SNP AX-94713206 corresponded to a C

to T change in the twelfth exon of the TraesCS7D01G080300

ORF, which caused a tyrosine to histidine replacement (Figure 3d;

Table S7). TraesCS7D01G080300 encodes an ATP-binding cas-

sette (ABC) transporter G family protein that is identical to the

resistance allele Yr18res (Krattinger et al., 2009). Although the

SNP AX-109857040 is located in an intron, it was significantly

associated with resistance, which is consistent with previous

studies (Krattinger et al., 2013). Due to the Yr18res 3-bp deletion

in the eleventh exon, the SNP AX-95209823 (C/G) could not

distinguish this site accurately, and thus, it was not a significant

MTA. It should be noted that there were two more significant

MTAs outside the Yr18 coding region. The accessions carrying

haplotype 1 (we herein refer to the haplotype corresponding to

Yr18res as ‘1’ and the other as ‘2’) showed more resistance than

those carrying haplotype 2 (Figure 3e), which agreed with

previous studies concerning the Yr18 locus. The discriminatory

effectiveness of these SNPs was validated in the second

independent diversity panel of 1045 wheat accessions, and they

performed comparably to gene-specific SNPs (Figure 3e). In

addition, a pair of near-isogenic lines (Hap1: +Yr18, Hap2:

�Yr18) in the Avocet S variety background showed different

responses to stripe rust in the field (Figure 3f; Table S8). These

results indicate that the candidate genes analysis method can

identify trait-associated genes or DNA variants, and, furthermore,

that combinations of significant MTAs can help to identify

Figure 2 Genome-wide association

analysis results for the severity of stripe rust

across ten tested environments. Assessed

environments included (a) 2017-Jiangyou,

(b) 2017-Tianshui, (c) 2017-Yanlging, (d)

2018-Jiangyou, (e) 2018-Tianshui, (f) 2018-

Yanlging, (g) 2019-Jiangyou, (h) 2019-

Tianshui, (i) 2019-Yanlging and (j) BLUP

(the best linear unbiased predictions). The

horizontal line shows the genome-wide

significance threshold –log10 (P) value of

3.4. The A, B and D genomes are in blue-

green, pale green and orange, respectively.

The QTL detected in this GWAS panel

associated with the known Yr loci are listed

in the corresponding chromosome.
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favourable haplotype(s) and improve the efficiency of marker-

assisted selection in wheat breeding.

Identification of a novel candidate region

Similarly, we analysed the highest peak on chromosome 2B,

which was mapped close to YrSnb.1 identified in our QTL

mapping. The YrSnb.1 region was previously shown to span an

interval of 2.2 cM corresponding to <4 Mb (Zeng et al., 2019). In

this GWAS panel, LD analysis within the YrSnb.1 region was

initially from 707.418 Mb to 712.236 Mb (4.8 Mb) (Figure 4a).

As an experimental control and to more accurately identify

candidate regions, GWAS was performed on the independent

validation panel, following which the above-mentioned candidate

region was mapped from 707.668 to 708.346 Mb (612.9 kb)

(Figure 4b). Association analysis was also performed in the

612.9 kb region using the set of 63 resequencing common

wheat genotypes (Figure 5a; Table S9). There were 45 polymor-

phisms from the SNP array and over 700 polymorphic DNA

variants from the resequencing data in this region, covering all 12

candidate high-confidence (HC) genes (Figure 5b; Table S7).

Most of the polymorphisms with significant P-values surrounded

three genes (TraesCS2B01G512900, TraesCS2B01G513000, and

Table 2 Significant quantitative trait loci (QTL) that are associated with adult-plant stripe rust resistance in multiple environments

QTL name Chr. Tag-marker

Genetic position

(cM)†
Physical position

(Mb)

R allele and its

ratio ‡

�Log10

(P)

R2

(%) Environments§
Postulated or linked

genes

QYr.nwafu-

1AL

1AL AX-108800039

(SNP1)

278.60 587.45 T/C (0.33) 3.58–

3.99

1.9–

3.1

IT and DS: All IWA3215

QYr.nwafu-

1BL

1BL AX-94947139

(SNP2)

245.57 673.96 C/T (0.24) 3.37–

3.61

1.5–

2.7

DS: All Yr29

QYr.nwafu-

2AS

2AS AX-109458303

(SNP3)

3.41 24.41 T/G (0.13) 3.62–

3.82

1.7–

3.0

DS: All Yr17

QYr.nwafu-

2AL.1

2AL AX-108752496

(SNP4)

