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Abstract

Extracellular vesicles (EVs) are a means of cell-to-cell communication and can facilitate the 

exchange of a broad array of molecules between adjacent or distant cells. Platelets are anucleate 

cells derived from megakaryocytes and are primarily known for their role in maintaining 

hemostasis and vascular integrity. Upon activation by a variety of agonists, platelets readily 

generate EVs, which were initially identified as procoagulant particles. However, as both platelets 

and their EVs are abundant in blood, the role of platelet EVs in hemostasis may be redundant. 

Moreover, findings have challenged the significance of platelet-derived EVs in coagulation. 

Looking beyond hemostasis, platelet EV cargo is incredibly diverse and can include lipids, 

proteins, nucleic acids, and organelles involved in numerous other biological processes. 

Furthermore, while platelets cannot cross tissue barriers, their EVs can enter lymph, bone marrow, 

and synovial fluid. This allows for the transfer of platelet-derived content to cellular recipients and 

organs inaccessible to platelets. This review highlights the importance of platelet-derived EVs in 

physiological and pathological conditions beyond hemostasis.

Introduction

Platelets were first described in the 1880s, and it was quickly understood that their main 

function was the prevention of bleeding. Following damage to blood vessels, platelets 

rapidly seal the breach to prevent blood loss. However, pathogens (bacteria, viruses, fungi) 

can take advantage of the loss of vascular integrity to invade the blood stream and 

disseminate. It is now reocognized that platelets express numerous inflammatory molecules 

and receptors capable of recruiting immune cells and limiting the risk of infection. Thus, 

although platelets are poised to play roles in immunity and inflammation, their primary 
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functions remain restricted to the blood circulation due to their limited migratory 

capabilities.

Extracellular vesicles (EVs) are membrane vesicles released from the cellular plasma 

membrane (microvesicles or microparticles) or endosomal compartment (exosomes) of cells.
1,2 They are produced by platelets upon activation and have been associated with both non-

infectious chronic inflammatory diseases3 (e.g. atherosclerosis, diabetes mellitus, coronary 

artery disease, hypertension) and infectious diseases4,5 (e.g. influenza, COVID-19). 

Similarly to EVs from other cell types, platelet-derived EVs (pEVs) transport diverse cargo 

(e.g. RNA, lipids, proteins), which can be transferred to cellular recipients. Thus, because 

pEVs can reach organs and tissues inaccessible to platelets, they may contribute to more 

distant cellular communication. In this review, we present historical findings related to pEVs 

and hemostasis, and discuss how more recent findings point to a role for pEVs in 

intercellular communication under both physological and pathological conditions.

Historical findings on the role of platelet EVs

The earliest observation documenting activity that was later attributed to pEVs was by 

Chargaff and West6, who described coagulant “lipoproteins with a high particle weight” that 

were separated from platelets by differential centrifugation. Later, a platelet-like activity in 

serum was identified by a thrombin-generation test7, but was not yet associated with pEVs. 

The first observation of small particles fitting the current description of EVs was by Peter 

Wolf,8 who also noted platelet-derived particles that could be separated from platelets by 

differential centrifugation.8 These small particles were termed “platelet-dust” and displayed 

a procoagulant function that could shorten clotting time and promote thrombin generation.8 

Shortly thereafter, electron microscopic analyses9 of alpha-granule release from platelets 

also imaged small vesicles being released. This release of vesicles, refered to as 

“microparticles”, from the platelet plasma membrane implicates the extrusion of platelet 

cytomembrane structures.10 A later study using electron microscopy11 provided a more 

detailed description of the two types of pEVs: small vesicles with a diameter of 

approximately 80 to 200 nm and larger vesicles with a diameter of 400 to 600 nm which 

retained procoagulant potential mediated by factor V-like activity and tissue factor. While 

PEVs had primarily been associated with procoagulant activity, another study offered the 

first evidence that pEVs may exert both pro- and anticoagulatory effects. This study showed 

that pEVs could support activation of prothrombin, but also inactivation of Factor Va12 

through binding of protein S to the coagulation inhibitor protein C in some pEV 

preparations.13 These data provided an early indication that the function of pEVs can be 

modified post-release.

