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Abstract

Background: Bacterial exposure from house dust has been associated with asthma and atopy in 

children but whether these relationships are present in adults remains unclear.

Objective: To examine associations of house dust microbiota with adult asthma, atopy, and hay 

fever.

Methods: Vacuumed bedroom dust samples from the homes of 879 participants (average age 62) 

in the Agricultural Lung Health Study, a case-control study of asthma nested within a farming 

cohort, were subjected to 16S rRNA amplicon sequencing to characterize bacterial communities. 

We defined current asthma and hay fever using questionnaires and current atopy by blood specific 

immunoglobulin E > 0.70 IU/ml to ≥ 1 of ten common allergens. We used linear regression to 

examine whether overall within-sample bacterial diversity differed by outcome, microbiome 
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regression-based kernel association test (MiRKAT) to evaluate whether between-sample bacterial 

community compositions differed by outcome, and analysis of composition of microbiomes 

(ANCOM) to identify differentially abundant bacterial taxa.

Results: Overall diversity of bacterial communities in house dust was similar by asthma status 

but was lower (p-value < 0.05) with atopy or hay fever. Many individual bacterial taxa were 

differentially abundant (false discovery rate < 0.05) by asthma, atopy, or hay fever. Several taxa 

from Cyanobacteria, Bacteroidetes, and Fusobacteria were more abundant with asthma, atopy, or 

hay fever. In contrast, several taxa from Firmicutes were more abundant in homes of individuals 

with adequately controlled asthma (vs inadequately controlled asthma), non-atopics, or individuals 

without hay fever.

Conclusion: Microbial composition of house dust may influence allergic outcomes in adults.

Capsule summary

Chronic exposure to more diverse house dust microbiota was inversely associated with adult 

allergy outcomes. Differential abundances of specific microbes in house dust are related to a lower 

or higher likelihood of allergy in adults.
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Introduction

Allergic diseases such as asthma and atopy are global public health concerns, affecting 25 

million people in the United States alone1. Exposure to bacterial communities inside homes 

can impact allergic health outcomes2, 3. Studies have shown early life exposure to increased 

microbial load and diversity is protective against allergic outcomes4. To understand the link 

between bacterial exposure and such health outcomes, researchers have used endotoxin 

concentrations as an index of global bacterial burden, reporting associations of house dust 

endotoxin with allergy outcomes including asthma and atopy5–7. Recent studies using 

quantitative PCR methods have found several bacteria associated with asthma and atopy in 

both children and adults8–10.

The advent of high-throughput sequencing technology has allowed a more thorough 

exploration of associations between bacterial communities in house dust and human health 

including allergic outcomes11. Although studies using these methods have demonstrated 

associations between indoor microbial communities and allergy in children12–16, studies 

examining associations of both overall bacterial diversity and individual bacterial taxa from 

house dust with asthma and atopy in adults are rare.

In this study, we used high-throughput sequencing to investigate associations of indoor 

bacterial communities with adult allergic health outcomes in the Agricultural Lung Health 

Study (ALHS), a case-control study of asthma. We examined bedroom dust samples from 

879 independent households to evaluate whether overall bacterial diversity within each 

sample and bacterial community compositions between samples were associated with 
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occupants’ current asthma and atopy status. Using comprehensive information on indoor 

bacterial communities, we were able to investigate whether specific bacterial taxa in house 

dust were differentially abundant by asthma and atopy in adults.

Methods

Study population

The Agricultural Lung Health Study (ALHS) is a nested case-control study of current 

asthma within Agricultural Health Study (AHS). The AHS is a prospective cohort of farmers 

and spouses of farmers in North Carolina (NC) and Iowa (IA)17. Details of ALHS 

participant selection have been described elsewhere (data version P3REL201209.00)18, 19. 

Briefly, to avoid missing undiagnosed current asthma and to minimize misclassification with 

chronic obstructive pulmonary disease (COPD), we identified current asthma based on three 

criteria. Of the 3,301 ALHS participants, there were 1,223 asthma cases: (1) 876 diagnosed 

asthma cases responded “yes” to “have you ever been diagnosed with asthma?” and “do you 

still have asthma?”20 and “no” to “have you ever been diagnosed with chronic obstructive 

pulmonary disease (COPD)?” and “have you ever been diagnosed with emphysema?”; (2) 

309 undiagnosed asthma cases responded “no” to the asthma, COPD or emphysema 

diagnosis questions, but reported current asthma symptoms and use of asthma medications 

and were never or minimal smokers (< 10 pack-years); and (3) 38 asthma cases responded 

“yes” to the asthma and COPD or emphysema questions but were never or past smokers. 

Noncases (N=2,078) were randomly chosen from among individuals not categorized as 

cases.

Of the 3,301 participants, 2,871 received a home visit at which bedroom dust was collected. 

