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Abstract

Drug-resistant infections pose a significant risk to global health as pathogenic bacteria become 

increasingly difficult to treat. The rapid selection of resistant strains through poor antibiotic 

stewardship has reduced the number of viable treatments and increased morbidity of infections, 

especially among the immunocompromised. To circumvent such challenges, new strategies are 

required to stay ahead of emerging resistance trends, yet research and funding for antibiotic 

development lags other classes of therapeutics. Though the use of metals in therapeutics has been 

around for centuries, recent strategies have devoted a great deal of effort into the pathways through 

which bacteria acquire and utilize iron, which is critical for the establishment of infection. To 

target iron uptake systems, siderophore-drug conjugates have been developed that hijack 

siderophore-based iron uptake for delivery of antibiotics. While this strategy has produced several 

potential leads, the use of siderophores in infection is diminished over time when bacteria adapt to 

utilize heme as an iron source, leading to a need for the development of porphyrin mimetics as 

therapeutics. The use of such strategies as well as the inclusion of gallium, a redox-inert iron 

mimic, are herein reviewed.
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Introduction.

The prevalence of drug-resistant infections, particularly those acquired in hospitals, is of 

increasing concern and frequently prolongs hospital stays, increasing not only cost, but 

morbidity. The infections are commonly warned against in national and international reports 

where common drug-resistance bacteria such as the ESKAPE pathogens (Enterococcus 
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 
Pseudomonas aeruginosa, and Enterobacter species) are listed as high priority, pleading for 

increased research and improved antibiotic stewardship. Still, the challenges of antibiotic 

development have largely faced decreased funding and a weak pipeline of new candidates. 

From an industrial perspective, some of these challenges may be a lack of investment return 

whereas others report that even large screening campaigns that find successful target 

inhibitors often fail to have significant activity in cell culture.1,2

The utility of new antibiotics is further dampened by the onset of drug resistance, which has 

been observed even with new candidates and more advanced delivery methods.3 Overall, the 

2019 clinical development pipeline contained 50 compounds, 32 of which targeted WHO 

priority pathogens and only two that were active against Gram-negative pathogens.4 The 

paradigm of development has recently evolved to investigate new targets such as virulence 

and resistance pathways rather than traditional approaches aimed at cell-wall synthesis or 

protein translation (where development focuses mainly on the improvement of existing 

molecular classes).5 The targeting of virulence factors is proposed to slow resistance 

development as it reduces infective potential of bacteria rather than survival.6 This approach 

has been relatively recent, however, and most progress remains academic.

The Development of Metallotherapeutics.

An interesting subset of antibiotic research has been the resurgence of metallotherapeutics – 

either new agents containing metal sites or those aimed specifically at bacterial metal 

utilization.7 Metal-based drugs are not uncommon but are largely underdeveloped as 

antibiotics and typically favor cancer therapies. The use of metals to prevent microbial 

growth is centuries old with copper being used as far back as 2600 BCE to sterilize wounds 

and water.8 Similarly, silver formulations date back to 1500 BCE with similar uses.9 While 

these approaches may have fallen out of favor in the 1940s and the advent of modern 

antibiotics, there is renewed interest in metal-based therapeutics with the onset of resistance. 

Such research has led to copper disinfectants or use as a coating on hospital surfaces, though 

this practice faces barriers to widespread use.10 New developments in wound dressings, a 

common site of bacterial infection, have also included silver carriers in the form of 

hydrogels.11–13 Even beyond infection, silver has woven its way into textiles aimed at 

reducing bacterial colonization in athletic apparel14–16 Approaches utilizing copper and 

silver rely on the inherent activity of the ions themselves and yet still have led to reports of 

emerging resistance.17 Beyond these approaches, the search for metallotherapeutics expands 

the potential antibiotic repertoire by increasing the landscape of molecular geometries and 

reactivities beyond purely organic compounds.18 A screen of the Community for Open 

Antimicrobial Drug Discovery (CO-ADD) library revealed that metal-containing 

compounds had a much higher hit-rate against bacteria than purely organic molecules (9.9% 
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vs 0.87%, respectively).19 The development of such metallotherapeutics typically relies on 

the reactivity of the metal site for efficacy. Understanding such mechanisms is critical for the 

evolution of new therapies against bacteria that are constantly evolving. In addition to the 

development of new metallotherapeutics, much attention is now given towards 

understanding the ways in which bacteria sense, acquire and utilize metals from the 

environment so that these pathways can be exploited for drug development.

