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Abstract

Background and Purpose: Oral anticoagulation is generally indicated for cardioembolic (CE) 

strokes, but not for other stroke etiologies. Consequently, subtype classification of ischemic stroke 

is important for risk stratification and secondary prevention. Because manual classification of 

ischemic stroke is time-intensive, we assessed the accuracy of automated algorithms for 

performing CE stroke subtyping using an electronic health record (EHR) database.

Methods: We adapted Trial of Org 10172 in Acute Stroke Treatment (TOAST) features 

associated with CE stroke for derivation in the EHR. Using administrative codes and 

echocardiographic reports within Mass General Brigham Healthcare Biobank (N = 13,079), we 

iteratively developed EHR-based algorithms to define the TOAST CE stroke features, revising 

regular expression algorithms until achieving positive predictive value (PPV) ≥ 80%. We 

compared several statistical algorithms for discriminating CE stroke using the feature algorithms 

applied to EHR data from 1598 patients with acute ischemic strokes from the Massachusetts 
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General Hospital (MGH) Ischemic Stroke Registry (2002-2010) with previously adjudicated 

TOAST and Causative Classification of Stroke (CCS) subtypes.

Results: Regular expression-based feature extraction algorithms achieved a mean PPV of 95% 

(range 88-100%) across 11 echocardiographic features. Among 1598 patients from the MGH 

Ischemic Stroke Registry, 1068 had any CE stroke feature within pre-defined time windows in 

proximity to the stroke event. CE stroke tended to occur at an older age, with more TOAST-based 

comorbidities, and with atrial fibrillation (82.3%). The best model was a random forest with 

92.2% accuracy and area under the receiver operating characteristic curve (AUC) of 91.1% (95% 

CI 87.5% - 93.9%). Atrial fibrillation, age, dilated cardiomyopathy, congestive heart failure, patent 

foramen ovale, mitral annulus calcification, and recent myocardial infarction were the most 

discriminatory features.

Conclusions: Machine-learning based identification of CE stroke using EHR data is feasible. 

Future work is needed to improve the accuracy of automated CE stroke identification and assess 

generalizability of electronic phenotyping algorithms across clinical settings.
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Introduction

Ischemic stroke is one of the leading causes of death in the US and is a major cause of 

serious disability.1 Understanding different stroke etiologies and classifying strokes into 

their etiologic subtypes is critical for implementing effective secondary prevention 

strategies. In particular, distinguishing cardioembolic (CE) from non-CE stroke has 

important implications for management, since anticoagulation therapy is generally indicated 

for individuals with CE stroke to prevent recurrent events.2

Despite the importance of ischemic stroke subtyping, manual subtyping using classification 

systems such as the Trial of Org 10172 in Acute Stroke Treatment (TOAST)3 is time-

consuming and limited by uncertainty at the time of initial stroke presentation.4 Moreover, 

ischemic stroke subtyping requires assessment of historical details, clinical findings, 

laboratory tests, electrocardiography, and imaging results by expert reviewers, making 

manual classification within large clinical databases laborious and unscalable. If sufficiently 

accurate, automated phenotyping of ischemic stroke subtypes using a limited set of 

electronic health record (EHR) data may facilitate stroke research efforts and augment 

clinical decision-making.

Methods

Data Sharing

Study data are available from the corresponding author upon reasonable request.
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Approach overview

Our method consists of 2 major steps (Figure 1). First, we defined TOAST features 

associated with CE stroke and modified the CE stroke features to enable their derivation in 

the EHR. We then developed and internally validated algorithms to define presence of a CE 

stroke feature within EHR using administrative codes and free texts of echocardiogram 

reports. Second, we used the EHR-based CE stroke feature algorithms to determine 

association between presence of a CE stroke feature and clinician-adjudicated CE stroke. We 

used machine learning methods to build a classifier for CE stroke.

