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Abstract

Bariatric and metabolic surgery (BMS) is the most effective treatment for obesity, type 2 diabetes 

(T2D) and comorbidities, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic 

steatohepatitis (NASH). The beneficial effects of BMS are beyond the primary goal of gastric 

restriction and nutrients malabsorption. Roux-en-Y gastric bypass (RYGB) and vertical sleeve 

gastrectomy (VSG) are the two most commonly performed procedures of BMS. Both surgeries 

lead to physiological changes in gastrointestinal tract; subsequently alter bile acids pool and 

composition, gut microbial activities, gut hormones and circulating exosome; and ultimately 

contribute to the improved glycemic control, insulin sensitivity, lipid metabolism, energy 

expenditure, as well as weight loss. The mechanisms underlying the benefits of BMS likely 

involve the bile acids signaling pathway mediated mainly by nuclear farnesoid X receptor (FXR) 

and the membrane Takeda G protein-coupled receptor (TGR5), bile acids-gut microbiota 

interaction, and exosomes. In this review, we focus on recent advances in potential mechanisms 

and aim to learn novel insights into the molecular mechanisms underlying metabolic disorders.

Abstract

FXR and TGR5 differentially contribute to the metabolic improvement associated with RYGB and 

VSG.
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1. Introduction

The global prevalence of obesity (Body mass index, BMI ≥30 kg/m2) was estimated to be 

13% of adult population [1]. In the United States, 39.6% of adults were obese according to 

NHANES data from 2015–2016 [2]. The epidemic of obesity has led to a parallel increase in 

the prevalence of type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD) [3, 

4]. NAFLD is present in up to 75% of patients with overweight and in 90–95% of patients 

with grade 3 obesity [5]. Bariatric and metabolic surgery (BMS) has proven to be an 

effective and durable therapy for grade 3 obesity (BMI ≥40 kg/m2) as well as for patients 

with BMIs between 35–39.9 kg/m2 with poor glycemic control. The criteria for surgery have 

been expanded to include some patients with a BMI ≤ 35 kg/m2 [6, 7].

Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) are the two most 

commonly performed procedures in BMS, and they comprise 76% of currently performed 

procedures [8]. Work from a recent study involving 1,156 patients with grade 3 obesity 

showed that total body weight loss achieved by RYGB was 35%, 28% and 26.9% at 2, 6 and 

12 years post-procedure, respectively. Moreover, T2D was resolved in 75%, 62% and 51% 

of patients at 2, 6 and 12 years, respectively [7]. In addition, a recent meta-analysis 

demonstrated the efficacy of BMS in the treatment of NAFLD, as shown by a biopsy-

confirmed resolution of steatosis, inflammation, ballooning degeneration, and fibrosis in 

66%, 50%, 76%, and 40% of patients, respectively [9]. Moreover, both RYGB and VSG 

have similar effects on the attenuation of NAFLD regardless the potential different 

mechanisms [10, 11]. Importantly, BMS also resulted in new or worsened NAFLD in 12% 

of patients [9]. Currently, BMS is not recommended by American Association for the Study 

of Liver Diseases (AASLD) to specifically treat nonalcoholic steatohepatitis (NASH) due to 

the safety issue [12]; but it may be considered an option for obese patients (BMI ≥35 kg/m2) 

with one or more severe obesity-related complications (ORCs) remediable by weight loss, 

including NAFLD and NASH [8, 12].

Nonetheless, the mechanisms underlying the benefits of BMS are of great importance for 

understanding the pathogenesis of metabolic diseases. Although the primary goal of BMS 

was designed for gastric restriction and malabsorption to produce weight loss, a growing 

body of evidence indicates that the beneficial effects of BMS (improvement of 

hyperglycemia, insulin sensitivity, and hyperlipidemia as well as steatosis) are beyond 

weight loss [13–15]. Thus, understanding the underlying mechanisms is of significant 

importance. In this review, we focus on the recent advances in BMS, including altered 

physiology, mechanistic studies involving bile acid and bile acid receptors, gut microbiota, 

gut hormones, and exosome.
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2. Physiology

VSG is now the most commonly performed procedure of BMS, and it reduces gastric 

volume by approximately 70–80% through removal of a large portion of stomach along the 

greater curvature (Figure 1) [16, 17]. By doing so, VSG removes ghrelin-producing cells in 

the stomach resulting in decreased circulating ghrelin, accelerated gastric emptying, and 

increased secretion of the intestinal hormones, glucagon-like polypeptide 1 (GLP-1) and 

peptide YY (PYY) [18]. A recent study compared several procedures with different gastric 

volume reductions with standard VSG in rats. They found that gastric volume was negatively 

correlated to gastric emptying rate, glucose, and GLP-1 response. Therefore, significant 

gastric volume reduction is required to achieve the goal of metabolic improvement [19].