Iron and Virulence.

Other developments in metal-based antibiotic development have included interfering with 

iron uptake and utilization pathways. As these pathways are critical for infection and 

virulence but not necessarily for survival outside a host, it is less likely that poor antibiotic 

stewardship will exacerbate resistance.6 The natural redox activity of ferrous iron and the 

poor solubility of ferric iron already require tightly regulated storage and transport systems 

in a host. These mechanisms further help to keep labile iron concentrations below what 

would permit bacterial colonization, leading to the development of complex bacterial iron 

acquisition systems. Many virulence traits such as siderophore production, biofilm formation 

and exotoxin secretion are also regulated by iron levels, allowing bacteria to sense and 

respond to their environment and evade host defenses.20–22 Globally, bacteria are able to 

respond to changing iron levels through the Ferric Uptake Regulator (Fur), which is a 

transcription factor that undergoes a conformational change when bound to iron, repressing 

expression under iron-replete conditions (Figure 1).23,24

Iron Acquisition Mechanisms.

While host iron may be sequestered in storage proteins such as transferrin and lactoferrin, 

bacteria secrete iron-chelating siderophores (Figure 2). The structures of siderophores vary 

significantly between bacteria and can include peptidic and non-peptidic features. 

Regardless of the backbone, siderophores include common iron-coordinating features 

typically involving oxygen or nitrogen atoms capable of occupying two coordination sites 

and eventually form octahedral complexes. These molecules have some of the highest 

known iron binding affinities and are critical to the establishment of infection.25,26 Even 

still, host defense systems express siderocalin, a siderophore-binding protein meant to 

inhibit siderophore-based iron acquisition.27,28 Iron-bound siderophores are then transported 

through outer-membrane receptors. In gram-negative pathogens, ferric iron can be reduced 

in the periplasm and transported through the Feo system or the siderophore can be 

transported into the cytoplasm and reduced.29–31 Since the siderophore scaffold typically has 

a lower affinity for ferrous iron, the reduced form is released and utilized by the cell. In 

some cases, the siderophore also acts as a signaling molecule, alerting the cell to the 

availability of iron, and triggering the expression of virulence factors.32 It has also been 

shown that the expression of xenosiderophore receptors aids bacterial iron uptake and 

contributes to virulence. Using these receptors, pathogens like P. aeruginosa can utilize iron-

chelating molecules other than their native pyoverdine and pyochelin. This is a useful 

survival trait that also allows for siderophore piracy in co-infections wherein P. aeruginosa 
can decrease native siderophore production while utilizing secreted siderophores from other 

bacteria.33,34 The presence of exogenous siderophores has been shown to repress native 
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siderophore production, which is energetically favorable to the cell while maintaining the 

ability to acquire iron.35

Siderophore-Based Approaches.

One of the greatest barriers to efficacy is often permeability through bacterial membranes, 

often exacerbated by multidrug efflux pumps.36,37 To overcome this challenge, there have 

been several advancements in targeting iron uptake through siderophore receptors using 

siderophore-drug conjugates (SDCs) as the cliché Trojan horse approach.38–40 These are 

bifunctional molecules wherein traditional antibiotics are linked to known siderophore 

moieties to target them to the site of infection (Table 1). Even before the development of 

SDCs, bacteria have used this strategy to link toxicophores to secreted siderophores aimed at 

outcompeting other pathogens as evident by the characterization of naturally-occurring 

sideromycins such as albomycin, which is secreted by Actinomyces subtropicus in order to 

inhibit protein synthesis and outcompete neighboring bacteria.41,42 From a therapeutic 

development perspective, linking antibiotics to siderophores reduces typical resistance 

profiles such as membrane permeability and efflux since the antibiotic is transported along 

with a recognized siderophore and can also permit intracellular delivery of Gram-positive 

antibiotics to Gram-negative pathogens.43,44 The array of siderophore receptors also 

decreases the need for receptor specificity and allows a degree of structural diversity in 

SDCs and several siderophore/antibiotic combinations.