Definition of CE stroke based on the TOAST criteria

The TOAST classification system provides criteria for classifying ischemic stroke to be one 

of five subtypes: 1) large artery, 2) lacunar, 3) cardioembolism, 4) stroke of other determined 

origin, and 5) stroke of undetermined etiology.3 The criteria for CE stroke considers a list of 

potential cardiac sources of embolic stroke. We made several practical modifications to the 

TOAST CE stroke features to enable their derivation in EHR. First, we combined 

“mechanical prosthetic valve” and “bioprosthetic cardiac valve” into “mechanical or 

biological prosthetic valve” a priori given concerns that billing codes lack adequate 

resolution to discriminate between the two features. Second, we considered mitral stenosis 

and atrial fibrillation as separate features, rather than using the categories, “mitral stenosis 

with atrial fibrillation” and “mitral stenosis without atrial fibrillation”, as originally 

described in TOAST. Third, we subordinated “lone atrial fibrillation” to “atrial fibrillation” 

given our concern about the clinical validity of lone atrial fibrillation as a distinct condition.5 

Fourth, we combined patent foramen ovale and atrial septal defects since both have the 

potential to facilitate paradoxical emboli. The final set of our CE stroke features included 

both the high and medium-risk features from the TOAST criteria with the aforementioned 

modifications and include the following: mechanical or bioprosthetic valve, mitral stenosis, 

mitral valve prolapse, mitral annulus calcification, left atrial appendage thrombus, left atrial 

turbulence, sick sinus syndrome, recent myocardial infarction (<4 weeks prior to or after 

stroke), myocardial infarction (>4 weeks, <6 months after stroke), left ventricular thrombus, 

dilated cardiomyopathy, congestive heart failure, akinetic left ventricular segment, 

hypokinetic left ventricular segment, atrial myxoma, infective or nonbacterial thrombotic 

endocarditis, atrial septal aneurysm, and patent foramen ovale or atrial septal defect (Table 

1, Supplemental Table I). We did not attempt to distinguish between medium and high-risk 

TOAST CE features in analyses.

Extraction of CE stroke features from EHR

We utilized the Mass General Brigham Biobank6 to iteratively develop algorithms for EHR-

based ascertainment of TOAST CE stroke features. The Mass General Brigham Biobank 

comprises EHR data from 30,716 volunteers. For the current study, we collected 

longitudinal EHR data using the Research Patient Database Repository6 from 13,158 

patients enrolled in the Mass General Brigham Biobank with echocardiogram reports as of 

December 2018. The Mass General Brigham Institutional Review Board approved all study 

activities. Informed consent was obtained from all subjects, their legally authorized 

representatives, or waived via protocol-specific allowance.
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We derived CE stroke features from administrative codes consisting of International 

Classification of Disease (ICD) 9 or10 codes and Current Procedural Terminology codes 

(Supplemental Table II) as well as from free texts of echocardiogram reports. For features 

based on free texts, we seeded the algorithms with clinically informed language from a 

domain expert (D.K., S.A.L.) and then applied natural language processing (NLP) text 

mining and regular-expression methods to the entire corpus of available echocardiograms for 

feature extraction (Supplemental Table III). Text-mining focused on identifying informative 

words and text strings (which we refer to as “phrases”) in reports that would indicate the 

presence of a TOAST CE stroke feature. Using R to partially imitate the functionality of 

Voyant Tools,7 our methodology can efficiently summarize textual descriptions of clinical 

features from tens of thousands of documents into about 50 representative phrases useful for 

devising regular expressions logic for feature extraction.