From among these, we selected a random sample of 1,000 participants for characterization 

of house dust microbiota. After excluding 80 individuals whose dust samples had low 

sequencing quality and 41 individuals whose dust samples came from the same home as 

another participant, their spouse, the present study included 879 individuals. Of the 879, 480 

(54.6%) reported working with crops and 443 (50.4%) reported working with farm animals 

such as cattle, hogs, and poultry21. The study population (N=879) was representative of the 

entire ALHS population (N=3301) (Table E1). Workflow of the study, selection criteria, and 

number of samples can be found in Figure 1. The study was approved by the Institutional 

Review Board at the National Institute of Environmental Health Sciences. Written informed 

consent was obtained from all participants.

Allergy outcomes (asthma, atopy, and hay fever)

Of the 879 individuals included in microbiome analyses, 333 were asthma cases and 546 

were non-asthma cases. Asthma cases included 239 with a prior diagnosis, 83 undiagnosed 

cases, and 11 diagnosed cases with overlapping COPD or emphysema diagnosis at 

enrollment (see full case definitions above). Among individuals with asthma diagnosis, we 

examined the degree to which asthma was controlled using the Asthma Control 

Questionnaire (ACQ) which asks participants to rate the frequency or severity of each of six 

asthma symptoms (night-time waking frequency, night-time waking severity, activity 

limitation, shortness of breath, wheezing, and bronchodilator use) in the past two weeks on a 
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scale from 0 (no impairment) to 6 (significant impairment)22. Participants’ pre-

bronchodilator percent predicted FEV1 values were also categorized on a scale of 0 to 622. 

An overall ACQ score was then calculated as a mean of the responses to the six questions 

and percent predicted FEV1. Controlled asthma was defined as ACQ scores < 1.5, while 

inadequately controlled asthma was defined as ACQ scores ≥ 1.523. Only individuals 

reporting a prior asthma diagnosis were asked these questions, and calculating the ACQ 

scores requires complete data, resulting in 234 asthmatics with the scores.

We defined current atopy based on specific immunoglobulin E (IgE) > 0.7 IU/ml24 to at least 

one of ten common allergens: seasonal (Bermuda grass, ragweed, Timothy grass, and 

mountain cedar), perennial (Alternaria, dust mite, and cat dander), and food (milk, egg, and 

wheat) allergens. Serum IgE levels were measured with the Luminex MyAllergyTestTM 

assay (Luminex Corporation, Austin, TX, USA) at ImmuneTech (Foster City, CA, USA). 

The assay was approved by the FDA as equivalent to the ImmunoCap24. We identified 163 

individuals with atopy and 716 individuals without atopy. In addition, we defined seasonal 

atopy based on sensitization (IgE > 0. 7) to any seasonal allergen (70 participants sensitized, 

809 not), perennial atopy based on sensitization to any perennial allergen (112 sensitized, 

767 not), and inhaled atopy based on sensitization to either seasonal or perennial allergens 

(149 sensitized to either, 730 sensitized to neither).

Self-reported hay fever diagnosis was defined based on response to a question about ever 

diagnosis of hay fever, seasonal allergies, or allergic rhinitis. Of the 879 participants, 330 

(38%) reported hay fever diagnosis.

To examine asthma and atopy together, we generated a combined four-level variable: none 

(neither asthma nor atopy), atopy only (atopy without asthma), asthma only (asthma without 

atopy), and both asthma and atopy.

Among these outcomes, we first evaluated associations with current asthma, current atopy, 

diagnosed hay fever, and a combined four-level asthma and atopy variable. When we found 

an association with current asthma, we further explored associations with the asthma 

severity score and atopic status within asthmatics. When we found an association with 

overall atopy, we additionally analyzed atopy subtypes (seasonal, perennial, and inhaled 

atopy).

From dust collection to characterization of house dust microbiota

As previously described, trained field technicians collected dust samples from participants’ 

bedrooms during home visits18. A DUSTREAM™ Collector (Indoor Biotechnologies, Inc., 

Charlottesville, Virginia, USA) was used to vacuum a one square yard (0.84 m2) area on the 

sleeping surface and on the floor next to the bed for 2 minutes in each area. Dust samples 

were sent to Social & Scientific Systems, Inc. (Durham, NC, USA) to be sieved, weighed 

into aliquots of 50 mg, and frozen at −20 ºC. Details on DNA isolation, 16S rRNA amplicon 

sequencing, and preprocessing of sequencing reads were also previously described21. In 

brief, DNA was isolated using the Mo Bio 96 well plate PowerSoil DNA extraction kit 

(QIAGEN, Inc.). The kit has been reported to be the most effective for soil and 

environmental samples25. The bead beating step was performed because it is essential to lyse 
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Gram positive and spore-forming bacteria. Each sample was quantified using the 

NanoDrop™ (A260) (Thermo Fisher Scientific Inc.) and normalized to 5 ng/μL DNA per 

sample. DNA was amplified using primers targeting the V3-V4 region of the bacterial 16S 

rRNA gene. The 16S V3-V4 region was chosen because it results in fewer chimeras26 and 

lower error rates27, provides the best coverage of the domain Bacteria and phylum28, and has 

been recommended by the Earth Microbiome Project29 as well as in a recent review30 of 

standardized procedures for microbiome research. The 16S rRNA gene amplicon sequencing 

was performed using the Illumina High Seq Rapid PE250(500) platform (Illumina, Inc.), 

which generates paired-end reads of 250 nucleotides. Measurements were made by the 

Microbiome Core Facility at the University of North Carolina (Chapel Hill, NC, USA).