The Enterobacter conjugate reported by Zheng and Nolan fused the common β-lactams 

ampicillin and amoxicillin to the siderophore by functionalizing each piece to enable a 

copper-mediated azide/alkyne “click” reaction to generate the conjugate.45 It was found that 

the conjugate had activity against several pathogenic strains of E. coli and demonstrated 

superior efficacy to the parent drug. The conjugate was also highly specific (>1000-fold) for 

E. coli relative to K. pneumoniae and P. aeruginosa, which both have enterobactin uptake 

receptors but are less sensitive to ampicillin. This result highlights that even though bacteria 

may be able to transport a conjugate, the activity is still largely dependent on the species and 

strain. Though several strains of pathogenic and non-pathogenic E. coli were used, the 

uropathogenic CFT073 strain showed the greatest sensitivity to the conjugate, which the 

authors note is likely due to the greater variety of iron uptake systems. The activity against 

several strains is encouraging, though the selection away from these types of acquisition 

over time may decrease efficacy. However, the authors reported no significant resistance 

development over the course of the assay.

To target P. aeruginosa, Noël and coworkers reported a series of fluoroquinolone conjugates 

(ciprofloxacin, norfloxacin, N-desmethyl-oflaxacin) linked to pyochelin, one of the 

siderophores native to P. aeruginosa (and significantly smaller and more accessible than 

pyoverdine).46 These compounds are recognized by the pyochelin transporter FptA and 

transported into the cell. The activity, however, required a cleavable linker for all conjugates 

to release the antibiotic as the stable, non-hydrolyzable linkers showed no activity. Further, 

the conjugates themselves, though showing the potential for FptA as an SDC transporter, 

had reduced activity compared to the parent fluoroquinolone. The activity against the 

siderophore-deficient strains suggests that the linker may be cleaved in the extracellular 
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media and that these conjugates are more pro-drugs than they are Trojan horses. The reduced 

efficacy of the conjugate, despite binding FptA, demonstrates the importance of linker 

design and stability. Another development targeting P. aeruginosa is the development of a 

linezolid conjugate reported by Paulen et. al.47 Oxazolidinone antibiotics are protein 

synthesis inhibitors with minimal activity against Gram-negative bacteria largely attributed 

to membrane permeability and efflux. Rather than use a known siderophore, a variety of 

spacers were used to attach a catechol group to the parent linezolid, again through the 

copper-catalyzed “click” reaction. As catechol groups are a common siderophore component 

(such as the previously mentioned enterobactin), the authors believed such a feature would 

increase transport into the cytoplasm. Indeed, the conjugate displayed improved activity (4–

8-fold improvement) to linezolid, though still had MICs in the high micromolar (156–258 

μM) range. Importantly, the activity was increased in iron-deficient media, highlighting the 

importance of iron uptake pathways for SDC transport. Additionally, though it contains a 

catechol group like enterobactin, the authors found that the enterobactin transporters of P. 
aeruginosa, PfeA, are not responsible for uptake. Though the resulting activity may still be 

too low for therapeutic use, the strategy highlights the potential to expand antibiotic efficacy 

across bacterial species by incorporating iron-chelating groups to target siderophore 

receptors without the inclusion of native siderophores.

The use of catechol groups in SDC development has also seen recent progress in targeting of 

iron uptake systems. Recent reports showed that teicoplanin, a glycopeptide that is inactive 

against Gram-negative bacteria, showed low micromolar activity against several strains of A. 
baumanii (including multi-drug resistant strains), representing a 60-fold improvement over 

the parent antibiotic.50 While these results are promising for the enhancement of current 

antibiotics, the conjugates still showed no improvement over teicoplanin in E. coli and P. 
aeruginosa and decreased activity in S. aureus.

The characterization of periplasmic or plasma-membrane bound transporters also further 

aids in our understanding of siderophore transport and the potential of catechol-based 

conjugates as drug therapies. Campylobacter jejuni, the most common causative agent of 

foodborne illness, was reported to acquire iron through linear enterobactin hydrolysis 

products (~100 times more favorably than enterobactin itself) and that these catechol-

containing compounds bind to the periplasmic protein CeuE as well as the homologous 

periplasmic binding proteins in V. cholerae.51 These findings are further supported by the 

characterization of PiuA in S. pneumoniae, which binds the catechol-containing stress 

hormone norepinephrine as well as enterobactin hydrolysis products in a manner consistent 

with that reported in C. jejuni.52 Most importantly, in the context of drug design, these 

findings highlight the importance and potential for catechol-based drug conjugates. The 

structure of the binding regions of such proteins is largely solvent exposed and the 

conformation is minimally impacted by ligand binding. Such features imply that the binding 

of the iron-coordination complex is critical, but a greater structural variability is tolerated 

beyond the ferric center, providing a potential for derivatization and the generation of a wide 

range of conjugates.