We used clinical domain knowledge to facilitate the development of positive, negation, and 

neutral rules as well as the development of additional logic to search for phrases under 

specific report sections to indicate the presence of a CE stroke feature. Subsequently, we 

manually reviewed 50 reports for which the algorithm indicated the presence of a modified 

TOAST CE stroke feature, for a total of 550 charts (50 charts x 11 features). We then 

iteratively revised algorithm components and repeated the sampling in 50 independent charts 

to achieve a positive predictive value of ≥ 80% for each feature, based on expert review 

(D.K., S.A.L.). Test characteristics for the NLP-derived feature algorithms are summarized 

in the Supplemental Table IV. R version 3.4 and R packages ‘stringr’, ‘lubridate’, 

‘tokenizers’, ‘corpus’, ‘tm’, and ‘quanteda’ were used for the development of the NLP 

regular expressions algorithms. The R scripts used to create a clean data corpus and extract 

features associated with CE stroke are available as open source (https://github.com/sag129/

cardioembolic_stroke_subtyping).

Classification of CE stroke

We used the MGH Ischemic Stroke Registry8–11 to build a classifier for CE stroke using 

machine learning methods. The MGH Ischemic Stroke Registry is a prospective hospital-

based observational registry consisting of patients with acute ischemic stroke. We included 

only individuals in whom stroke subtypes were adjudicated. Stroke adjudication was 

performed retrospectively according to the TOAST criteria or CCS system12 by trained 

neurologists independent of the treating physicians, utilizing all available clinical data at the 

time of delayed adjudication including continuous inpatient telemetry monitoring, 

echocardiograms, and other diagnostic testing. For the present study, we included 1,598 

patients from the MGH Ischemic Stroke Registry with events that occurred between 2002 

and 2010, of which 1,468 patients were adjudicated using TOAST. When TOAST 

adjudications were missing, CCS adjudication was used (N=130), which has previously been 

shown to be highly correlated with TOAST.9 To maximize the validity of our algorithm, we 

considered CE strokes as those classified as “Definite Cardioembolic” by TOAST, or 

“Cardio-Aortic Embolism Evident” or “Cardio-Aortic Embolism Probable” by CCS criteria 

in our primary analysis. Strokes that were classified as “Possible Cardioembolic” by TOAST 

criteria or “Cardio-Aortic Embolism Possible” by CCS criteria as well as all other strokes 

not meeting the criteria for CE stroke were considered as non-CE stroke. Supplemental 
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Table V describes the number of patients in the MGH Stroke Registry observed to have one 

of various types of echocardiogram reports (N with at least any echocardiogram = 1491, 

93.3%).

Statistical Analysis

We plotted the frequencies and intersections of CE stroke features among individuals with 

and without CE strokes using UpSet plots.13 Machine learning classification methods 

utilized to distinguish between CE stroke and non-CE stroke (i.e., large artery 

atherosclerosis, lacunar, other, and undetermined) included univariable logistic regression, 

multivariable logistic regression (Supplemental Table VIII), logistic regression regressed 

against indicator predictors counts (≥1, ≥2, and ≥3 features), logistic regression regressed 

against the count of features present during stroke, K-nearest neighbors (KNN), Support 

vector machines (SVM), Classification and Regression Tree (CART) decision tree, and 

Random Forest (RF) approaches.

We performed bootstrapping 50 times to estimate each model’s performance in terms of 

accuracy, positive predictive value, negative predicted value, sensitivity, specificity, F1 score, 

and C-statistic (i.e., AUC). In each bootstrap iteration, the data were randomly split into 70% 

for training and 30% for testing. To prevent overfitting, 5-fold cross-validation was 

performed and repeated 10 times within the training dataset. The best performing 

classification model was chosen based on accuracy and AUC. All analyses were performed 

using the R statistical and programming language v.3.4.0, including packages ‘dplyr’, 

‘UpSetR’, ‘caret’, ‘e1071’, and ‘ROCR’.

Results

Among the 30,716 individuals in the Mass General Brigham Biobank, we observed 3,144 

transesophageal echocardiogram reports, 27,965 transthoracic echocardiogram reports, and 

19,518 echocardiogram reports that were not clearly labeled as transthoracic or 

transesophageal, for a total of 50,627 echocardiographic reports spanning 13,079 unique 

individuals. The mean age among those with an echocardiogram was 61.5 ± 15.7 years, 

48.9% were women, and 2,058 (15.7%) had at least one ICD9 or 10 diagnosis code stroke. 