To obtain bacterial community information from preprocessed sequencing data, we used 

Quantitative Insights Into Microbial Ecology (QIIME, version 1.9.1, qiime.org)31. For de 
novo operational taxonomic unit (OTU) picking, we used the script pick_de_novo_otus.py 

with the default OTU clustering algorithm UCLUST32. To remove chimeric sequences, we 

applied the ChimeraSlayer algorithm26 using the script identify_chimeric_seqs.py after 

aligning sequences using the script align_seqs.py with the default alignment method 

PyNAST33. To obtain taxonomic classification, we used the script assign_taxonomy.py with 

the default database Greengenes (version 13_5, greengenes.secondgenome.com). A 

phylogenetic tree was constructed using make_phylogeny.py with the default phylogeny 

construction algorithm FastTree34. An OTU is a cluster of microbial sequences having more 

than 97% sequence similarity and serves as a proxy for microbial species. Throughout the 

paper, we refer to an OTU as a bacterial taxon when appropriate.

As quality control steps for the OTU data, first we removed chimeric sequences, second we 

excluded samples having sequencing depth < 10,00035, and third we removed OTUs having 

< 0.005% of the total number of sequence reads36, 37. During these steps, 80 samples, noted 

above, and 604,569 OTUs (604,569/689,500=87.7%) were excluded after removal of 83,546 

OTUs (83,546/689,500=12.1%) of chimeric sequences. For 41 homes where two dust 

samples were collected because both the farmer and their spouse participated in the study at 

different time points, we retained results from the farmer for further analyses so that all 

samples were independent. This left 879 samples with the minimum number of sequence 

reads across samples of 8,182 for statistical analysis. On average there were 82,895 

sequence reads per sample which was highly comparable to an earlier house dust 

microbiome study of 1100 homes35.

Overall bacterial diversity in relation to the health outcomes

For overall bacterial diversity within each sample (alpha diversity), we calculated two 

diversity measures: richness (the number of individual bacterial taxa) itself and the Shannon 

index38, which reflects both richness and the relative abundance of each taxa. We used linear 

regression to evaluate associations of the diversity measures with asthma and atopy.

To evaluate if bacterial community composition between samples (beta diversity) differs by 

outcome, we used the microbiome regression-based kernel association test (MiRKAT)39. 

MiRKAT models the log-odds of the outcome using a mixed model. The fixed effects part of 

the model is linear in any covariates. The random effects part involves sample-specific 
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random effects whose covariance matrix is derived from a measure of pairwise dissimilarity 

(or distance) among the samples’ bacterial communities. The test of association between 

beta diversity and outcome is based on testing whether the component of variance 

attributable to the random effects is zero. We considered the unique fraction metric 

(UniFrac)40, a measure of the phylogenetic distance among OTUs in a phylogenetic tree, 

and the Bray-Curtis dissimilarity metric41 which quantifies compositional dissimilarity 

between samples by comparing counts at OTUs. Both weighted, taking abundances of OTUs 

into account, and unweighted UniFrac were included in the analyses. We also considered the 

three measures simultaneously to provide a more robust association test.

To avoid any bias due to different sequencing depth among samples, the OTU data were 

rarefied to the minimum number of sequences (8,182) across samples in the bacterial 

diversity analyses. We used R (version 3.4.1; R Project for Statistical Computing) to 

summarize characteristics of the study population and perform association analyses of the 

alpha diversity measures. We used functions specnumber and diversity in the R package 

vegan version 2.4.342 to calculate richness and Shannon index, respectively. For the beta 

diversity analysis, we used the R package MiRKAT version 0.0239. We set a threshold of p-

value < 0.05 for statistical significance for the diversity analyses.

Abundance of individual bacterial taxa in relation to the health outcomes

To identify specific bacterial taxa (OTUs) whose abundances significantly differ by the 

health outcomes, we applied analysis of composition of microbiomes (ANCOM)43. 