Perhaps the most successful catechol-based SDC so far is the FDA-approved cefiderocol – a 

cephalosporin antibiotic with no natural siderophore attached (Table 1).53 Instead, like the 
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linezolid conjugate, cefiderocol utilizes the iron-chelating catechol moiety to bind 

extracellular iron and is then transported through the outer-membrane through siderophore 

uptake pathways.54 Conversion of one hydroxyl group on the catechol moiety to a methoxy 

group significantly decreased activity, further suggesting the importance of iron-chelation as 

a mechanism of uptake.55 Luscher et. al also reported that bacteria such as P. aeruginosa 
express a suite of outer-membrane receptors, namely PiuA, Piera and PiuD, that contribute 

to siderophore uptake and piracy, and that these receptors were upregulated in the presence 

of cefiderocol as well as other conjugates.34 Deletion of identified receptors decreased 

susceptibility to cefiderocol treatment and constitutive expression of such receptors 

increased susceptibility by an order of magnitude. The promiscuity of such receptors confers 

susceptibility to siderophore-based drugs and thus slows the evolution of resistance. It is 

presently approved for the treatment of urinary tract infections and is active against E. coli, 
K. pneumoniae, Proteus mirabilis, P. aeruginosa, and Enterobacter cloacae.56

Despite a wide range of structures and siderophore/drug combinations, the SDC approach all 

follows the same strategy wherein holo-siderophores aid the penetration of an antibiotic 

conjugate into the cell. While some SDCs maintain affinity to cytoplasmic targets, the 

activity is typically much lower than that of the free drug, thus complicating linker design.
57,58 As demonstrated in Table 1, the activity of the conjugate also varies significantly 

between bacteria, confounded by the respective combination of siderophore and drug. 

Though compounds with favorable activity are reported, the SDC approach seems unlikely 

to produce compounds with significant broad-spectrum activity. Even when factors such as 

linker, siderophore, and parent antibiotic are considered, the mechanistic approach of SDCs 

still involves the transport of chelated iron into the bacterium. In contrast to the trojan horse 

method, an alternative siderophore-based immunization strategy has been reported.59 As 

siderophores are not highly immunogenic, Sassone-Corsi and coworkers linked enterobactin 

to cholera toxin subunit B to produce an immune response against both Fe3+-enterobactin 

and a glucosylated form of Fe3+-enterobactin that is not recognized by the host siderocalin. 

Anti-siderophore antibodies were produced in mice following 100 μg/ immunization at zero 

and 14 days and were shown to reduce intestinal Salmonella colonization (Figure 3).

Gallium as an Iron Mimic.

To circumvent the design and synthetic challenges of drug conjugates, significant research 

has been devoted towards the use of gallium. Ga3+ is an effective mimic of ferric iron due to 

its similar size and charge. Under physiological conditions, however, it cannot be reduced 

and does not allow the critical redox activity of iron which disrupts important metabolic 

pathways.60,61 Ganite (Ga(NO3)3)), an FDA-approved treatment for hypercalcemia in cancer 

patients, is currently in clinical trials for efficacy as an antibiotic.62,63 While the uptake 

mechanisms are under investigation, it is largely believed that gallium enters the cell through 

iron-siderophore uptake pathways, leading to the development of gallium-siderophores as a 

new antibacterial strategy. It is currently believed that gallium salts such as gallium nitrate 

target the bacteria through siderophore pathways whether administered as a salt of 

siderophore-chelate. Uncomplexed gallium is largely found in the iron-transporting 

transferrin, where it can be pirated by siderophores.64 Indeed, it was reported that the 

gallium-pyoverdine complex (Figure 4A) delivers gallium to the site of infection with 
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favorable pharmacokinetics and high gallium delivery relative to gallium citrate, further 

establishing the potential of gallium-siderophores as potential therapeutics.65 By labeling the 

Ga-PVD complex with 68Ga, the infection could also be localized and imaged using 

positron-emission tomography. We cannot presently reconcile the necessity of iron reduction 

for siderophore-release with the redox-inert properties of gallium, but the mechanisms for 

such uptake pathways are under active investigation.66,67 Guo et al. proposed the 

periplasmic iron-binding protein HitA of P. aeruginosa as a potential pathway through which 

gallium is internalized.68 They found that gallium binds HitA in the same site as iron with 

low micromolar affinity (though weaker than ferric iron) and that genetic deletion of HitA 

conferred significant resistance to gallium toxicity.