The procoagulant effects of pEVs have been largely linked to the surface exposure of 

negatively charged phospholipids (e.g. phosphatidylserine).14 However, the coagulant 

potential of pEVs may depend on their trigger of release from platelets.15 More specifically, 

highly procoagulant pEVs are produced when platelets are activated by a combination of 

collagen and thrombin, complement C5b-9, or the non-physiologic trigger calcium 

ionophore.15,16 However, the procoagulant activity is lower if platelets are activated by 

thrombin, ADP, or epinephrine.15,16 After in vitro platelet stimulation, with the exception of 
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C5b-9-induced pEVs, only 25 to 30% of total procoagulant activity is associated with pEVs 

independent of platelets.15,16 This suggests that the procoagulant properties of pEVs may be 

eclipsed by platelets, and therefore may not be their sole function.

Detailed electron microscopic analysis of activated platelets17 connected the data from 

various publications and described the release of two different EV populations (termed 

‘microvesicles’ and ‘exosomes’) triggered by platelet activation with the proteinase-

activated receptor (PAR) agonist, thrombin receptor agonist peptide SFLLRN (TRAP), or α-

thrombin. Microvesicles were defined as vesicles 100–1000 nm in diameter, 

phosphatidylserine-exposing (Annexin-V binding), which express αIIB-β3 and β1, GP1bα, 

and P-selectin, proteins that are present on (activated) platelets.17 Exosomes were defined as 

40–100 nm in diameter, similar to internal vesicles in multivesicular bodies and alpha-

granules, expose CD63, and are undetectable by flow cytometry.17 Factor X and 

prothrombin were able to bind to microvesicles, but not exosomes. Thus, it was suggested 

that the coagulant properties of pEVs are associated with microvesicles, but not exosomes.17 

Some procoagulant activity of circulating pEVs was subsequently associated with tissue 

factor.18 Although platelets have not been conclusively demonstrated to express tissue 

factor19, studies suggest that they may acquire it from tissue factor-bearing EVs (from other 

cells) through fusion in a P-selectin glycoprotein ligand-1-dependent manner.20

Definitions of EVs and general considerations in the interpretation of 

pioneering studies

Historically, the two main types of EVs that have been identified have most often been 

referred to as microvesicles/microparticles and exosomes. However, the terminology has 

frequently been used in different contexts and the isolation protocols were not standardized 

leading to confusion, misinterpretation, and reproducibility issues. Unless experimental 

conditions permit capturing vesicle release as it occurs to discern whether they orginate from 

plasma membrane budding or intracellular compartments, the current consensus21 is that the 

umbrella term ‘extracellular vesicles’ (EVs) should be used. The term EV encompasses all 

different types of vesicles, including microvesicles/microparticles and exosomes. Moreover, 

a clear description of the preparation methodology and a detailed characterization of EVs is 

required when they are reported21. In particular, with regard to pEV isolation, attention 

should be paid to proper separation of pEVs and platelets,22 and their distinction from 

lipoproteins (chylomicrons, LDL, HDL).23 The exact concentrations of EVs (and pEVs) in 

healthy plasma is an ongoing matter of debate and concentrations ranging from 200 up to 

109 EVs/µL have been reported.24 These discrepancies can likely be attributed to low 

sensitivity of detection methods or co-detection of contaminants.24,23 A conservative 

estimate of pEVs by cryo-electronmicroscopy determined their concentration to be close to 