ANCOM models the log-ratios of OTU abundances in each sample with a linear model, 

similarly to an analysis-of-variance model; but, unlike typical analysis of variance, 

ANCOM’s use of log-ratios accommodates dependencies and correlations among the 

relative abundances of the OTUs. Such dependencies arise because the relative abundances 

of OTUs sum to one in each sample and because relative abundances of different OTUs may 

be positively or negatively correlated. We used un-rarefied OTU data because use of log-

ratios accounts for variation in sequencing depth across samples. To correct for multiple 

testing, we set the Benjamini-Hochberg false discovery rate (FDR) to 0.05. We declared 

significance by using ANCOM’s W statistic with a threshold of 0.7. For significant bacterial 

taxa, we calculated relative abundances to quantify the presence of OTUs by the outcome.

Additional analyses

We conducted analyses of current asthma restricted to the 239 diagnosed asthmatics with no 

overlapping diagnosis of COPD or emphysema to examine whether the definition of current 

asthma influences the results. We also performed analyses of current atopy (149 atopics vs 

716 non-atopics) after excluding the 14 atopics sensitized only to food allergens.

We examined whether our findings were independent of age, sex, state of residence (283 

from NC and 596 from IA), house dust endotoxin concentrations44 [geometric mean 

(standard error) 38.42 (1.05)], and home condition. Home condition (cleanliness) was rated 

by field technicians at the time of the visit using a five-point scale used in an earlier home 

allergen study45. The five levels were: (a) “Extremely poor: lack of organization,” (b) 

“Poor,” (c) “Average: clean with moderate clutter,” (d) “Above average,” and (e) “Good: 
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organized, clean all over.” We dichotomized responses into lower (levels a-b) or higher 

home condition (levels c-e). Of the participating homes, 78% were rated as having higher 

home condition. Further, we evaluated whether exposures previously related to house dust 

microbiota21 in this population were associated with the allergy outcomes of interest 

(asthma, atopy, or hay fever). Of the exposures, working with crops (exposure prevalence 

55%) was associated with atopy, and presence of an indoor dog (exposure prevalence 31%) 

was associated with asthma. We did not adjust for farming factors in asthma analyses 

because they were not related to asthma status. Accordingly, we evaluated whether crop 

farming influenced results for atopy and whether the presence of a dog influenced our results 

for asthma.

Results

Characteristics of study participants and house dust microbiota

Bedroom dust samples from 879 independent homes were from NC (32%) and IA (68%). 

The average age of participants was 62 years, and about 59% were male (Table 1). 333 

(38%) participants had current asthma, 163 (19%) were atopic, and 330 (38%) reported hay 

fever diagnosis. After quality control steps, we identified 1,385 OTUs that were at least 

0.005% of the total number of sequence reads in our house dust microbiota. At the 

taxonomic level of kingdom, 1,346 (97.2%) OTUs were assigned to Bacteria, seven (0.5%) 

to Archaea, and 32 (2.3%) were unassigned. At the phylum level, 1,353 OTUs were assigned 

to 18 distinct phyla and 32 were unassigned (Figure E1). The vast majority of the OTUs 

were from four phyla: Proteobacteria (27%), Firmicutes (23%), Actinobacteria (17%), and 

Bacteroidetes (17%).

Overall bacterial diversity in relation to the allergy outcomes

No significant differences were observed for the overall (alpha and beta) bacterial diversity 

measures by current asthma status; however, both overall bacterial diversity within each 

sample (alpha diversity) and bacterial community composition between samples (beta 

diversity) were associated with atopy status and diagnosed hay fever. The two overall (alpha) 

diversity measures - richness (the number of individual bacterial taxa) and the Shannon 

index (H, a combined measure of richness and relative abundance of each bacterial taxon) - 

were significantly lower in homes of atopics (p-value < 0.05). Average richness was 670 for 

homes of non-atopics and 650 for atopics; average Shannon index was 4.607 for homes of 

non-atopics and 4.475 for atopies (Figure 2). Diagnosed hay fever was associated with lower 

overall bacterial diversity (Figure 2). When we examined combinations of asthma and atopy, 

we found lower bacterial diversity in homes of individuals with atopy only (i.e. atopy 

without asthma) compared to individuals with neither atopy nor asthma (p-value = 0.09 for 

richness; p-value = 0.04 for Shannon index). The bacterial community compositions 

between samples (beta diversity) also differed by atopy when using unweighted UniFrac 

distance metric and the omnibus optimization approach (Table E2). Pairwise distances 

between each pair of samples were associated with current atopy: p-value=0.03 when 

considering three different distance metrics all together (omnibus optimization approach). 

Bacterial community composition between dust samples from homes of participants with 

diagnosed hay fever was significantly different (p-value < 0.05) from bacterial community 
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composition between samples from homes of participants without hay fever whether we 

used the weighted/unweighted UniFrac distance metrics, the Bray-Curtis dissimilarity 

metric, or all three metrics combined (Table E2).

Given that atopy overall was associated with house dust microbiota, we examined whether 

indoor bacterial communities differed by atopy subtypes: seasonal, perennial, or inhaled. 