RYGB is the combination of gastric reduction with intestinal rearrangement, including 

generation of a small gastric pouch and bypass of the stomach and upper gastrointestinal 

tract, leading to accelerated nutrients flow to the middle jejunum (Figure 2) [16, 17]. While 

both RYGB and VSG lead to metabolic improvement, they change gut physiology in 

different ways. A recent clinical trial showed that RYGB and VSG differentially altered 

nutrient absorption and gut hormone secretion after 12 months. RYGB was associated with 

accelerated postprandial absorption of glucose and amino acids compared to controls, as 

shown by stable isotope tracers. However, altered amino acid absorption was not observed in 

patients after VSG. Moreover, gut hormones secretion rates, such as GLP-1, PYY and 

cholecystokinin (CCK), were enhanced after RYGB compared to VSG, highlighting the 

potentially different mechanisms underlying the metabolic benefits of these two procedures 

[20].

3. Bile acid and bile acid receptors

Increased systemic bile acid levels and altered bile acid composition were observed after 

both RYGB and VSG, particularly after RYGB [21, 22]. In addition to the role as a 

surfactant, bile acids act as signaling molecules for a number of nuclear receptors and 

plasma membrane receptors, including farnesoid X receptor (FXR), pregnane X receptor 

(PXR), constitutive androstane receptor (CAR), vitamin D receptor (VDR) and the 

membrane Takeda G protein-coupled receptor (TGR5, also known as GPBAR1) [23]. 

Among them, FXR and TGR5 are the most studied in BMS research. Ryan et al. found that 

VSG-induced weight loss and improvement of glucose tolerance were significantly blunted 

or abolished in Fxr knockout mice compared to wild type mice fed with high-fat diet, 

suggesting that FXR plays an essential role in the metabolic benefits of VSG [24]. Of note, 

the metabolic effects of FXR signaling are diet- [25, 26] and tissue-dependent [27–29]. 

While Fxr null mice develop a deleterious metabolic phenotype on chow diet [25], they 

display improved glucose tolerance when fed with a high-fat diet [26]. Although global 

activation of FXR is beneficial in improving metabolic disorders [27, 30–32], the role of 

intestinal FXR signaling is mixed [28, 29, 33]. To understand intestinal FXR signaling in the 

benefits of BMS, intestine-specific Fxr null mice were fed with a high-fat diet for twelve 

weeks before and after bile diversion surgery, which diverts bile flow from the gallbladder to 

the ileum without gastric reduction and had similar effects as RYGB. As a result, bile 

diversion-induced weight loss and glucose tolerance improvement were abolished in 
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intestine-specific Fxr null mice fed with a high-fat diet, but not in Tgr5 knockout mice fed 

the same diet [34], suggesting that the beneficial effects of BMS are mediated by intestinal 

FXR signaling. However, TGR5 is required for the metabolic improvement and GLP-1 

secretion produced by VSG [35], indicating distinct mechanisms might be involved in 

RYGB and VSG. This concept was supported by clinical studies [20, 36]. In addition, the 

glucoregulatory effects of bile diversion surgery were abrogated by either GLP-1 receptor 

(GLP-1R) antagonist or by the bile acids sequestrant, cholestyramine, as well as in Glp-1r 
knockout mice [34], indicating the essential role of GLP-1 in glucose homeostasis. To 

determine the role of FXR and TGR5 in GLP-1 secretion, mice were treated with a FXR 

agonist (obeticholic acid, OCA), a TGR5 agonist (INT-777), or a dual agonist of FXR and 

TGR5 (INT-767). Glucose-induced GLP-1 secretion was markedly increased by all three 

agonists, with the dual agonist being the strongest stimulator. Conversely, serum GLP-1 

levels were significantly reduced in both Fxr and Tgr5 knockout mice. Moreover, INT-767 

stimulated GLP-1 secretion was observed in Tgr5 knockout mice, but not in the Fxr 
knockout mice, suggesting that FXR is required for the GLP-1 secretion. Further, a FXR-

response element was identified on the Tgr5 gene promoter, suggesting FXR is upstream of 

TGR5 [37]. In another study, the intestine-restricted FXR agonist, fexaramine (FEX), 

markedly increased glucose-induced GLP-1 secretion in wild type mice, but not in Fxr or 

Tgr5 knockout mice, suggesting both FXR and TGR5 are required in bile acid-stimulated 

GLP-1 secretion [38]. Collectively, intestinal FXR and GLP-1 signaling pathways are key 

players in the beneficial role of BMS.