11,500/µL in healthy plasma.24 Considering these issues, it is prudent to include EV 

measurements from healthy control plasma in side-by-side comparisons with EVs obtained 

from a study group-of-interest to enable a direct comparison of EV quantities. Likewise, a 

meta-analysis of EV concentrations across different studies may have limited usefulness if it 

cannot guarantee comparable isolation and detection protocols.
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Despite their absolute quantities still being investigated, it is accepted that platelets and 

megakaryocytes (MKs) are the primary source of EVs in the blood circulation.25,26,24 While 

pEVs are released from platelets upon stimulation, MK EVs are consitutively released from 

MKs in the bone marrow into the blood. As such, MK EVs dominate in healthy individuals 

while pEVs increase in conditions with enhanced platelet activation. While both are positive 

for CD41, pEVs generally express the platelet activation markers P-selectin (CD62P) and 

phosphatidylserine (PS), while MK EVs do not.25,27 However, both pEV content and surface 

marker expression is dependent on the platelet agonist, and the resulting pEV populations 

are highly heterogenous.27,28 pEV numbers significantly increase in conditions with chronic 

inflammation and ongoing platelet activation, such as cardiovascular disease, cancer, and 

autoimmune diseases like rheumatoid arthritis and systemic lupus erythematosus (SLE).
29,30,31,32,33 In addition to changes in pEV quantity, there are changes in pEV content in 

settings such as cardiovascular disease34, infections35, autoimmune diseases (multiple 

sclerosis36, rheumatoid arthritis37, and SLE38,39), and cancer40. As pEVs contain a subset of 

cargo packaged from platelets, this differential cargo could result from 1) plasma 

components directly endocytosed by platelets, 2) platelet changes at the level of their mother 

cells, MKs, or likely 3) a combination of these two mechanisms.

Is procoagulant activity the main function of platelet EVs?

With these diverse roles of pEVs in mind, it is prudent to revisit the assertion that their main 

function relates to propagation and support of procoagulant activity. A recent study by 

Berckmans et al.22 highlighted concerns regarding the interpretation of their earlier PEV 

studies. The authors re-evaluated their previous findings41 on the coagulant properties of 

pEVs in blood from healthy volunteers. In comparison to their earlier study41, they report up 

to 190- to 264-fold higher concentrations of pEVs in blood.22 Suprisingly, these pEVs 

display fibrinolytic activity in a plasmin generation assay22, rather than a procoagulant 

function as previously reported in a thrombin generation assay41. The authors argue that the 

collection method employed in the earlier study was suboptimal compared with more recent 

protocols, as the earlier separation of pEVs from platelets was performed by a single-step 

centrifugation protocol, which might have led to platelet contamination.22 In addition, 

platelets may have been activated when they were collected in glass tubes in past studies.22 

In contrast, a different study confirmed the presence of procoagulant EVs in blood from 

healthy volunteers, this time using a more sensitive assay.42 As outlined in the first section, 

both procoagulant6,8,11,12,14,15,16,17,18,20 and anticoagulant12,13,15,16,43 properties are 

attributed to pEVs; these differences may be explained by the existence of different pEV 

subsets.17

The study of pEVs in human disease also provides information regarding their physiological 

role in coagulation. In Scott syndrome, platelets lack the ability to expose 

phosphatidylserine on their surface during activation and the number of circulating pEVs is 

drastically reduced.44 Although the reduced number of pEVs could account for the increased 

bleeding risk in these patients, phosphatidylserine exposure is deficient on platelets 

themselves and on other cells, which makes it difficult to determine the relative contribution 

of pEVs versus platelets to the observed bleeding phenotype. Moreover, these patients 
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present with only a mild bleeding phenotype, indicating that pEVs may not be critically 

required for hemostasis.

Furthermore, Stormorken’s syndrome, also called “inverse Scott syndrome”45, is associated 

with either a gain-of-function mutation in the sensing protein stromal interaction molecule 1 

gene (STIM1)46 or a loss-of-function in the calcium channel pore forming protein ORAI147. 