426.3 574.70 T/C (0.63) 3.81–

4.59

2.8–

4.5

IT and DS: All Yr32

QYr.nwafu-

2AL.2

2AL AX-111630281

(SNP5)

508.27 742.15 G/A (0.87) 3.55–

4.86

3.6–

4.9

IT and DS: All Novel

QYr.nwafu-

2BS

2BS AX-108948038

(SNP6)

54.636 108.67 G/A (0.06) 3.40–

4.85

2.9–

4.8

IT and DS: All YrNP63

QYr.nwafu-

2BL.1

2BL AX-109485942

(SNP7)

86.68 576.10 G/A (0.46) 3.86–

5.00

2.9–

5.0

IT and DS: All Many QTL

QYr.nwafu-

2BL.2

2BL AX-110363517

(SNP8)

93.34 708.24 G/C (0.61) 4.90–

6.74

5.0–

9.6

IT and DS: All YrSnb.1 (Novel)

QYr.nwafu-

3AL

3AL AX-111810295

(SNP9)

296.22 732.09 C/T (0.93) 3.50–

4.81

2.5–

4.6

IT and DS: All Novel

QYr.nwafu-

3BS

3BS AX-94578994

(SNP10)

2.28 2.49 G/A (0.70) 3.45–

4.32

2.5–

4.4

IT and DS: All Yr30

QYr.nwafu-

3BL.1

3BL AX-108870372

(SNP11)

56.892 586.15 G/A (0.86) 3.90–

5.93

3.9–

6.1

IT and DS: All Yr80

QYr.nwafu-

3BL.1

3BL AX-109534273

(SNP12)

189.84 793.05 T/C (0.21) 3.16–

3.77

2.2–

3.8

IT and DS: All YrSf

QYr.nwafu-

4BS

4BS AX-112287589

(SNP13)

58.5 68.89 T/C (0.12) 3.44–

5.22

2.9–

5.1

IT and DS: All Novel

QYr.nwafu-

4BL

4BL AX-89420204

(SNP14)

97.83 642.70 G/A (0.80) 3.40–

3.56

3.2–

3.8

DS: All YrRC (Novel)

QYr.nwafu-

6BS

6BS AX-110586294

(SNP15)

46.69 149.3 C/T (0.89) 3.40–

4.52

3.4–

3.9

IT and DS: All Yr78

QYr.nwafu-

6BL

6BL AX-111699663

(SNP16)

50.1 599.08 C/A (0.18) 4.28–

5.44

2.8–

4.6

DS: All YrSnb

QYr.nwafu-

7AL

7AL AX-110983606

(SNP17)

304.82 675.26 G/A (0.70) 3.71–

4.65

3.3–

4.8

IT and DS: All Yr75

QYr.nwafu-

7BL

7BL AX-110448553

(SNP18)

119.05 553.43 C/A (0.35) 3.05-

4.46

1.5-

3.8

DS and IT:

①②③④⑤⑥⑩

Yr39 + Yr2

QYr.nwafu-

7DS

7DS AX-109857040

(SNP19)

87.71 47.71 A/G (0.34) 3.47–

3.96

3.1–

4.2

DS: All Yr18

†

Position of each SNP based on 660K wheat consensus map (Cui et al., 2017)
‡

Resistance allele for each QTL is indicated by underlining, along with its ratio
§

IT: Infection type; DS: Disease severity; Environments, ①: 2017-Yangling, ②: 2018-Yangling, ③: 2019-Yangling, ④: 2017-Tianshui, ⑤: 2018-Tianshui, ⑥: 2019-

Tianshui, ⑦: 2017-Jingyou, ⑧: 2018-Jianyou, ⑨: 2019-Jingyou, ⑩: BLUP (the best linear unbiased predictions).
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TraesCS2B01G513100). Further significant sequence variations

were not identified the coding regions of TraesCS2B01G512900

and TraesCS2B01G513000 except TraesCS2B01G513100.