Banin et. al reported the use of desferrioxamine-galllium as an anti-Pseudomonas agent, 

combining the toxicity of gallium with the chelation therapy of desferrioxamine, an iron-

chelating siderophore from Streptomyces pilosus, in what was described as a “push-pull” 

mechanism.69 Mechanistically, this may be due to extracellular gallium release and iron 

sequestration by DFO or the use of DFO as a gallium delivery vehicle. The complex had an 

MIC of 32 μM against planktonic cells, in line with the activity of gallium alone. Gallium 

and the Ga-DFO complex also blocked biofilm formation at 10 μM, whereas DFO and 

gentamicin had minimal effect.

Diagnostic Applications of Gallium.

Combining the SDC approach with the antibacterial activity and radioactivity of 67Ga, the 

development of a ciprofloxacin conjugate as a therapeutic and diagnostic agent was reported 

with activity against Gram-negative P. aeruginosa (3.8 μM) and K. pneumoniae (0.94 μM) as 

well as Gram-positive S. aureus (12.5 μM).70 The gallium complex showed similar potency 

of the conjugate compared to ciprofloxacin (0.9–3.1 μM), better activity than the apo- (8–

100 μM) or iron-bound (30 μM) conjugate and further allowed non-invasive 

pharmacokinetic tracking of the complex and its stability. As the complexes were 

determined to be largely stable, it is possible that the 67Ga center, which has a longer half-

life albeit lower-resolution for imaging, could be substituted for 68Ga, which has a much 

shorter half-life but can be used for PET imaging.

So far, targeting iron uptake has shown encouraging results in the laboratory and can be seen 

in the clinic in the forms of chelation therapy and more recently, cefiderocol. These 

approaches have typically shown improved efficacy under iron-limiting conditions, but are 

relatively recent and have not been evaluated exhaustively against typical resistance 

phenotypes beyond varying strains.45–47,71,72 Additionally, exploiting iron uptake with 

gallium still results in iron deficiency, which can still trigger virulence pathways and may 

eventually counteract gallium toxicity.73

Perhaps the greatest barriers to targeting iron uptake are the dependence on antibiotic choice 

as well as linker design, highlighted by several examples in Table 1. Siderophore conjugates 

and the potential of gallium have been investigated and reviewed extensively with promising 

results yet the approval of cefiderocol and repurposing trials for Ganite remain the most 

significant advances. Future success must include conjugates with optimized 

physicochemical and pharmacological properties and improved activity over their parent 
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antibiotics. This is largely dependent on the siderophore/drug combination and once again 

suggests the need to pursue such research with the same vigor as more “hot-button” 

diseases.

Additionally, a long-term approach with greater potential may be to target and inhibit the 

sensing and regulatory pathways that control iron homeostasis rather than just the iron 

acquisition pathway itself. As bacteria have extensive evolutionary experience in iron 

acquisition, such approaches must also constantly adapt to new pathways to circumvent 

resistance. Further, in chronic infection, the adaptation away from siderophores towards 

heme acquisition in a host is detrimental to the long-term efficacy of non-heme iron uptake 

inhibitors.

Heme Acquisition Mechanisms.

The secretion of high-affinity iron chelators is a critical evolutionary trait that allows 

bacteria to acquire iron from their environment, significantly predating pathogenicity. While 

the solubilization and acquisition of ferric iron in a host is important for infection, 75–90% 

of iron in a human host is found in hemoproteins.74 In host infections, bacteria have shown 

preference for heme as an iron source and pathways for sensing and uptake of exogenous 

heme have been identified in Gram-positive and Gram-negative pathogens.75–78 In Gram-

positive bacteria such as Staphylococcus aureus, the iron-regulated surface determinant (Isd) 

family of proteins has been identified (Figure 5A). In this system, heme is acquired from 

host hemoglobin or haptoglobin by IsdB/H, transferred through a cascade of surface-

attached proteins IsdA-C-E and transported into the cell via IsdD/F where it can be degraded 

by IsdG/I to release iron.79–81

Heme uptake systems in Gram-negative bacteria are also well-studied and must include 

periplasmic and inner-membrane pathways in addition to outer-membrane receptors (Figure 

5B).82 Bacteria such as Haemophilus influenzae, Yersinia pestis, Serratia marcescens and P. 
aeruginosa also secrete hemophores to capture host heme.83–87 Of note, Y. pestis, S. 
marcescens and P. aeruginosa all secrete the structurally similar HasA, which captures host 

heme through a dual ligation and conformational change described as a “fish biting heme.” 