In Stormorken’s syndrome48, platelets appear to be hyperactivated and expose increased 

levels of phosphatidylserine on their surface. In addition, the concentration of circulating 

pEVs is higher in this disease. Of note is that the phenotype presents with a mild bleeding 

defect. Together, these in vivo and in vitro observations suggest that the role of pEVs in 

hemostasis may be minor, even though specific pro- and anticoagulant functions have been 

indirectly attributed to them.

Do platelet EVs have therapeutic potential?

EVs from various cell types are currently being explored as therapeutic tools.49 pEVs may 

have therapeutic potential, as they can support coagulation and angiogenesis in different 

animal models of bleeding and trauma.50,51,52,53 However, the effects of pEVs vary 

depending on the trigger of pEV generation; pEVs derived from resting platelets50,51 versus 

thrombin-activated platelets51 demonstrate mild or strong hemostatic properties (indicated 

by formation of smaller or larger aggregates), respectively. Moreover, exosomal pEVs have 

been found to be beneficial in treatment of chronic injuries and trauma.52,53 These studies 

suggest that careful production and characterization of PEVs is necessary before 

determining their utility in any in vivo applications. However, there is significant interest in 

development of pEVs for use in conflict or war zones where high rates of trauma and 

bleeding injuries are common.54,55 Since liquid platelet-rich plasma preparations only have 

a short half-life (~5 days) and are required to be kept at temperatures of 20–24°C, frozen 

pEV preparations are an attractive alternative.54,55 However, given the current knowledge of 

the diverse and seemingly contradictory functions of pEVs, reaching their full therapeutic 

potential will depend on clear separation of pEV subtypes and careful development of best-

practice protocols for pEV generation and isolation.

Platelet EVs as inflammatory agents

Aside from their potential roles in coagulation, pEVs have significant inflammatory 

properties. For example, platelets activated by staphylococcal superantigen-like protein 5 

release pEVs capable of inducing leukocyte aggregation.56 Moreover, pEVs carry molecules 

such as cytokines (e.g. IL-1β57,58), lipid mediators59, and damage-associated molecular 

patterns (DAMP, e.g. HMGB160), pointing to their role in the transfer of inflammatory 

signals. In addition, pEVs can modify the pentameric C reactive protein (CRP) into its 

inflammatory form.61 This change implicates the binding of pentameric CRP to 

phosphocholine on pEVs.61 Conversely, it was found that in an inflammatory milieu, 

peptidylarginine deiminase 4 (PAD4) could citrullinate proteins on the surface of pEVs and 

thereby promote their antigenicity.62
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However, pEVs are not always proinflammatory, and may also have immune regulatory 

potential. For instance, pEVs can provide 12-lipoxygenase to mast cells, which enhances the 

production of lipoxin A4, a stimulator of the resolution of inflammation.63 Furthermore, 

pEVs shed by stored human platelets can polarize macrophages to an anti-inflammatory 

state.64 This effect may result from the depletion of complement proteins (C1q, CFH, C3d) 

by pEVs in plasma.64 Platelet EVs also regulate adaptive immunity: they can induce anti-

inflammatory signaling in plasmacytoid dendritic cells65 and inhibit differentiation of 

regulatory T-cells into proinflammatory cells through a mechanism involving P-selectin66.

Thus, similar to observations made in coagulation studies, pEVs appear to have both pro- 

and anti-inflammatory roles. We again suggest that these different roles might be played by 

pEV subtypes that are generated after platelet stimulation with different agonists.

Platelet EVs as a means to exchange platelet cargo with other cells

EVs are a direct way to foster cell-to-cell communication to non-adjacent cells, and pEVs 

are no exception. Transcription factors67, messenger RNA, and non-coding RNA (e.g. 

microRNA) are packaged into and transported by pEVs.68 Several studies have shown that 

pEV-derived miRNAs are incorporated into target cells and can signal with varying effects.69 

For instance, upon infiltration of solid tumor tissue in mice and humans, pEVs can promote 

apoptosis of tumor cells by transfer of miR-24.70 Furthermore, pEVs have been shown to 

transfer miR-223 in complex with Argonaute 2 to endothelial cells71 and miR-223 and 

miR-126 to breast cancer cells72, which directly modify respective recipient cell functions. 