TGR5 is a transmembrane G-protein coupled bile acid receptor [39, 40]. Recent studies 

revealed that TGR5 is required for the beneficial role of VSG in the improvement of glucose 

control, weight loss, hepatic steatosis, and energy expenditure in a diet-induced obesity 

mouse model [35, 41]. Investigators found the mRNA expression of Tgr5 and its target gene, 

proglucagon, in the ileum were significantly upregulated after VSG in wild type mice, but 

not in Tgr5 knockout mice, indicating activated TGR5 signaling by VSG. They further 

demonstrated that glucose clearance was significantly enhanced after VSG compared to 

sham-operation in wild type mice in response to an oral glucose load, and this was 

associated with increased GLP-1 and insulin secretion. However, these effects were blunted 

in Tgr5 knockout mice, suggesting that TGR5 is required in the regulation of GLP-1 and 

insulin secretion following VSG [35]. Primary bile acids are synthesized in the hepatocytes 

and secreted to the intestine where they are deconjugated to secondary bile acids by the gut 

microbiota. Therefore, bile acids can modulate the abundance and the composition of gut 

microbiota. Conversely, gut microbiota can modulate bile acids composition via microbial 

enzyme activities [42]. However, the relative abundance of gut microbiota did not differ 

between wild type and Tgr5 KO mice after VSG; therefore, it is questionable as to whether 

VSG-induced bile acids alterations were attributable to gut microbiota [35, 41]. How bile 

acid levels and composition are altered by BMS remains elusive. While primary bile acids, 

cholic acid (CA) and chenodeoxycholic acid (CDCA), are FXR agonists [42], tauro-β 
muricholic acid (TβMCA) (in mice) is a FXR antagonist [43]. Secondary bile acids, 

lithocholic acid (LCA) and deoxycholic acid (DCA), are potent ligands for TGR5 [42]. 

Research in mice showed that serum total and unconjugated, as well as taurine-conjugated, 

bile acids were increased by VSG, whereas fecal taurine-conjugated bile acids, including 
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TβMCA, were decreased in a high-fat diet induced obesity mouse model [35]. However, it is 

unclear whether and how decreased fecal TβMCA and/or altered bile acids composition 

contribute to the metabolic improvement by BMS.

Although both FXR and TGR5 are essential in the beneficial effects of BMS, their roles in 

the regulation of lipid and glucose metabolism are divergent. To understand the differential 

roles of FXR and TGR5 in the regulation of lipid and glucose homeostasis, bile acid 

sequestrants were administered to either Fxr or Tgr5 null mice. The results revealed that the 

beneficial role of bile acid sequestrants on cholesterol and triglyceride metabolism is 

mediated by FXR [44, 45], whereas the improvement on glycemia control is dependent on 

TGR5/GLP-1 [45]. An FXR mutation led to improved glucose tolerance and adipose tissue 

insulin sensitivity, but aggravated hepatic steatosis, and had no effect on hepatic insulin 

sensitivity in either genetic or diet-induced murine model of obesity [26]. Conversely, CA, a 

natural ligand of FXR, protected against hepatic steatosis and attenuated 

hypertriglyceridemia in KK-Ay mice, characterized with hyperglycemia, hyperlipidemia and 

hepatic steatosis [46]. In support of this concept, a FXR agonist, OCA, showed beneficial 

effects on NASH patients [30, 32, 47].