The performance of the CE stroke feature algorithms is depicted in the Supplemental Table 

IV, with a mean positive predictive value of 95% (range 88-100%).

Baseline characteristics of the 1,598 patients from the MGH Ischemic Stroke Registry are 

described in Table 2. The mean age was 66.9 years and 61.9% were men. CE stroke (32.6% 

CE vs. 67.4% non-CE) tended to occur at an older age (73.0 ± 13.1 vs. 64.0 ± 14.2), 

concurrently with a greater number of TOAST CE stroke features (Supplemental Figure IV). 

As expected, atrial fibrillation was the most common source for CE stroke, and it was more 

common among individuals with CE than non-CE stroke (82.3% vs. 13.3%) (Figure 2).

Performance of the various models tested is shown in Figure 3. The best performing model 

was a random forest, with an accuracy of 92.2% (95% CI 89.7% - 94.2%) and AUC of 

91.1% (95% CI 87.5% - 93.9%). SVM, Logistic Regression, and CART similarly performed 

well with accuracies ≥ 87% and AUC ≥ 85%. Results from multivariable logistic regression 
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show that atrial fibrillation, hypokinetic left ventricular segment, and infective endocarditis 

were associated with increased likelihood of CE stroke, whereas male sex and atrial septal 

aneurysm were associated with a lower likelihood (Supplemental Table VIII). In the random 

forest model, the most important features were atrial fibrillation and age as shown in Figure 

4. Patterns of features present among individuals with and without CE stroke are displayed 

in Supplemental Figure IV.

Discussion

In a sample of over 1,500 acute ischemic stroke patients with gold-standard stroke subtyping 

by expert adjudicators, we observed that electronic phenotyping using diagnosis codes, 

procedure codes, and regular expression-based features extracted from echocardiogram 

reports was effective for identifying relevant features for discriminating CE from non-CE 

strokes. Our findings suggest that automated electronic subtyping of ischemic strokes as CE 

is feasible in large datasets using algorithms that utilize a parsimonious subset of medical 

record data.

Overall, the use of machine learning has grown more widespread in stroke subtyping 

research. Garg et al. 2019 used admission, progress, discharge vascular neurology notes, and 

radiology reports to classify ischemic strokes into 5 TOAST subtypes.14 In contrast, our 

approach used different data types – ICD codes, procedure codes, and echocardiogram 

reports – which were not dependent on stroke neurologist assessments, to derive a set of 

features upon which machine learning classifiers were applied. Moreover, Garg et al. used 

an approach that combined both machine learning to identify relevant words/phrases most 

associated with improved stroke subtype classification and a principal components analysis 

to create highly informative features from combinations of word/phrase terms to create a 

feature set. Such complexity may minimize interpretability and portability to other data sets. 

We used pre-identified clinical features, applied clinical domain knowledge in extracting 

those features, and then performed machine learning classification to identify associations 

between features and stroke subtypes. Nevertheless, our study in tandem with that of Garg et 

al. demonstrates the feasibility of electronic phenotyping of stroke subtypes. Depending on 

the proposed application of an algorithm, methods might be selected which favor either 

accuracy or portability.

Our study has clinical and research implications. First, our findings further add to the 

growing body of literature suggesting that scalable solutions to electronic phenotyping of 

ischemic stroke may be achievable using EHR data. Ultimately, our efforts may enable 

extension of stroke subtyping beyond those with gold-standard labels. For example, there are 

thousands of additional ischemic strokes that have not had gold-standard phenotyping in our 

and other EHRs, to which electronic algorithms could be applied to improve sample sizes 

for stroke subtype-specific research. Our methods could also be extended to include 

additional stroke subtypes, such as large artery stroke, lacunar occlusion, and cryptogenic 

stroke. Such efforts may aid initiatives to understand the biological mechanisms of stroke 

subtypes, develop improved image detection algorithms for stroke subtyping, and facilitate 