Among these, three polymorphisms (AX-111730867, Rv-680,

and AX-108806204) that were significantly associated with stripe

rust responses (�log10P ≥ 4.85) were classified as G1, all of

which were located within the gene TraesCS2B01G513100

(Figure 5e). These SNPs (AX-111730867, Rv-680, and AX-

108806204) changed a G to an A, a C to a T, and a G to an

A, causing glutamate to lysine, alanine to valine, and alanine to

threonine substitutions, respectively (Table S7). In addition, two

polymorphisms were classified as G2 (AX-110906149 and AX-

109929582) and G3 (AX-95654572 and AX-110363517),

whereas no G4 polymorphisms were observed and the others

were classified as G5 (Figure 5e). The two G2 SNPs AX-

110906149 and AX-109929582 were both located in the

promoter region of TraesCS2B01G513000 and likely affect gene

expression regulation (Figure 5d; Table S7). The G3 SNPs AX-

95654572 and AX-110363517 were located in the 30 down-

stream regions of the genes TraesCS2B01G512900 and

TraesCS2B01G513100, respectively (Figure 5c, e; Table S7).

Interestingly, TraesCS2B01G513100, TraesCS2B01G513000,

and TraesCS2B01G512900 all encode serine/threonine protein

kinases (STPKs). The amino acid sequences of these STPKs were

compared with those in other subgenomes. The allelic variations

in different genomes are presented in Figure S8 and show that

the STPK sequences in the B genome are obviously different from

those in the A and D genomes.

Validation of the causal genes

We subsequently analysed the expression levels of all 12

candidate genes using a qRT-PCR assay in wheat flag leaves at

the adult-plant stage. We found that only the positive allele of

TraesCS2B01G513100 in cultivar XZ9104 was up-regulated six-

fold and fourteen-fold by Pst inoculation at 24 and 168 h

compared with the negative allele in cultivar AvS (Figure 5h). No

other genes were differentially expressed between AvS and

XZ9104 at any time point (Figure 5f, g and Figure S9). RNA-seq

data indicated that TraesCS2B01G513100 was expressed in flag

leaves, spikes and awns, which is consistent with the stripe rust

Figure 3 Identification of the causal gene for stripe rust resistance associated with the peak on chromosome 7D. (a) Manhattan plot of single

polymorphism-based association analysis. Dashed line represents a significance threshold (�log10 P = 3.04). Significantly associated single nucleotide

polymorphisms (SNPs) are shown as dark blue points, and other SNPs are shown as light blue points. (b, c) Local Manhattan plot of single-polymorphism-

based association (top) and LD heatmap (bottom) surrounding the peak on chromosome 7D. Arrow indicates the position of nucleotide variations in

TraesCS7D01G080300 (Yr18). Dashed lines indicate the candidate region for the peak. (d) The exon-intron structure of Yr18 and its DNA polymorphisms.

del, deletion. (e) Disease severities were based on the haplotypes for Yr18 in different panels of the population. Differences between the haplotypes were

statistically analysed using Student’s t-test (*P < 0.05). (f) Stripe rust responses of near-isogenic lines (�Yr18) in the common wheat cultivar Avocet S

background. Scale bar, 1 cm.
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resistance observed at the adult-plant stage (Figure S10). In

mutation analysis, eight mutant lines were selected: Kronos3186

and Kronos3312 with a premature stop codon in

TraesCS2B01G512900 and TraesCS2B01G513000, respectively;

and Kronos1064, Kronos2338, Kronos3557, Kronos3545, Kro-

nos2969 and Kronos2619, which carry missense mutations in

TraesCS2B01G513100. Following the assessment and compar-

ison of these mutants’ responses to stripe rust, only Kronos1064

and Kronos2338 exhibited greater susceptibility than wild type

(Figure 5i, j; Table S10). These results indicate that

TraesCS2B01G513100 is the most likely candidate gene involved

in stripe rust resistance.

Association analysis of the STPK gene and identification of
allelic variations

To identify more genetic variations, TraesCS2B01G513100 was

resequenced in 64 accessions with opposite extreme phenotypes

and six NILs derived from the HIFs (Table S8). The sequenced

region harboured a 3130-bp genomic DNA fragment corre-

sponding to the full-length TraesCS2B01G513100 locus, includ-

ing its exons, introns and part of primer region and UTRs. In total,

18 SNPs and two insertion/deletions (indels) were identified

(Figure 5e and Table S11). An MLM-based association analysis

was performed between all SNPs/indels and the previously

assigned stripe rust responses for each accession. One new,

non-synonymous SNP identified (Rv-686) in the

TraesCS2B01G513100 coding region was highly associated with

YR (P < 7.69E-07) (Figure 5e; Table S11).