However, it should be noted that significant amounts of circulating RNAs are also associated 

with small, non-vesicular particles73, which are likely to be lipoproteins74, suggesting that 

pEVs are not the sole source of extracellular RNA molecules in blood.

Mitochondria can be released from platelets and other cells as free mitochondria or as cargo 

in EVs75,76,77,78. Circulating mitochondria are generally considered a source of potential 

DAMPs79, promoting inflammation once outside the cell, which may be pathogenic in 

situations like trauma-induced injury.80 Moreover, mitochondria released by platelets 

indirectly contribute to inflammation via the liberation of inflammatory mediators upon 

secreted phospholipase A2 IIA (sPLA2-IIA) -catalyzed hydrolysis.78 In addition, 

mitochondria in the circulation may serve as a source of auto-antigens as demonstrated in 

SLE.81 However, the role of circulating mitochondria is complicated by the fact that 

mitochondria released in association with EVs have been reported to be proinflammatory77, 

non-inflammatory, and potentially cytoprotective75,76. Indeed, while extracellular 

mitochondria released from endotoxin-stimulated monocytic cells can activate endothelial 

cells, mitochondria released from resting monocytes were unable to induce inflammatory 

effects. These differences may be due to the activation state of the cellular source of 

mitochondria. As mitochondria in pEVs are functional78, the transportation of mitochondria 

by pEVs could play a role in reprogramming the metabolism of the cellular recipient. This 

process is already recognized for mesenchymal stem cells76 and bone-marrow-derived 

stromal cells75, which are capable of transfering mitochondria embedded in EVs to other 

cells, thereby improving the bioenergetics of the recipient.76,75
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In summary, although pEVs are produced by an anucleated cell, they bear components 

capable of regulating the transcription, RNA stability, translation, and metabolism of their 

target cells.

Change of location – Looking beyond the blood

Taken together, pEVs can perform a wide range of functions in the circulation, including 

(anti)coagulant or (anti)inflammatory effects and are involved in intercellular 

communication between blood cells. However, these roles of pEVs are shared, or overlap, 

with platelet function, with the importance of platelets in coagulation being undoubtedly 

superior. Combined with the challenges of physically separating pEVs from platelets, it may 

be more relevant and meaningful to examine pEVs in spatially different contexts than 

platelets.

Platelet EVs in the synovial fluid

Platelet EVs have been identified in synovial fluid 58,82 and are elevated in rheumatoid 

arthritis82. Typically platelets are rarely found in, or are absent from, synovial fluid. Under 

inflammatory conditions, pEVs may cross over into the synovial fluid where they become 

the target of autoantibodies against citrullinated proteins62,83. These pEVs are 

proinflammatory, as they induce cytokine responses in synovial fibroblasts mediated by 

interleukin-1, thereby potentially contributing to the disease.58 Moreover, pEVs may serve 

as a substrate for sPLA2-IIA, which is overexpressed in synovial fluid.67 Neovascularization 

is thought to be detrimental in arthritis84, and pEVs might contribute to neovascularization 

both indirectly by promoting inflammation58,62,83 or directly by supporting 

angiogenesis85,86. It has been shown in vitro that pEVs can promote endothelial cell 

proliferation, survival, migration, and tube formation.85 In vivo angiogenesis and post-

ischemic revascularization are also promoted by pEVs.86 A potential mode of pro-

angiogenic action is the induction of matrix metalloproteinases (MMPs) in the target 

endothelial cells. This is supported by data showing that pEVs can mediate increased 

expression of MMP-2 and MMP-9 mRNA and protein in human umbilical vein endothelial 

cells, despite the absence of these enzymes in pEVs.87 Moreover, pEVs can support early 

outgrowth of endothelial cells after vascular injury88, and promote proliferation of smooth 