Several studies examined the role of TGR5 on the development of diet-induced hepatic 

steatosis. The results from different groups uniformly showed that Tgr5 knockout mice 

developed comparable hepatic steatosis compared to wild type mice in response to a high-fat 

or a high-fat/high-fructose diet [35, 41, 48], suggesting TGR5 is not required in diet-induced 

hepatic steatosis. However, debate exists regarding the role of TGR5 in mediating the 

benefits of VSG on hepatic steatosis. While Ding et al.'s study showed that TGR5 is required 

for the beneficial role of VSG in reducing liver fat accumulation [35], McGavigan et al.'s 

results did not [41]. The discrepancy likely relates to the age of mice, dietary fat proportion 

and the duration of the experiment [35, 41]. TGR5 is expressed in a variety of tissues and 

cells, including liver sinusoidal endothelial cells [49], adipose tissue, skeletal muscle [50], 

ileum and colon enteroendocrine cells [40]. Future studies with tissue- or cell-specific Tgr5 
knockout animals will lead to a better understanding of the role of TGR5 in metabolic 

diseases.

4. Gut Hormones

Increased gut hormone secretion after BMS contributes to appetite and glycemic control, 

including proximal intestine derived hormones, such as CCK and glucose-dependent 

insulinotropic polypeptide (GIP), and distal intestinal hormones, such as GLP-1, PYY and 

neurotensin (NT). Yet, the specific role of a particular macronutrient in stimulating gut 

hormones secretion after BMS is unclear. A recent study showed that distal, but not 

proximal gut hormones, were significantly increased in RYGB patients compared to controls 

in response to dietary long-chain fatty acids (LCFAs) [51].

Fibroblast growth factor 19 (FGF19) has been proposed as a potential therapeutic target 

from the beneficial effects of BMS. FGF19 (in humans and its mouse ortholog FGF15) is a 

target gene of FXR. Once FXR is activated by bile acids in the ileum, FGF15/19 is released 

from the enterocytes of the small intestine and enters the liver via the portal vein, where 
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FGF15/19 binds to FGF receptor 4 (FGFR4), and consequently suppresses cholesterol 7α-

hydroxylase (CYP7A1) expression and inhibits bile acids synthesis. Not only does 

FGF15/19 promote glycogen synthesis and reduce gluconeogenesis, it also decreases hepatic 

triglycerides. While circulating FGF19 was decreased in NAFLD patients, it was increased 

after BMS, indicating that FGF19 may be a mediator for the beneficial effects of BMS [52].

5. Gut Microbiota

Gut microbiota dysbiosis is increasingly recognized as an important mechanism leading to 

obesity and the metabolic syndrome. BMS-induced weight loss is associated with alterations 

of the gut microbiome characterized by increased microbial gene richness (MGR) [53], 

Gammaproteobacteria [54–56], Akkermansia muciniphila [55, 57, 58] and a decreased ratio 

of Firmicutes to Bacteroidetes [54, 59, 60]. However, the alterations of the gut microbiota 

are likely independent of calorie restriction [55, 61]. Fecal microbiota transplantation (FMT) 

from RYGB-treated mice to non-operated germ-free mice resulted in weight loss and 

reduced fat mass in recipient mice compared to the sham-operated recipient mice [55], 

suggesting that the beneficial role of BMS in improving metabolic diseases is mediated, at 

least partially, by gut microbiota. Consistent with this, germ-free mice that received fecal 

microbiota from patients 9-years post RYGB or VSG exhibited significantly less body fat 

accumulation (43% and 26%) in 2 weeks compared to mice that received microbiota from 

severely obese patients. Moreover, mice colonized with RYGB microbiota gained more lean 

body mass, while the body weight gain and food intake did not differ compared to controls. 

In addition, mice with RYGB microbiota displayed a lower respiratory quotient (RQ, ratio of 

CO2 produced and O2 consumed), suggesting increased lipid oxidation and decreased 

carbohydrate oxidation [62]. This study further validated that the long-term beneficial effects 

of BMS are through functional gut microbiota. However, only modest effects were achieved 

in the patients with the metabolic syndrome who received gut microbiota from donor-RYGB 

patients compared to those who received gut microbiota from metabolic syndrome donors. 

The FMT recipients of RYGB gut microbiota exhibited a trend toward faster intestinal 

transit time, altered fecal bile acids profile and decreased adipose tissue C-C motif 

chemokine ligand 2 (CCL2) mRNA as well as decreased plasma CCL2 levels. The 

discrepancy between human and mice studies is likely due to the greater variation of 

external environment and individual gut microbiota composition in humans [63]. Although 

the role of gut microbiota in the beneficial effects of BMS has been established, the 

underlying mechanisms remain largely unknown. Despite significantly improved metabolic 

effects and weight loss, MGR was only restored in a small portion of patients undergoing 

BMS and remained low [53]. Moreover, Proteobacteria are considered potentially pro-

inflammatory bacteria [64] and a hallmark of gut microbiota dysbiosis [65], which is a 

signature of gut microbiota alteration after BMS. Therefore, future research is necessary to 

understand how the altered gut microbial activity following BMS improves host metabolism.