Associations were similar for overall atopy and subtypes. Specifically, less diverse bacterial 

communities were found in homes of participants with perennial atopy (vs those without 

perennial atopy), with seasonal atopy (vs those without seasonal atopy), and with inhaled 

atopy (vs those without inhaled atopy) (Table E3). Bacterial community composition 

between samples were associated with seasonal and inhaled atopy when considering the 

unweighted UniFrac distance metric and all three metrics together (weighted and 

unweighted UniFrac distance and Bray-Curtis dissimilarity metrics) (Table E2).

Abundance of individual bacterial taxa in relation to the allergy outcomes

Using ANCOM, we found a number of specific bacterial taxa differentially abundant (FDR 

< 0.05) according to the outcomes: four for current asthma (Figure 3), seven for current 

atopy (Figure 4), and 28 for diagnosed hay fever (Figure 5). The four asthma-associated 

bacterial taxa were from the phyla Bacteroidetes (one from the genus Porphyromonas, one 

from the genus Bacteroides) and Fusobacteria (two from the genus Fusobacterium). When 

we evaluated relative abundances of those taxa by asthma status, they were more abundant in 

homes of asthmatics (vs non-asthmatics), suggesting a possible harmful association between 

those taxa and asthma. The seven atopy-associated bacterial taxa were from the phyla 

Proteobacteria (one from the family Methylocystaceae), Bacteroidetes (one from the genus 

Spirosoma), Cyanobacteria (one each from the order Chlorophyta, the family 

Xenococcaceae, the class Oscillatoriophycideae), and Firmicutes (one from the order of 

Clostridiales, one from the genus of Clostridium). Of the seven taxa, the two from the 

phylum Firmicutes showed higher relative abundances in homes of non-atopics (vs atopics), 

suggesting a potentially protective association. The remaining five taxa from the phyla 

Cyanobacteria, Proteobacteria, and Bacteroidetes showed higher relative abundances in 

homes of atopics (vs non-atopics), suggesting a potentially harmful association. The 28 

bacterial taxa differentially abundant by hay fever were from the phyla Bacteroidetes (nine 

taxa including five from the genus Porphyromonas), Firmicutes (eight taxa including six 

from the order Clostridiales), Proteobacteria (five taxa including three from the class 

Gammaproteobacteria), Actinobacteria (four taxa from the order Actinomycetales), or 

Fusobacteria (two taxa from the genus Fusobacterium). Of the 28 taxa, 19 showed higher 

relative abundances in homes of individuals with hay fever, suggesting a potentially 

deleterious association. Thirteen of the 19 were from the phyla Bacteroidetes (eight taxa) or 

Proteobacteria (five taxa). The remaining nine taxa, including six from the phylum 

Firmicutes, showed higher relative abundances in homes of individuals without hay fever, 

suggesting potentially inverse associations. There were 35 taxa differently abundant by at 

least one of the allergy outcomes (asthma, atopy, and hay fever). All 35 were present in > 

30% of the dust samples (Table E4).
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Notably, some taxa were differentially abundant (FDR < 0.05) in relation to more than one 

allergy outcome with same direction of associations (Table E5). Three taxa, two from the 

phylum Bacteroidetes (genera Bacteroides and Porphyromonas) and one from the phylum 

Fusobacteria (genus Fusobacterium), showed higher relative abundances in homes of 

asthmatics (versus non-asthmatics) and in homes of participants with hay fever (versus 

without hay fever). One taxon from the phylum Proteobacteria (family Methylocystaceae) 

showed higher relative abundance in homes of atopics (versus non-atopics) and in homes of 

participants with hay fever (versus without hay fever).

When we categorized asthma according to atopy, we identified eleven taxa more abundant in 

homes of atopic asthmatics versus non-atopic asthmatics (Figure 6.A). Of the 11, five were 

from Proteobacteria, four were from Cyanobacteria, and two were from Acidobacteria. 

Notably, of the 11 three taxa (OTU557234 from Proteobacteria; OTU236052 and 

OTU117624 from Cyanobacteria) were also differentially abundant (FDR < 0.05) by atopy 

status overall (atopics vs non-atopics) with higher relative abundances in homes of atopics. 

With respect to degree of asthma control with asthmatics, we found two taxa from 

Firmicutes that were differentially abundant by degree of asthma control within asthmatics 

and that showed higher relative abundances in homes of asthmatics with adequately 

controlled versus inadequately controlled asthma (Figure 6.B).

When we divided atopy into subtypes (seasonal, perennial, and inhaled), even though 

numbers are reduced within subcategories, we still found that (1) there were less diverse 

bacterial communities inside homes of atopics and (2) six of the seven overall atopy-

associated (FDR < 0.05) taxa were also differentially abundant (FDR < 0.05) by atopy 

subtypes. Despite the smaller numbers of cases in each subgroup, the six taxa showed the 

same directional associations (Table E6). For example, one taxon from the phylum 

Firmicutes (order Clostridiales) showed higher relative abundance in homes of participants 

without inhaled atopy (vs those with inhaled atopy), homes of participants without seasonal 

atopy (vs those with seasonal atopy), and homes of participants without perennial atopy (vs 

those with perennial atopy). Three taxa, from the phyla Cyanobacteria (family 

Xenococcaceae), Firmicutes (genus Clostridium) and Proteobacteria (family 

Methylocystaceae), were differentially abundant by seasonal and inhaled atopy, again with 

same direction of associations.