Based on the LD distance of 612.9 kb, the candidate region

was divided into five blocks, which formed four haplotypes

(herein referred to as Hap-1–4). Coupled with the estimation of

candidate gene analysis, Hap-1, Hap-2, Hap-3 and Hap-4 had

frequencies of 44.88%, 16.34%, 14.63% and 30.97%, respec-

tively, within the GWAS panel (Figure 5k). Estimation of the

contribution of each haplotype towards phenotype variation

revealed that Hap-1 and Hap-2 had the greatest effect on disease

Figure 4 Candidate region associated with stripe rust resistance on chromosome 2B detected in different GWAS panels. Manhattan plots showing the

significant SNP associations for the QTL underlying stripe rust resistance detected within (a) an extensive genomic region (707.418–712.236 Mb) using a

panel of 411 spring wheat lines and (b) a refined region (707.668 to 708.346) using an independent validation population of 1045 wheat accessions. Grey

horizontal dashed line represents a significance threshold (�log10 P = 4.85). Significantly associated SNPs in the two data sets are shown as dark blue

points, and other SNPs are shown as light blue points. The upper-triangular halves of the linkage disequilibrium (LD, as r2) matrices between SNPs within the

candidate region are shown as heat maps below the Manhattan plots. SNP names with red text in LD plots indicate the physical positions of SNPs with

significant associations.

Figure 5 Identification of the causal gene for stripe rust resistance associated with the peak on chromosome 2B. (a) Manhattan plots of polymorphic DNA

variants-based association analysis in the candidate region using resequencing data. (b) The HC genes in the candidate region. (c, d, e) Exon-intron

structures of TraesCS2B01G512900, TraesCS2B01G513000 and TraesCS2B01G513100 and their corresponding DNA polymorphisms with significant

associations. (f, g, h) The relative expression levels of TraesCS2B01G512900, TraesCS2B01G513000 and TraesCS2B01G513100 in two cultivars (AvS and

XZ9104) with extremely opposite YR phenotypes using qRT-PCR. Each bar represents the mean � SD of three biological replicates. (i) Disease severity data

based on the functional variants in TraesCS2B01G512900 (M8), TraesCS2B01G513000 (M7) and TraesCS2B01G513100 (M1-M6) in the EMS mutants. (j)

Stripe rust responses for different HIFs and their parents, Snb "S" (resistant parent, RP) and ZM9023 (susceptible parent, SP), and for the durum wheat

cultivar Kronos (wild type, WT) and its mutant lines. Scale bar, 1 cm. (k) Haplotype genotype and frequencies in the candidate region and the core of the

favourable allele combination are in the red box. (l) Disease severities were based on the haplotypes for YrSnb.1 in different panels of the population. The

asterisks indicate significant differences among groups or lines at the P < 0.05 level (Student’s t-test).
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resistance compared with the susceptibility of Hap-4 and Hap-3

(Table S1). Taken together, these results indicate that ’TGCGGT’

comprises the core of the favourable allele combination and likely

underlies the effect on stripe rust resistance. Hap-1 and Hap-2

were then combined into Hap-A, and Hap-3 and Hap-4 were

combined into Hap-B. The combination ’TGCGGT’ was directly or

indirectly related to the gene TraesCS2B01G513100, and the

correlating SNPs were developed into derived cleaved amplified
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polymorphic sequences (dCAPS) and kompetitive allele-specific

PCR (KASP) markers for assisted selection in future resistance

breeding (https://galaxy.triticeaetoolbox.org/; Table S12). In addi-

tion, the other HIFs from the ZM9023/Snb "S" cross were

classified into two major groups using the above-mentioned PCR

markers that distinguish different haplotypes, and the responses

of these two groups to stripe rust in the field were assessed

(Figure 5j, l). The HIFs carrying the ’TGCGGT’ haplotype displayed

greater stripe rust resistance, indicating the efficiency of marker-

assisted selection in wheat resistance breeding. Moreover,

TraesCS2B01G513100 is a promising target for further functional

validation using reverse genetics approaches such as virus-

induced gene silencing, overexpression or transgenic analyses.

Discussion

Multi-processing environments facilitate the excavation
of robust resistance

Many previous studies have shown that multiple loci are involved

in complex quantitative resistance (St. Clair, 2010). Wheat stripe

rust responses and the resulting phenotypes in the field are

consistently affected by host resistance levels, pathogen popula-

tion structure and weather conditions (Chen and Kang, 2017).