research on health outcomes related to specific stroke subtypes.
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Second, our findings suggest that decision support using electronic phenotyping algorithms 

for ischemic stroke may be feasible in the future. Recent research suggests it is feasible to 

apply machine learning models to provide rapid, highly accurate and consistent assessment 

of echocardiograms and radiology images.15, 16 Incorporating output from artificial 

intelligence-assisted point-of-care classifiers might aid in the appropriate and efficient 

utilization of diagnostic resources (e.g., implantable loop recorders) and therapeutic 

management of stroke survivors. Indeed, some data suggest that the use of forms of cardiac 

rhythm monitoring may be underutilized following strokes.17 Future research is warranted to 

determine the potential utility of implementing automated stroke classification algorithms to 

augment clinical subtyping.

Our study had several limitations. The electronic algorithm developed in this study needs to 

be tested and validated in other study samples outside of the MGH Ischemic Stroke Registry. 

We used a relatively small sample (N = 1598) with gold-standard adjudications for algorithm 

validation. Moreover, our training set was sparse for some features (e.g. nonbacterial 

endocarditis) and this may limit the generalizability of our model to stroke datasets rich with 

such features. We acknowledge that our CE stroke subtyping requires data integrated over 

time and after 90 days following ischemic stroke. In our study, we included text from 

echocardiography reports, but did not include elements, such as neuroimaging reports which 

may identify other features of stroke subtypes, vascular imaging reports which may identify 

vascular stenoses, or laboratory data to identify hyperlipidemia. Moreover, further 

refinement of features based solely on ICD codes could minimize feature misclassification.

Conclusions

Our study demonstrates that automated electronic phenotyping can be utilized to ascertain 

features from a limited set of EHR data for discriminating CE from non-CE stroke subtypes. 

Our findings further demonstrate that feature extraction using NLP, and novel statistical 

classification techniques, may be utilized to create algorithms that may enable automated 

phenotyping. Future efforts are warranted to assess the portability of stroke subtyping 

algorithms such as the one outlined here in this study, the utility of such algorithms for 

facilitating stroke research in large-scale datasets, and their potential to augment clinical 

decision support.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of electronic phenotyping for CE stroke

Figure 1 is a flow diagram delineating the sequential steps for our approach.

CE: cardioembolic; EHR: electronic health record; MGH: Massachusetts General Hospital
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Figure 2. 
Frequency of non-CE (A) and CE (B) strokes per combination of TOAST cardioembolic 

stroke features.

The top UpSet plot depicts overall frequency of the top features for non-CE stroke, and the 

bottom depicts overall frequency of the top features for CE stroke. Black lines connecting 

multiple features indicate the presence of a combination of features.
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Figure 3. 
Performance of various algorithms used for TOAST classification of cardioembolic stroke.

Displayed from left to right are the algorithms with the best to worst performance based on 

accuracy. SVM denotes “Support Vector Machine”. CART denotes “Classification and 

Regression Tree”. KNN denotes “K Nearest Neighbors”. “Logistic regression” denotes 

multivariate logistic regression. “Logistic – feature count” denotes a logistic regression 

model regressed on the number of features present in the stroke event. “Logistic - ≥ 1 

feature” to “Logistic - ≥ 3 feature” models respectively denote a logistic regression model 
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regressed on a binary covariate indicating the presence of 1 or more features to 3 or more 

features.

Guan et al. Page 14

Stroke. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Random forest importance scores identifying important variables for predicting TOAST 

cardioembolic stroke.

The best performing model was random forest, which showed that atrial fibrillation and age 

were the most important variables for discriminating cardioembolic stroke. Next most 

important were congestive heart failure, hypokinetic left ventricular segment, mitral annulus 

calcification, gender, and dilated cardiomyopathy.
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Table 1.