Additional analyses

Results from the additional analyses of current asthma restricted to the 239 diagnosed 

asthmatics with no overlap with COPD or emphysema compared to the 546 non-asthmatic 

individuals were similar to those from analyses with all asthma cases: no significant 

difference of overall bacterial diversity by current asthma status (Table E7) and the four 

previously identified taxa showing similarly higher abundances in homes of asthmatics 

(Table E8). Associations between indoor microbiota and current atopy in the 149 atopics 

remaining after removing the 14 sensitized only to food allergens were similar to those for 

all atop ies. Specifically, we found lower diversity of bacterial communities inside homes of 

these 149 atopies (versus 716 non-atopics) (Table E7) and bacterial community 

compositions between samples still differed by atopy when we considered the unweighted 
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UniFrac distance and all three metrics together (Table E2). Of the seven atopy-associated 

(FDR < 0.05) taxa, five still showed significant differential abundances (FDR < 0.05), with 

consistent directions of association (Table E6). The remaining two that no longer achieved 

statistical significance also showed consistent direction of associations: higher relative 

abundances in homes of atopics (vs non-atopics). Further, we confirmed that adjusting for 

age, sex, state of residence, house dust endotoxin concentrations, and home condition 

(cleanliness) did not change our findings on overall (alpha) bacterial diversity (Table E9). 

Additional adjustment for exposures associated with both the indoor microbiota and the 

health outcome in question (working with crops for atopy and presence of an indoor dog for 

asthma) showed the same directional associations as the original analysis: less diverse 

bacterial communities in homes of atopics (vs non-atopics) and no differences in overall 

bacterial diversity by asthma (Table E9). In the investigation of individual bacterial taxa 

associated with health outcomes, adding the above-mentioned factors in the ANCOM model 

did not change our results; differential abundances of the asthma-, atopy, and hay fever-

associated taxa in the original analyses remained significant (FDR < 0.05) after adjusting for 

the exposures (Table E4).

Discussion

To our knowledge, ours is the first large-scale house dust microbiome study to examine 

associations of indoor bacterial communities with adult allergy outcomes using the 16S 

rRNA gene amplicon sequencing method. Our findings suggest that the house dust 

microbiota differs by occupants’ asthma, atopy, and hay fever. Findings of significantly less 

diverse bacterial communities in homes of adults with atopy and hay fever are consistent 

with the hygiene hypothesis; namely, a greater likelihood of having allergic diseases with 

childhood exposure to less diverse bacterial communities. What is additionally novel in this 

study is that we found specific bacterial taxa differentially represented according to the 

allergy outcomes in adults. Notably, the associations were independent of house dust 

endotoxin concentrations. If our results are corroborated in future studies, the identified 

bacterial taxa may shed light on disease pathogenesis or have potential therapeutic 

applications.

Our finding of lower bacterial diversity in homes of adults with atopy and hay fever extends 

our knowledge of associations between bacterial communities inside homes and health 

outcomes from early-life (childhood) to later-life (adulthood). Prior studies have shown that 

lower microbial diversity in house dust is associated with allergy outcomes in children8, 16. 

Decreased bacterial diversity was also observed in skin microbiome from atopic dermatitis 

patients compared to noncases46. Our study suggests similar associations between indoor 

microbiota and allergy in adults; whether these associations are causal remains unknown.

At the phylum level, the top three phyla (Proteobacteria, Cyanobacteria, and Bacteroidetes) 

showing an inverse association with the allergy outcomes in this study have been previously 

implicated in human health. Proteobacteria, a phylum of Gram-negative bacteria, includes 

bacteria found in the normal human microbiota as well as pathogens such as Salmonella, 
Vibrio, and Helicobacter. Exposure to Cyanobacteria, a phylum of photosynthetic bacteria, 

has been associated with skin irritation and allergic responses47. A fecal microbiome study 
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found associations between Bacteroidetes, also a phylum of Gram-negative bacteria, and 

childhood eczema48. The phylum Firmicutes, including many taxa showing a potentially 

protective association with current atopy, degree of asthma control in asthmatics, and 

diagnosed hay fever in our study, is Gram-positive and comprises the largest portion of 

human gut microbiota49. A study using house dust samples reported that lower exposure to 

specific Firmicutes in early life was associated with atopy in children50.