Therefore, the ability of resistance-associated loci to provide

protection against disease is dependent on the coevolution

between the host and the Pst population in the field. Effective

disease resistance also depends on the application of resistance-

associated loci in integrated disease control practices (Nelson

et al., 2018). Dissecting the stability of resistance by combining

multi-processing environments with MTAs can provide insights

into the long-term durability of resistance-associated loci. From

this perspective, the loci characterized as imparting environment-

dependent resistance would not be suitable for future marker-

assisted breeding due to the considerable risk of disease (Bazakos

et al., 2017). In our study, a diversity panel of wheat accessions

was evaluated for stripe rust responses across multiple environ-

ments. In order to eliminate environmental interference as much

as possible, we also used a linear mixed model to estimate the

BLUPs. As strict control measures within the experiment to

identify stable loci, only 33.8% (292) of the resistance-associated

loci in this GWAS panel were retained, and some of them were

co-localized at several previously reported Yr genes/QTL regions.

As extensively reported in past studies, Yr18, Yr29, Yr30 and

Yr78 have been widely used in wheat resistance breeding

worldwide due to their durability (Rajpal et al., 2016). It is worth

noting that these known Yr genes/QTL were not the most

significant loci characterized in this study, despite the fact that

they were detected in almost all environments. The MTAs of

major effect were located on chromosome 2BL in the proximity of

YrSnb.1 identified in our QTL mapping. This novel QTL explained

the largest phenotypic variation and warranted further investiga-

tion.

The combination of association and haplotype analysis
permits refinement of candidate resistance-associated
loci

A common fault of GWAS is the generation of false-positive

associations due to population structure. In this study, an

integrated method involving PCA, structure (Q) and a kinship

matrix (K) was used to perform population structure adjustment

and correction, thereby minimizing the false positive rate (Yu

et al., 2006). Meanwhile, another independent diversity panel

comprising a natural population was also analysed to validate the

MTA results. The extent of LD is determined by the nature of

different species and population structure, but it is not invariable.

There are differences in LD decay among different segments of

the same chromosome, with segments located close to the

chromosome telomeres exhibiting lower LD decay than those

close to the centromere. This variation in LD decay is highly

correlated with the recombination ability of chromosomal

segments (Bazakos et al., 2017). Therefore, LD decay impacts

the positioning of candidate resistance-associated regions,

depending on whether the significant marker is near the

telomeres or the centromere. In this GWAS panel, LD varied

across chromosomes and subgenomes, and LD decay ranged

from 0.62 Mb to 7.45 Mb. The LD decay of the QTL on

chromosome 7DS (Yr18) was 332 kb (r2 = 0.6), as this region

was distant from the centromere. A favourable haplotype

carrying gene variants improves the efficiency of marker-assisted

selection in breeding. The LD decay of the major QTL on

chromosome 2BL (YrSnb.1) was 4.8 Mb, despite the fact that this

region was located at the end of the chromosome. Interestingly,

the diversity of SNPs and the pattern of LD in this region was

different in the validation diversity panel, and independent

validation enabled the candidate region to be narrowed down

to 612.9 kb (r2 = 0.8). This method greatly reduced the comput-

ing workload for haplotype analysis. A similar result reported

recently detailed how an initial extensive 25-Mb candidate region

on chromosome 3D was ultimately narrowed down to a 1-Mb

region using a validation population (Liu et al., 2019). Here,

analysis of different haplotypes and phenotypes of over 1500

wheat accessions, including those from a natural population as

well as breeding lines, facilitated identification of favourable allele

core sequences. Furthermore, the correlating SNPs were devel-

oped into practical PCR markers that can be used to improve the

efficiency of marker-assisted selection in wheat stripe rust

resistance breeding.

High-resolution SNPs enable the prediction of candidate
resistance genes

The large extent of LD in wheat makes it difficult to analyse

candidate resistance genes. The high-resolution SNPs identified

using the 660K SNP array covered 57,833 high-confidence genes

(53.6% of all genes) and provided insights into the functional

causal variant(s) underlying stripe rust resistance. The method of

estimating the functional importance of each nucleotide poly-

morphism serves to predict candidate genes (Yano et al., 2016).

First, we identified significant SNPs using GWAS and analysed the

LD of the candidate regions containing significant SNPs in

different diversity panels. Then, we extracted information for

the candidate genes, including the function of polymorphisms,

which were validated by their relationships with stripe rust

resistance. With this approach, as expected, we delimited the

cloned candidate gene Yr18 to within 332 kb and successfully

identified Yr18 as a resistance-associated gene. We similarly

analysed a QTL-based candidate region on 2BL and found several

functional associations within the coding and promoter regions of

causal genes. The candidate genes TraesCS2B01G512900,

TraesCS2B01G513000 and TraesCS2B01G513100 all encoded

STPKs, and their amino acid sequences were quite different from

that of their respective homologs in the A and D genomes. STPK

is known to play a role in plant defence. For instance, STPK-V, a

member of the STPK family in Haynaldia villosa, enhances

powdery mildew resistance by decreasing the haustorium index

ª 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 19, 177–191

Jianhui Wu et al.186

https://galaxy.triticeaetoolbox.org/


dramatically and mediating H2O2 accumulation (Cao et al., 2011).