muscle cells89 and hematopoietic cells90. As such, these roles of pEVs may enhance tissue 

remodeling in chronic inflammatory joint disease, or promote healing following tissue 

injury. Increased vascular permeability in inflamed joints may additionally support the 

crossover of pEVs into the synovial fluid. Nonetheless, it cannot be excluded that platelets 

may release pEV locally through activation by the subendothelial matrix if they are 

transported by leukocytes, or could undergo migration.91,92

Platelet EVs in the lymph

Interstitial fluid—rich in leukocytes, proteins, and EVs93—is drained through the lymphatic 

system away from tissue and into the blood. Platelet EVs circulate in lymph in the absence 

of inflammation, suggesting that this fluid, absent of any platelets, is used by pEVs to reach 

tissue locations inaccessible to platelets themselves.93,94 While one animal study found that 
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platelets are essentially absent within solid tumors, pEVs could reach tumor cells and 

reprogram them with their microRNA content70, potentially due to their circulation through 

the lymphatics. Moreover, inflammation can lead to increased access of pEVs to lymph, 

such as in atherosclerosis and rheumatoid arthritis.93,94 In rheumatoid arthritis, pEV egress 

into lymph involves serotonin-mediated vascular permeablity, as pEVs in lymph were was 

reduced in mice lacking peripheral serotonin.94 In contrast to blood pEVs, the pEVs that 

accumulate in lymph in autoimmune arthritis do not contribute to coagulation94, suggesting 

that pEVs in this fluid may play a non-redundant role with platelets. As the lymphatic 

system connects lymphoid organs, the presence of pEVs in lymph might suggest that pEVs 

participate in key immune activities. Furthermore, platelets contribute to lymphatic vessel 

development by CLEC-2-Podoplanin interactions.95 Specifically in blood-lymphatic vessel 

separation96, platelets become activated on contact with lymphatic endothelium in a 

CLEC-2-dependent manner resulting in the formation of a lymphovenous clot preventing 

blood from entering lymph.96 Intriguingly, the presence of CLEC-2 expressing pEVs in 

lymph94 offers the possibility of pEV-mediated effects on lymphatic development 

independently of their parental platelets. Of note, phosphatidylserine expression and 

comparable levels of miR-451 and miR-223 could be detected in lymph pEVs compared 

with blood pEVs. However, the absence of mitochondria in lymph pEVs may represent a 

feature distinguishing these from blood pEVs.

Platelet EVs in the bone marrow

In many inflammatory conditions platelet counts rise, resulting in thrombocytosis. What 

initiates this up-regulation is not well understood and has largely been attributed to an 

inflammatory response and increased cytokine release. However, EVs released by platelets 

during states of ongoing inflammation can leave the circulation and penetrate into the bone 

marrow space.27 Once there, pEVs rapidly bind to bone marrow cells, including MKs and 

their progenitors (CD41+ cells). Of note, ex vivo treatment of bone marrow from mice 

lacking the TPO receptor (cMpl knockout) with wildtype pEVs can restore MK 

differentiation, showing pEV-dependent functional reprogramming. These data show that 

pEVs are a unique delivery system that can penetrate the bone marrow and deliver 

concentrated, targeted plasma cargo that alters MK function and phenotype. In this way, 

pEVs may act as sentinels and messengers, communicating changes happening in the plasma 

milieu directly back to cells in the bone marrow. Further in vivo studies examining the role 

that pEVs play in altering bone marrow cell populations in varying inflammatory states will 

help elucidate their functional impact on disease pathology.

Could platelet EVs migrate into other tissues or body fluids?