Data sources and time window of cardioembolic stroke features

High-risk sources ICD codes Procedure codes Echocardiogram Report

Mechanical or bioprosthetic cardiac valve* ✓ ✓

Mitral stenosis* ✓

Atrial fibrillation (including lone atrial fibrillation)* ✓

Left atrial/atrial appendage thrombus† ✓

Intracardiac thrombus* ✓

Sick sinus syndrome* ✓

Recent myocardial infarction (<4 weeks)‡ ✓ ✓

Left ventricular thrombus* ✓

Dilated cardiomyopathy* ✓

Akinetic left ventricular segment* ✓

Atrial myxoma* ✓

Infective endocarditis* ✓

Medium-risk sources

Mitral valve prolapse* ✓ ✓

Mitral annulus calcification * ✓ ✓

Left atrial turbulence (smoke)† ✓

Delayed emptying velocity† ✓

Atrial septal aneurysm* ✓ ✓

Patent foramen ovale* ✓ ✓

Atrial flutter* ✓

Nonbacterial thrombotic endocarditis† ✓

Congestive heart failure* ✓

Hypokinetic left ventricular segment* ✓

Myocardial infarction§ ✓ ✓

*
Before or up to 90d after stroke;

†
90d before or after stroke;

‡
<=4 weeks prior to stroke;

§
between 6 months to 4 weeks prior to stroke

Stroke. Author manuscript; available in PMC 2022 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Guan et al. Page 17

Table 2.

Baseline characteristics of the MGH ischemic stroke sample stratified by stroke mechanism

Total sample Non-CE stroke CE stroke

Demographics N=1,598 N=1,243 N=355

Male Sex 937 (58.6%) 755 (60.7%) 182 (51.2%)

Age 65.4 ± 15.4 63.3 ± 15.4 73.0 ± 13.1

TOAST CE stroke features

Atrial fibrillation 457 (28.6%) 165 (13.3%) 292 (82.3%)

Atrial flutter 62 (3.9%) 19 (1.5%) 43 (12.1%)

Akinetic left ventricular segment 88 (5.5%) 62 (5%) 26 (7.3%)

Atrial myxoma 5 (0.3%) 0 (0%) 5 (1.4%)

Atrial septal aneurysm 26 (1.6%) 25 (2%) 1 (0.3%)

Congestive heart failure 353 (22.1%) 205 (16.5%) 148 (41.7%)

Dilated cardiomyopathy 239 (15%) 144 (11.6%) 95 (26.8%)

Delayed emptying velocity 6 (0.4%) 1 (0.1%) 5 (1.4%)

Hypokinetic left ventricular segment 167 (10.5%) 86 (6.9%) 81 (22.8%)

Infective endocarditis 28 (1.8%) 13 (1%) 15 (4.2%)

Intracardiac thrombus 0 (0%) 0 (0%) 0 (0%)

Left atrial appendage thrombus 8 (0.5%) 3 (0.2%) 5 (1.4%)

Left atrial turbulence 14 (0.9%) 4 (0.3%) 10 (2.8%)

Left ventricular thrombus 6 (0.4%) 4 (0.3%) 2 (0.6%)

Mitral annulus calcification 451 (28.2%) 305 (24.5%) 146 (41.1%)

Mechanical and bioprosthetic valve 22 (1.4%) 5 (0.4%) 17 (4.8%)

Myocardial infarction (later) 57 (3.6%) 41 (3.3%) 16 (4.5%)

Myocardial infarction (recent) 187 (11.7%) 116 (9.3%) 71 (20%)

Mitral stenosis 44 (2.8%) 18 (1.4%) 26 (7.3%)

Mitral valve prolapse 14 (0.9%) 6 (0.5%) 8 (2.3%)

Nonbacterial endocarditis 1 (0.1%) 0 (0%) 1 (0.3%)

Patent foramen ovale 315 (19.7%) 262 (21.1%) 53 (14.9%)

Sick sinus syndrome 74 (4.6%) 26 (2.1%) 48 (13.5%)

Data displayed as N (%) or Mean ± SD
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