Although our gene expression and mutation analysis indicated

that TraesCS2B01G513100 was the most likely candidate resis-

tance gene, TraesCS2B01G512900 and TraesCS2B01G513000

should not be disregarded. Resistance genes are generally

grouped in clusters in plants, and some may play simultaneous

central roles in resistance (Kourelis and van der Hoorn, 2018;

Zhao et al., 2016). Therefore, the characterization of these genes

using molecular biology methods may reveal further molecular

mechanisms of stripe rust resistance in wheat.

This study demonstrates the feasibility of predicting causal

resistance genes using high-resolution SNP-based GWAS in

common wheat. In previous studies, allelic variants of Ppd-D1

(chromosome 2D) and Rht-D1 (chromosome 4D) loci, which were

shown to affect plant growth traits during the stem elongation

phase, were precisely identified by wheat 90K SNP array-based

GWAS (Guo et al., 2018). Coincidentally, the SNP AX-109665328

was found to associate with Rht-D1 and several candidate genes

involved in abiotic stress tolerance, such as those encoding WRKY

transcription factors, which were co-localized in a candidate

region identified through wheat 660K SNP array-based GWAS (Li

et al., 2019). The most effective use of wheat 90K SNP-based

GWAS was in the identification of the flour-colour gene

TaRPP13L1 gene that was successfully identified from a 20-kb

candidate region and verified by the functional SNP Excal-

ibur_c5938_1703 (Chen et al., 2019). It should be noted that

each of the above-mentioned traits is controlled by conserved

genes. However, there are abundant variations in resistance traits,

including their presence/absence in different genomes (Arora

et al., 2019). From this point of view, the candidate genes

considered in this study were restricted to those annotated in the

Chinese Spring reference genome, and thus, other resistance

genes absent in the reference genome cannot be ruled out. In

addition, an inevitable limitation of SNP array-based GWAS is that

single candidate gene association analysis cannot be performed

due to insufficient suitable DNA variants within the gene region.

Deep next-generation sequencing approaches, such as Pan-

genome and 10 9 genomics, or whole-genome resequencing

of a diversity panel, can overcome this disadvantage. Neverthe-

less, the haplotype and candidate gene analyses reported here

reveal promising alleles that function in stripe rust resistance and

provide potential targets for further functional analysis and

inclusion in future wheat resistance breeding.

Materials and methods

Phenotypic evaluation of stripe rust infection

The association mapping panel used in this study comprised 411

breeding lines from CIMMYT and ICARDA (Table S1). An

independent diversity panel of 1045 wheat accessions from a

global collection, a set of 63 common wheat resequencing

genotypes (Table S1), and a bi-parent genetic population from a

cross of Zhengmai 9023 (ZM9023) 9 Sunbird ’S’ (Snb ’S’) were

used for validation of the significant MTAs. The wheat lines

Avocet S (AvS), Mingxian 169 (MX169) and Xiaoyan 22 (XY22)

were used as the susceptible controls.

Evaluations of seedling resistance to stripe rust were conducted

under controlled greenhouse conditions. The tested Pst races

contained pre-V26 prevalent races, such as CYR32 and CYR33,

and post-V26 groups collected from different origins, such as

V26/Laboratory (V26/Lab), V26/Sichuan (V26/SC), V26/Shaanxi

(V26/SX) and V26/Gansu (CYR34). The avirulence/virulence

characteristics of the races were reported by Wu et al. (2020).

Details of inoculation and disease evaluation were described

previously (Wu et al., 2018b). Wheat accessions AvS and Xingzi

9104 (XZ9104) and Pst race V26/Lab were used for gene

expression analysis in this study. Xingzi 9104, carrying YrSnb.1,

displays resistance at the adult-plant stage. Flag leaves inoculated

with V26/Lab or sterile distilled water (control) at the adult-plant

stage were harvested at 0, 24, 36, 48, 72, 96, 144 and 168 h

post-inoculation (hpi). Time points were selected based on a

previous study (Zhang et al., 2012).