Various types of EVs in different tissues and body fluids have been discussed elsewehere97, 

including but not limited to blood, urine, saliva, breast milk, and cerebrospinal and synovial 

fluid. Of yet, it is not known if pEVs are found in tissues or body fluids other than the blood, 

synovial fluid, lymph, and bone marrow. However, the potential of EVs to be transferred 

across biological barriers has also been observed for the blood-brain-barrier.98,99,100 

Interestingly, the transfer was bidirectional: i) transfer of glioma-derived EVs or pro-

coagulant mitochondria containing EVs across the BBB to the blood100,101 and ii) 
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intravenously injected EVs from blood across the BBB to neuronal cells102. It is unknown if 

this also applies to pEVs. Considering that several physical and chemical properties are 

shared between EVs of different origins, it is possible that pEVs may be transferred across 

tissue barriers such as the BBB, especially in inflammatory conditions.

How do platelet EVs cross intact barriers?

Platelets themselves show significant, but limited migratory capacities.92 They not only 

adhere to the inflamed vessel wall, but also migrate against the blood flow and probe the 

surrounding area for microbes.92 Whether this migratory ability enables platelets to move 

across the endothelial barrier and leave the circulation has not been shown. However, 

platelet-leukocyte aggregates have been reported in various inflammatory and hematologic 

pathologies.103,104,105 Interactions of platelets and leukocytes can be mediated by 

αIIbβ3106, CD62P (P-Selectin)107,108, and glycoprotein Ib109. These proteins can also be 

expressed on pEVs17, and may be involved in mediating pEV-leukocyte interactions.
110,111,112 While it is difficult to distinguish platelet-leukocyte and pEV-leukocyte 

aggregates in vivo113, such associations have the potential to offer platelets and pEVs a 

piggyback ride across the vascular barrier. In addition, studies have also found that pEVs are 

enhanced in the extravascular space under conditions with enhanced vascular permeability.
91,94 This leads to the hypothesis that the small size of pEVs may allow them to migrate into 

certain organs under these condtions. However, there remains much work to be done on the 

mechanisms of how pEVs can accessed these privledged spaces.

Summary

Platelet EVs were historically identified as procoagulant particles released by activated 

platelets. Over time, it has become clear that their roles are more diverse. In researching both 

their roles in coagulation and beyond, one of the most important challenges is distinguishing 

the functions of pEVs from those mediated by their platelets of origin. The ability to do this 

will likely depend on careful isolation and characteriztion of the different subtypes of pEVs 

created after platelet stimulation with various agonists. Moreover, accumulating evidence 

points to the importance of pEVs in intercellular communication not only within circulating 

cells but also beyond to other organs. Given that pEVs may permeate tissues that are 

inaccessible to platelets— such as joints, lymph, and bone marrow— the dissemination of 

platelet components into tissues and organs beyond the blood may be among their significant 

functions. Taken together, these observations suggest that future studies may reveal pEV 

abilities that extend beyond coagulation and inflammation, and into tissue barriers 

impenetrable to platelets.
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Abbreviations:

CRP C reactive protein

DAMPs Damage-associated molecular patterns

EVs Extracellular vesicles

IL Interleukin

MMPs Matrix metalloproteinases

MK Megakaryocyte

PS Phosphatidylserine

PAD4 Peptidylarginine deiminase 4

pEV Platelet-derived extracellular vesicle

CD62P P-selectin

sPLA2-IIA Secreted phospholipase A2 IIA

SLE Systemic lupus erythematosus
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Highlights

1. Upon activation by a variety of agonists, platelets readily generate 

extracellular vesicles, which were initially identified as procoagulant 

particles.

2. As both platelets and their extracellular vesicles are abundant in blood, the 

role of platelet extracellular vesicles in hemostasis may be redundant.

3. Recent findings have challenged the significance of platelet-derived 

extracellular vesicles in hemostasis.

4. Platelet extracellular vesicle cargo and function is incredibly diverse and can 

affect many different cell types.

5. In contrast to platelets, platelet extracellular vesicles can cross tissue barriers, 

extending their abilities beyond the blood.
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Figure 1. 
Platelet-derived extracellular vesicles can leave circulation and penetrate privileged organs 

such as the synovium, lymph, and bone marrow.
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