6. Exosomes

Adipose tissue is a major source of circulating exosome microRNAs (miRNAs). Adipose 

tissue-derived circulating exosome miRNAs regulate gene expression in the liver [66]. It has 

been demonstrated that adipose tissue-derived exosomes activate peripheral monocytes and 
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subsequently release inflammatory cytokines, tumor necrosis factor-α (TNF-α) and 

interleukin-6 (IL-6), which contribute to the pathogenesis of insulin resistance [67]. 

Therefore, it is plausible that adipose tissue-derived exosomes are a potential mediator of 

beneficial effects after BMS. In fact, a growing body of evidence demonstrated that distinct 

alterations of circulating miRNAs occurred after BMS [68–71]. A recent study showed that 

BMS-responsive miRNAs were found from circulating adipocyte-derived exosomes 

identified by fatty acid binding protein 4 (FABP4), a specific marker for adipocytes. Further, 

they showed that the insulin signaling pathway was a target of 10 miRNAs and that the 

changes in levels of these miRNAs correlated to the improved insulin signaling after BMS 

[72]. In line with this, markedly reduced serum C-reactive protein (CRP), TNF-α and IL-6 

were observed after BMS, suggesting improved systemic inflammation [57, 73]. However, 

the link between the altered miRNA profiles and improved systemic inflammation as well as 

other metabolic phenotypes remains to be established concerning the beneficial effects of 

BMS. Future studies identifying specific circulating miRNAs as biomarkers for the 

prediction of successful BMS would be of great interest.

7. Glucose Metabolism

The changed anatomy of GI tract due to RYGB leads the undigested nutrients going directly 

to the Roux limb (Figure 2), which reprograms intestinal glucose metabolism associated 

with the hypertrophy of Roux limb and renders the intestine as a major site for glucose 

disposal, consequently leading to improved glucose tolerance. This effect is mediated by the 

upregulation of glucose transporter-1 which leads to increased glucose uptake from 

circulation and concomitant increased glycolysis. Not only were these findings demonstrated 

in a rat model [74], but they were also verified in human studies [36]. Paradoxically, Baud’s 

study showed that glucose uptake from the alimentary Roux limb was decreased after RYGB 

in minipigs, owing to deprived bile in the Roux limb. Addition of bile to the Roux limb 

restored glucose uptake. Mechanically, bile diversion results in the concomitant diversion of 

salt which contributes a functional defect in sodium glucose cotransporter 1 (SGLT1), 

consequently reducing glucose absorption [75]. Although both RYGB and VSG improve 

glycemia, the mechanisms underlying the two approaches are different. While RYGB 

increases intestinal glucose disposal, VSG decreases alimentary glucose absorption without 

intestinal hypertrophy, and is associated with increased density of GLP-1 secreting cells 

[36]. A human study showed that gastric bypass surgery was superior to VSG for the 

remission of type 2 diabetes [76]. To understand the mechanisms underlying VSG-induced 

improvement in glucose homeostasis, Harris et al. evaluated tissue-specific glucose uptake 

using 18-FDG PET/CT in a mouse model. They found VSG resulted in a significant increase 

in glucose uptake by visceral adipose tissue, which was associated with the upregulation of 

transcripts involved in energy metabolism, suggesting increased glucose utilization in 

adipose tissue after VSG [77]. However, these results were from a non-obese mouse model 

and need to be validated in obese mouse models as well as in humans.