Adult-plant resistance (APR) evaluations were carried out at

Yangling in Shaanxi province (over-wintering region), Tianshui in

Gansu province (over-summering region) and Jiangyou in Sichuan

province (over-wintering region) during three cropping seasons

(2016–2017, 2017–2018, 2018–2019). Detailed methods of

plant growth, management and evaluation have been published

previously (Mu et al., 2019).

Phenotypic data analyses

For each environment, the arithmetic mean of phenotypic

observations was used as the phenotypic data. Genotype (411

cultivars and breeding lines) and environment (three years in three

locations) were treated as random effects in a linear mixed model

to estimate the best linear unbiased predictions (BLUPs) using the

lme4 package in the R 3.5.3 program (Bates et al., 2014). For

each trait, each single environment phenotypic data set and BLUP

data set were used for analysis of variance (ANOVA). Since there

was no replication in this study, it was not possible to estimate the

genotype by environment interaction. The broad-sense heritabil-

ity (H2) estimates for IT and DS were calculated across nine test

environments using the lme4 package with the formula H2 = VG/

(VG + VE), where VG and VE represent the genotypic and

environmental variances, respectively. Pearson’s correlation coef-

ficients (r) of pairwise environments were computed using the

Hmisc package to determine the consistency of stripe rust

responses a different environments.

Genotyping, SNP filtering and population structure
analysis

Wheat leaf samples including 411 breeding lines and 1045

accessions were collected, and DNA was extracted using an

extraction kit (InvitrogenTM, Thermo Fisher, Waltham, USA)

following the manufacturer’s instructions. Genotyping was per-

formed using the wheat 660K genotyping assay by Beijing

CapitalBio Technology Company (http://www.capitalbiotech.c

om). SNP genotype calling and allele clustering were processed

with the polyploid version of Affymetrix Genotyping ConsoleTM

(GTC) software. To ensure the quality pretreatment of genotyping

data, SNP markers with minor allele frequencies (MAF) < 0.05,

missing data >10%, or Hardy–Weinberg Equilibrium

(HWE) > 0.01 were excluded from further analysis. The most

up-to-date physical positions of the SNPs were obtained from the

Triticeae Multi-omics Center website (http://202.194.139.32/).

Polymorphism information content (PIC) and expected heterozy-

gosity (He), representing two genetic diversity parameters, were

calculated using a self-written programme in Perl. PIC and He

values were calculated for each SNP marker and each chromo-

some based on the formulas described in Botstein et al. (1980)

and Nei (1978), respectively.

Population structure was assessed using STRUCTURE software

v2.3.4 with unlinked markers (r2 = 0). The model was applied

without the use of prior population information, and the most
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likely number of subpopulations was determined using a previ-

ously described method (Earl and VonHoldt, 2012). Principal

components analysis (PCA) of the population was performed

using the software GCTA (Yang et al., 2011). The p-distance was

used to construct NJ phylogenetic trees with 1000 bootstrap

replicates using the software MEGA-CC (Kumar et al., 2012). The

identity-by-state (IBS) relative K-matrix was calculated between

pairs of accessions using PLINK (Purcell et al., 2007). Heat maps of

kinship were generated on the basis of the K-matrix using the

pheatmap v1.0.8 R package. Genome-wide linkage disequilib-

rium (LD) analysis for the A, B, and D genomes was performed

using the software PLINK. LD estimation and LD decay analysis

were performed as described in Yu et al. (2020). A locally

weighted polynomial regression (LOESS) curve was drawn to fit

the data using second-degree locally weighted scatter plot

smoothing in the R program. The confidence interval of quan-

titative trait loci (QTL) was defined based on the intersection of

the fitted LOESS curve with LD r2 = 0.1.

Genome-wide association analyses

GWAS was conducted using a univariate linear mixed model with

GEMMA software (Zhou and Stephens, 2012). The P-value

threshold was calculated using a modified Bonferroni correction

(Genetic type 1 Error Calculator, version 0.2) with a suggested

threshold of P = 1/Ne (Ne = effective SNP number) (Li et al.,

2012). Our results showed that the suggested P-value thresholds

ranged from 1.36 9 10�4 to 9.90 9 10�4 for each chromosome

(Table 1), and thus, we considered the mean value 3.23 9 10�4

as the criterion for genome-wide significance in this study.

Significant markers from the GWAS result were visualized using a

Manhattan plot, and important P-value distributions were visu-

alized by a quantile-quantile plot (Q-Q plot), both drawn by the

qqman package in R 3.0.3 (http://www.r-project.org/). The

phenotypic variance explained (R2) by significant SNPs was

evaluated using GCTA software.