Our findings for house dust are consistent with previous studies of human microbiota in 

relation to allergy and asthma. A recent study of adult bronchial microbiota reported that 

bacterial species from the genus Fusobacterium, within the phylum Fusobacteria, were 

positively associated with asthma51. We found the same directional associations of bacterial 

taxa from the same genus with asthma: higher abundance of Fusobacterium in homes of 

asthmatics. A study of eczema and skin microbiota reported that Roseomonas mucosa has 

therapeutic potential and was the predominant Gram-negative bacteria, identified by their 

culture methods, in people with healthy skin52. There was one taxon assigned to R. mucosa 
in our study; that taxon showed higher relative abundance in homes of non-atopics (0.059%) 

versus atopics (0.044%). In the study, Staphylococcus aureus was more prevalent in skin of 

individuals with eczema. Of four bacterial taxa assigned to the genera in our study, all four 

showed higher relative abundances in asthmatics compared to non-asthmatics (Table E10). 

Birzele and colleagues found inverse associations of childhood asthma with relative 

abundances of bacteria from the genus Prevotella in nasal swabs12. Of 27 bacterial taxa 

assigned to that genus in our study, 17 showed the same directional associations in our dust 

data: higher relative abundances in homes of non-asthmatics compared to asthmatics (Table 

E11). A study in children14 found having lower abundance of Streptococcaceae in house 

dust to be protective. We found identical directions of associations: higher relative 

abundance in homes of asthmatics versus non-asthmatics (Table E12).

Because allergic individuals might take cautionary measures of cleaning or dust reduction 

that could influence our results, we examined whether hygiene practices, including home 

condition (cleanliness) and presence of carpet, were associated with our allergy outcomes. 

The field technician who collected the dust sample documented the presence of carpet 

versus smooth floor in the room where the dust sample was collected21. Nearly all (93%) of 

the 879 participants had carpet in the room vacuumed. Not surprisingly given the nearly 

universal presence of carpeting, we did not find an association with either bacterial 

communities21 or allergy outcomes (Table E13). Thus, we did not adjust for carpeting. 

Although home condition (cleanliness) did not differ by allergy outcomes (asthma, atopy, or 

hay fever) (Table E13), we did adjust for home condition because we previously found that it 

was related to indoor bacterial communities21.

Given that homes of atopics had significantly less diverse bacterial communities, we 

examined whether number of allergens to which an atopic individual was sensitized was 

related to bacterial communities inside homes. Dust from homes of participants sensitized to 

two or more allergens (N=59) did not contain significantly less diverse bacterial 

communities than homes of participant sensitized only to a single allergen (N=90) (Table 

E7). A much larger study might be needed to identify a gradient in association by number of 

sensitized allergens.
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While we do not know the specific age at onset for all cases, we had information on whether 

asthma started during childhood and identified 66 current asthmatics reporting diagnosis 

during childhood. Results were similar when we removed these 66 (20% of cases) from the 

analyses; no association was observed between current asthma and overall alpha bacteria 

diversity (Table E7), and bacterial community composition between samples did not differ 

by current asthma except when using the Bray-Curtis dissimilarity metric (Table E2). With 

the smaller sample size after excluding the 66 asthmatics reporting childhood onset, we still 

found that one of the four asthma associated taxa was differentially abundant (FDR < 0.05) 

with same direction of association as before exclusion. Associations with the remaining 

three taxa with current asthma did not reach statistical significance but the directions of 

associations were consistent (Table E14).

Childhood asthma differs from adult asthma in various aspects that may reflect variation in 

etiologic factors. Some adult asthma results from occupational exposures and adult asthma is 

more likely to be non-atopic53. Nevertheless, asthma across the life-course has common 

outdoor and indoor environmental triggers54. Both adults and children spend most of their 

time indoors and exposures to indoor bacterial communities may be related to asthma 

etiology or persistence. However, there are few data addressing diversity of bacterial 

communities or specific bacteria in relation to childhood asthma and even fewer examining 

adult asthma. Therefore, it is informative to examine whether microbiota previously 

associated with childhood asthma are also related to adult asthma in this study.

Inferences about differential abundance in this study were carried out using analysis of 

composition of microbiomes (ANCOM)43. ANCOM analyzes relative abundance through its 

log-ratio-transformation of observed counts. Mandal et al. mathematically proved that 

inferences about differential relative abundances between two groups using ANCOM are 

equivalent to inferences about differential absolute abundances per unit volume43. The only 

assumption required is that two taxa have absolute abundance values (per unit volume) that 

are the same in both groups; the assumption does not require that those taxa be known. This 

assumption should hold in most analyses of microbiome data43. Thus, by performing 

ANCOM we are able to infer not only differential relative abundance but also differential 

abundance (per unit volume) between two groups.

Morton et al.55 reported a scenario of a potential false positive result generated by ANCOM. 