In P. aeruginosa, transcriptomic experiments revealed that hasAp is the most upregulated 

gene in infection compared to lab cultures.88 Additionally, the persistence of P. aeruginosa 
biofilms in chronic infections show dependence on HasAp.89 It has also been shown that the 

hemophore system (Has; Heme assimilation system) in P. aeruginosa is distinct from the Phu 

(Pseudomonas heme uptake) system. While both the Has and Phu systems acquire 

extracellular heme, they have been characterized as non-redundant systems for sensing and 

primary uptake, respectively.90,91 Once transported into the cell, P. aeruginosa degrades 

heme via HemO to the metabolites biliverdin IXβ and biliverdin IXδ, which is distinct from 

classical α-producing heme oxygenases and suggests separate pathways for endogenous and 

exogenous heme.92,93 The BVIXβ isomer specifically has been shown to positively regulate 

the translation of HasAp, which adds another degree of tunability to respond to heme levels.
94,95 The complex interplay between these acquisition and utilization systems and their roles 

in infection is further evidence of the tightly regulated pathways bacteria have evolved to 

adapt to their environments.
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Porphyrin Therapeutic Development.

Perhaps the largest use of porphyrins and heme-like molecules is photodynamic therapy 

(PDT) wherein porphyrins are used as photosensitizers that can generate radicals locally 

following their uptake into the cell and photoactivation.96 These applications have used both 

metal-containing and metal-free porphyrins to varying degrees of success and are typically 

praised for their ability to target infection sites when the proper light source is applied.97,98 

Advantageously, porphyrin derivatives are frequently synthesized by condensation of pyrrole 

with benzaldehyde derivatives to produce meso-substituted porphyrin derivatives.98 This 

allows significant variability in tuning the optical and physicochemical properties of the final 

product.98–100 To avoid additional photosensitizers, the development of antimicrobial blue-

light PDT seeks to utilize endogenous bacterial porphyrins as photosensitizers leading to 

bacterial inactivation. Though limited by the penetrating power of the laser, this strategy has 

been tested against surface-level infections such as burn wounds that are commonly infected 

by drug-resistant pathogens such as P. aeruginosa and A. baumanii.101,102 Repeated cycles 

of sub-lethal blue light inactivation of bacteria did not appear to produce resistant 

phenotypes while significantly reducing bacterial burden in skin abrasions.

Much like the siderophore counterparts, gallium has also been used to target heme utilization 

pathways in bacteria (Figure 4B).103 Since heme-dependent processes rely on the redox 

activity of the iron center, gallium protoporphyrin IX (GaPPIX) effectively inhibits vital 

cellular processes with no structural perturbation to the tetrapyrrole macrocycle. In P. 
aeruginosa, GaPPIX enters the cell via the heme receptors HasR and PhuR. While it likely 

binds to HemO and prevents heme degradation and iron utilization, it can also target 

cytochromes and inhibit respiration.104 In several strains of A. baumanii, including clinical 

isolates classified as multi-drug resistant, GaPPIX reduced bacterial viability (MIC 20 μg/

mL).105 In line with this activity, GaPPIX and Ga-mesoporphyrinIX (GaMPIX) were also 

more efficacious than Ga(NO3)3 at reducing growth in both planktonic (0.5–64 μM vs 64–

256 μM) and biofilm models (32 μM vs no activity), supporting the adaptation towards heme 

in later-stage infections as well as the decreased susceptibility of biofilms to treatment.106 

Further exploration of GaPPIX and GaMPIX nanoparticles demonstrated efficacy against P. 
aeruginosa and A. baumanii cultured in macrophages, biofilms and in infected 

Caenorhabditis elegans nematodes.107

To combine the effects of photodynamic therapy with the targeting of heme uptake in P. 
aeruginosa, Shisaka et.al investigated gallium-phthalocyanine (GaPc) as an antimicrobial 

(Figure 6A).108 In this case, the gallium center was used to generate singlet oxygen species 

following irradiation with near-infrared light, thus effectively eliminating viability in vitro 
(<0.1%). This work highlights the utility of antimicrobial delivery through the heme uptake 

systems as well as the ability of the heme scavenger HasAp to solubilize larger, hydrophobic 

macrocycles such as phthalocyanine. However, it is likely that because the macrocycle is 

transported through HasR, that the signaling effects of the Has system will be activated and 

lead to an increase in HasAp transcription that could potentially increase virulence in the 

long term. This result also conflicts with reports of FePc as blocking heme uptake as it is 

more likely that the macrocycle is transported but cannot be broken down to release iron as a 

mechanism of inhibition. Other work by this group has also expanded on the porphyrin 
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structures tolerated by HasAp, providing a useful structural basis for the development of 

molecules targeting bacterial heme uptake by hemophores.109–111 While the large structural 

diversity of ligands accommodated by HasAp is encouraging from a design perspective, 

hemophore-targeting molecules must be able to compete with heme, which typically binds 

with low micromolar to nanomolar affinity.95,112,113 This competition may be more 

favorable under heme-limited conditions maintained by the host or when high levels of apo-