Comparisons with previously published Yr genes and
QTL

To date, more than 150 permanently or temporarily designated Yr

genes and over 300 QTL have been described across 21 wheat

chromosomes, and most of these are listed in the Catalogue of

Gene Symbols for Wheat or summarized in integrated genetic

maps (Chen and Kang, 2017). To determine the relationships

between significant loci identified in the GWAS and previously

reported Yr genes/QTL, we compared the physical locations of

these loci based on the Chinese Spring reference genome coupled

with integrated genetic maps (Cui et al., 2017; Maccaferri et al.,

2015). For previously reported stripe rust resistance genes/QTL, the

closest flanking markers were used to generate the confidence

intervals reported. Whether the loci identified in the GWAS were

novel depended on the interval of the haplotype block.

Revalidation of marker–trait associations, haplotype
estimation and association analysis of the STPK gene

To validate the stability and accuracy of significant SNPs located

within major QTL regions identified in the first diversity panel,

the associated SNPs were retested in the extended independent

validation panel and in a bi-parental genetic population. The

second panel was phenotyped across multiple environments in

field trials and also genotyped with the wheat 660K SNP array.

Univariate ANOVA was used to analyse MTAs in the R package.

The local LD patterns were visualized on the basis of the LD

squared-allele frequency correlation (r2) estimates between

markers using the software HAPLOVIEW. Haplotype blocks

were identified based on LD, and the effect of each haplotype

allele was calculated using the lmer function in R software. In

addition, 63 common wheat accessions with resequencing data

were also used for association analysis in the candidate region

to validate causal genes (Cheng et al., 2019).

Association analysis of the STPK gene (TraesCS2B01G513100)

was conducted on 64 representative wheat accessions and six

near-isogenic lines (NILs) derived from the heterozygous inbred

families (HIFs) from a ZM9023 9 Snb "S" cross. The STPK gene

coding regions (including introns) were amplified and

sequenced. These sequences were assembled using DNAMAN

and aligned using AliView (Larsson, 2014). Nucleotide polymor-

phisms, including SNPs and indels, were identified (MAF ≥ 0.05)

among these genotypes, and their association with the YR

responses and pairwise LD were calculated with the software

PLINK.

Identification of candidate genes by nucleotide
polymorphism analysis

High-confidence genes located within the LD block around

significant SNPs were used for candidate gene analysis based

on IWGSC RefSeq v1.0 with gene annotations (IWGSC, 2018).

Based on the estimated functional importance of each nucleotide

polymorphism as described by Yano et al. (2016), all the

polymorphisms in the candidate region were classified into five

groups, referred to as G1–5. G1 contained significant MTAs in the

GWAS (�log10P ≥ the threshold value in this chromosome) that

putatively caused amino acid conversion. G2 harboured signifi-

cant MTAs in the 50 flanking sequences (≤2 kb from the first

ATG), which were considered to be promoter regions. G3

included significant MTAs within introns or 30 non-coding

sequences. G4 contained significant MTAs outside coding

regions, and G5 contained polymorphisms but not significant

MTAs.

Preliminary verification of causal genes by expression
and mutation analysis

Expression data (transcripts per million, TPM) for the potential

causal genes from previously mapped RNA-seq samples were

downloaded from the Triticeae Multi-omics Center website

(http://202.194.139.32/) (Ram�ırez-Gonz�alez et al., 2018). Total

RNA extraction and cDNA synthesis from AvS and XZ9104

samples were performed following Liu et al. (2019). Quantitative

real-time PCR (qRT-PCR) primer sequences for the twelve candi-

date genes in the 612.9 kb region are provided in Table S12.

Wheat TaActin (AB181991.1) was used as an internal reference

for normalization, and transcript abundance estimates were

based on three technical replicates each of three biological

replicates per each genotype.

In addition, the function of candidate genes was also verified in

a durum wheat mutant pool. The mutants induced by ethyl

methanesulfonate (EMS) from durum wheat cultivar Kronos have

been sequenced using exome capture sequencing and contribute

to the analysis of gene variations corresponding to phenotype

(Henry et al., 2014). The lines Kronos1064, Kronos2338,

Kronos3557, Kronos3545, Kronos2969, Kronos2619, Kro-

nos3312 and Kronos3186 were kindly provided by Drs. Jiajie

Wu and Fei Ni, Shandong Agricultural University. The stripe rust
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responses of these mutants were evaluated at the adult-plant

stage under controlled greenhouse conditions.
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