8. Lipid Metabolism

Dyslipidemia is one of manifestations associated with obesity and the metabolic syndrome 

as shown by elevated blood total cholesterol, low-density lipoprotein (LDL), triglycerides 
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and decreased high-density lipoprotein (HDL), all of which were reversed by BMS [70, 78–

80]. However, the underlying mechanisms are not clear. A recent study showed that 

intestinal LDL receptor (LDLR) was significantly upregulated at both mRNA and protein 

levels in jejunal biopsies from patients after RYGB. This was accompanied by the 

upregulation of Niemann-Pick C1-like protein 1 (NPC1L1), acetyl-coenzyme A 

acetyltransferase 2 (ACAT2), sterol regulatory element-binding protein 2 (SREBP2), and 3-

hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), implicating the enhanced 

intestinal cholesterol absorption, uptake, and synthesis. Consistent with this, mice with 

intestine-specific overexpression of LDLR displayed significantly decreased circulating total 

cholesterol and LDL cholesterol levels, as well as body weight, either on regular chow diet 

or high-fat, high-cholesterol (HFHC) diets. Moreover, increased fecal cholesterol as well as 

total lipids levels were observed when intestine-specific Ldlr overexpression mice were fed 

with HFHC diet, highlighting that the reprogrammed intestinal cholesterol metabolism 

might produce at least some of the beneficial effects of RYGB [81].

Conclusions

While RYGB and VSG are effective in the improvement of metabolic phenotypes, they 

likely involve different mechanisms. Tissue-specific roles of FXR and TGR5 in the 

mediation of the metabolic benefits of RYGB and VSG, as well as in the metabolic 

disorders, remain elusive. The benefits of BMS are transmissible through FMT in rodents. 

However, again, the underlying mechanisms are largely unknown. Circulating exosomes and 

miRNA profiles were substantially altered by BMS. The specific roles of miRNAs on the 

regulation of gene expression involved in metabolic signaling pathways are not clear. Future 

studies are warranted to decipher how BMS confers its benefits.
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NAFLD nonalcoholic fatty liver disease

BMI body mass index

T2DM type 2 diabetes

NASH nonalcoholic steatohepatitis

AASLD American Association for the Study of Liver Diseases

ORCs obesity-related complications

GLP-1 glucagon-like polypeptide 1

PYY peptide YY

PXR pregnane X receptor

CAR constitutive androstane receptor

VDR vitamin D receptor

GPBAR1 G protein-coupled bile acid receptor 1

GLP-1R GLP-1 receptor

OCA obeticholic acid

FEX fexaramine

CA cholic acid

CDCA chenodeoxycholic acid

TβMCA tauro-β muricholic acid

LCA lithocholic acid

DCA deoxycholic acid

GIP glucose-dependent insulinotropic polypeptide

NT neurotensin

LCFAs long-chain fatty acids

FGF19 fibroblast growth factor 19

FGFR4 FGF receptor 4

CYP7A1 cholesterol 7α-hydroxylase

MGR microbial gene richness

FMT fecal microbiota transplantation

CCL2 C-C motif chemokine ligand 2
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miRNAs microRNAs

TNF-α tumor necrosis factor-α

IL-6 interleukin-6

FABP4 fatty acid binding protein 4

CRP C-reactive protein

SGLT1 sodium glucose cotransporter 1

18FDG 18F-fluorodeoxyglucose

PET positron emission tomography

CT computed tomography

LDL low-density lipoprotein

HDL high-density lipoprotein

LDLR LDL receptor

NPC1L1 Niemann-Pick C1-like protein 1

ACAT2 acetyl-coenzyme A acetyltransferase 2

SREBP2 sterol regulatory element-binding protein 2

HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A reductase

HFHC high-fat, high-cholesterol diet
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Figure. 1. Vertical sleeve gastrectomy (VSG).
Schematic diagram of VSG. VSG creates a tube-like stomach with the majority 

(approximately 70–80%) of stomach is removed along the greater curvature. The dotted line 

denote where the excision is made (in between).
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Figure. 2. Roux-en-Y Gastric Bypass (RYGB).
Schematic diagram of RYGB. The stomach is divided into a small gastric pouch and a distal 

stomach along the dotted lines. The jejunum is transected and the distal part is connected to 

the gastric pouch through a gastro-jejunostomy, which creates a Roux limb or alimentary 

limb, as indicated. The continuity of the gastrointestinal tract is re-established by connecting 

biliopancreatic limb to the jejunum through a jejunojejunostomy. The small intestine distal 

to the jejuno-jejunostomy is called common limb. RYGB leads ingested food to bypass the 

distal stomach, duodenum and proximal jejunum, and rapidly go through the small gastric 

pouch and flow into the jejunum. Therefore, nutrients are present in the Roux limb without 

bile, whereas bile and pancreatic secretions are present in the biliopancreatic limb, but no 

nutrients. Nutrients are mixed with bile and pancreatic secretions in the common limb.
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