HasAp are present. To aid in this competition, porphyrin mimics can be designed to include 

specific structural features known to contribute to heme binding, which is largely based on 

hydrophobic interactions in the heme binding site that lead to rapid ligand association rates.
114,115

Recently, it was reported that a gallium-salophen compound was able to target hemophore-

based heme acquisition as well as siderophore uptake pathways of P. aeruginosa (Figure 6B).
113 The planar, aromatic features of the salophen molecule permitted binding to HasAp in 

the heme binding site. While the iron-salophen molecule bound to HasAp, it was able to act 

as an iron source, in contrast with its previous characterization as a heme-uptake inhibitor.
109 Switching the metal to gallium showed toxicity to cultures despite uptake mechanisms 

independent of HasR and PhuR. These results demonstrated that the gallium-salophen 

complex was able to target iron uptake pathways and bind to HasAp, inhibiting activation of 

the Has system. Simultaneously targeting iron and heme uptake pathways is more difficult to 

circumvent through traditional resistance mechanisms. Disrupting heme sensing, given its 

importance in infection, is likely to disrupt intracellular iron homeostasis and virulence at 

large. As exogenous siderophores repress pyoverdine and pyochelin production, whether this 

molecule is capable of repressing siderophore synthesis when internalized would also be a 

useful metric to determine its future success as an inhibitor.35

Alternative Strategies.

Though we have focused largely on metal-containing siderophore and porphyrin-based 

metallotherapeutics and how the use of gallium has intersected both strategies, it remains 

important to consider other critical findings related to the role of iron in bacterial 

pathogenesis.

Chelation Strategies.

Like siderophore-based strategies, iron chelators have been investigated as antibacterial 

agents. Rather than seek to improve permeability of linked drugs or deliver toxic gallium, 

chelators act by sequestering available iron away from bacteria. Though this can be done 

using deferoxamine (previously mentioned), which is approved by the FDA for chelation 

therapy, and enhances the activity of tobramycin against P. aeruginosa biofilms in a cystic 

fibrosis co-culture model.71 Beyond siderophores, the use of iron chelators has shown 

similar effects against biofilms. Chan and co-workers screened a variety of antibiotics for 

iron-binding activity through visual and spectrophotometric inspection.116 Through this 

approach, they sought antibiotic combinations that would enhance the activity of 

thiostrepton, a peptide antibiotic that enters P. aeruginosa through pyoverdine receptors. 

Notably, selected chelates as well as gallium nitrate were bacteriostatic but showed enhanced 
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bactericidal activity in combination with thiostrepton against clinical isolates of P. 
aeruginosa and A. baumanii. The authors proposed such “adjuvants” as ways to limit iron 

availability and spur the upregulation of bacterial iron acquisition systems that leave them 

more susceptible to thiostrepton (and by extension, other iron uptake-based approaches). 

The results of these studies also show significant dependence on the aerobic/anaerobic 

nature of the system and could be largely attributable to the chelation preferences and 

availability of Fe3+ over Fe2+.72

It is also important to note that such metal-coordinating molecules are not unique to iron. 

Metallophores such as staphylopine (S. aureus) and pseudopaline (P. aeruginosa) are 

secreted to capture other essential transition metals (Mn, Co, Cu, Zn) are also critical to 

survival of bacteria, though are not as extensively characterized as siderophores.117,118 For 

example, the characterization of staphylopine-mediated acquisition is relatively recent but is 

still an important step in applying many of the iron-based therapeutics herein mentioned 

towards new metals and pathways.119 We direct the reader towards notable examples of pro-

chelators and strategies for the interruption of metal homeostasis beyond the initial scope of 

this review.7,120,121

Heme Degradation.

Other notable strategies targeting bacterial iron homeostasis, though not directly involved in 

the coordination of metals, include the disruption of heme degradation and iron trafficking in 

P. aeruginosa. Previous studies have shown the P. aeruginosa heme binding and degradation 

proteins PhuS and HemO, respectively, are critical for driving extracellular heme 

internalization.94,122 The inhibition of enzymatic heme degradation and the resultant lack of 

the heme metabolites biliverdin IXβ/δ will subsequently decrease not only heme flux, but 

prevent the utilization of heme-bound iron.95 Since the metabolites of heme degradation also 

play a role in the upregulation of the heme-sensing Has system and expression of the 

hemophore HasAp, the decreased biliverdin levels are likely to further dampen heme sensing 

abilities.94 To this extent, several approaches targeting HemO have been reported and are 

under current development.123–125

Iron Mobilization.

Beyond the acquisition and degradation of vital extracellular heme, targeting iron 

mobilization is also a new method of interrupting iron homeostasis. BfrB, the main iron 

storage protein in P. aeruginosa, requires interaction with the ferredoxin Bfd to mobilize 

stored iron for use by the cell. Consequently, the inhibition of this interaction prohibits iron 

release leading to irreversible iron storage and an iron-deficient cytosol.126 This strategy was 

initially uncovered using ΔbfrB and ΔbfD mutants but has more recently been interrogated 

with the development of small-molecule isoindoline BfrB/Bfd inhibitors, leading to an iron-

starvation response.127 Further, the inhibitors had improved activity in combination with the 

commercial antibiotic ciprofloxacin relative to either the inhibitor or ciprofloxacin alone. 

Most recently, the inhibition of the interaction also showed encouraging disruption of P. 
aeruginosa biofilms, a common and recalcitrant form of infection.128 The activity, 

irrespective of environmental iron availability, suggests that such a strategy holds merit in 
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several stages of infection whereas the inhibition of iron uptake may be more suited to the 

early stages.

Conclusions.

While under active research, the development of metal-based or metal-targeting therapeutics 

for antimicrobial purposes lags that of other fields and behind traditional antibiotic 

strategies. Presently, many new developments are showing promise but are often more 

effective in combination with existing drugs, leading to more complicated treatment 

routines. The history of drug discovery also hinders new paradigms in antibiotic 

development wherein specific, targeted therapies are desired for cancer while antibiotics 

have hitherto been cheap, broad-spectrum agents.129,130 Nonetheless, significant progress 

has been made in the development of antimicrobials targeting iron and heme utilization 

pathways. The combination of siderophores with existing antibiotics presents opportunities 

for customizable molecules based on the bacterial species and their antibiotic susceptibility 

and are likely to be useful for initial stages of infection. The utility and evolution of 

porphyrin therapies has also led to a variety of potential therapies and mechanisms. The dual 

presence of iron and heme utilization pathways and the ability to shift between the two is 

likely the largest barrier to long-term success, and strategies that account for these pathways 

and their role in infection are the best suited for further exploration. While we have focused 

mainly on iron-targeting approaches, the exploration of other essential metals and 

therapeutic strategies is also critical to a deeper understanding of virulence and resistance 

development. Ultimately, resistance is unavoidable, and researchers must be adequately 

prepared to constantly develop new strategies. Certainly, acknowledging this aids the drug 

development process and where we can predict or avoid potential resistance mechanisms 

with clever design, but we must also recognize that we remain vastly outnumbered by the 

microbial world with millennia of experience evolving to survive.
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Figure 1. 
Fur Regulation of Iron-Dependent Genes
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Figure 2. 
Siderophore Structures from Various Bacteria. Iron coordinating features shown in color.
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Figure 3. 
Siderophore-based Immunization Against Salmonella using Ferric Enterobactin Conjugates. 

Left: Salmonella secretes enterobactin or a glucosylated form, which is not recognized by 

host defenses, and acquires iron. Right: conjugates fused to Cholera toxin subunit B produce 

antibodies against enterobactin, inhibiting further colonization and enteric inflammation.
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Figure 4. 
Gallium Compounds Discussed in this Review. A) Gallium siderophore strategies including 

Ga-Pyoverdine, Ga-Desferrioxamine and GaD2-Ciprofloxacin conjugate. B) Gallium 

porphyrins including GaPPIX/GaMPIX, GaPhthalocyanine and GaSalophen
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Figure 5. 
Representative Heme Uptake Systems in Gram-positive (A) and Gram-negative (B) 

Bacteria.
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Figure 6. 
Gallium Phthalocyanine (A) and Gallium Salophen (B) use Hemophore Systems for 

Efficacy.
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