In that example, a cutoff of the W statistic of 0.6 was used. In the current study, we used the 

stricter cutoff of W statistic of 0.7 when reporting differentially abundant taxa which will 

reduce the chance of false positives. However, in view of Morton et al..55 one needs to be 

cautious in using methods for differential abundance analysis. As demonstrated in 

simulation studies56, 57 and others, ANCOM does control FDR reasonably well under a 

variety of scenarios. In all those simulation studies the authors allow for differential 

sampling fractions across samples. Thus, at least in a sample of simulation studies reported 

in the literature, ANCOM seems to control FDR reasonably well. We note the scenarios 

tested involve gut microbiome; it is possible that dust microbiota could behave differently. In 

light of these issues, to complement analyses of differential abundance from 16S rRNA 

sequencing data, quantitative information on total microbial load might help better 

understand differences in microorganisms that contribute to disease risk.
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A limitation of our study is the single dust sample from each house. Thus, we assume this 

sample reflects the usual home condition. To the extent that a single sample is not a good 

reflection of the usual exposure, this limitation would tend to bias our results toward the null 

rather than result in false positive associations. Although we measured only bedroom dust, 

since most individuals spend a large portion of their day in the bedroom, we believe this a 

highly relevant single location to sample. Although the 16S rRNA amplicon sequencing 

method does not allow us to quantify absolute levels of bacteria, we were able to quantify 

relative abundance of individual bacterial taxa to evaluate directionality of associations. 

With the 16S rRNA method, we were not able to characterize functional gene compositions 

of microbial communities; future studies using metagenomics can provide further insights. 

Due to the unique characteristics of our study, house dust microbiota (characterized by using 

the 16S rRNA amplicon sequencing) and asthma/allergy outcomes in adults, we were unable 

to identify a replication population. Therefore, we performed look-up replication analyses 

and found associations consistent in direction between our study and previous studies of 

human and house dust microbiome12, 14, 51, 52. Our results will serve as a replication set for 

future microbiome studies just as we provide replication of findings from earlier microbiome 

studies. Lastly, this study was cross-sectional, limiting our ability to draw causal inferences. 

A prospective study would be ideal; however, such a study would be logistically challenging, 

even prohibitive. Because the incidence of asthma in adults is low, on the order of 3 per 

1,000 people per year58, to accrue 330 cases of asthma as in our study, one would need to 

visit the homes of 22,000 individuals to collect dust samples and then wait 5 years for 

incident cases. Only a few studies have linked indoor microbiota to asthma initiation, and 

those were in children14, 59. To our knowledge, no large-scale study has investigated 

associations of asthma initiation in adults with indoor microbiota measured by using the 

state-of-the-art 16S rRNA amplicon sequencing. In addition, we acknowledge that 

identifying differences in overall bacterial diversity and differential abundance of individual 

bacterial taxa does not provide a causal mechanism. Although our findings are consistent 

with our suggested interpretation of differences in microbiota potentially influencing health 

outcomes; there is a possibility of reverse causation. However, given that it is difficult to 

conduct a study examining the role of indoor microbiota on asthma or atopy initiation in 

adults, findings of this study are valuable for understanding indoor microbiota in relation to 

adult allergy outcomes.

A strength of our study is the large sample size compared to earlier studies examining 

associations of house dust microbiota with allergy outcomes which ranged from 86 and 196 

participants12, 13. Another strength is the comprehensive microbiome data generated by high 

throughput sequencing; the 1,385 bacterial taxa identified allowed us to perform an 

exhaustive search of bacterial taxa associated with asthma and atopy outcomes in adults. Our 

definition of current atopy was objective based on specific IgE with a strict threshold of 

0.70. In addition to dichotomized current asthma and atopy outcomes, we analyzed asthma 

and atopy together and the degree of asthma control within asthmatics to better evaluate 

asthma subtypes.

In this study, we found that bacterial communities in house dust were associated with 

asthma, atopy, and hay fever outcomes in adults. Specifically, we noted less diverse bacterial 

communities inside homes of atopics (versus non-atopics) and identified specific bacterial 
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taxa differentially abundant by current asthma or atopy outcomes. The more abundant 

bacterial taxa in healthy individuals could shed light on specific mechanisms underlying the 

hygiene hypothesis and the more abundant taxa in diseased individuals could inform 

mechanisms of pathogenesis or exacerbation. This comprehensive investigation of house 

dust microbiota in relation to asthma, atopy, and hay fever extends our understanding of 

contributions of indoor microbiota to adult health outcomes.
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Key Messages

• This is the first large-scale study showing associations of adult allergic 

outcomes with both overall bacterial diversity and individual bacterial taxa 

using a high-throughput sequencing method.

• Exposure to more diverse bacterial communities inside homes was inversely 

associated with adult atopy and hay fever and exposure to higher/lower 

abundances of specific bacterial taxa was associated with asthma, atopy, and 

hay fever in adults.
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Figure 1. 
Workflow of our house dust microbiome study. This workflow includes summary of sample 

selection from the Agricultural Lung Health Study (N=3,301) to the house dust microbiome 

study (N=879). It also shows association analyses used in this paper: two overall bacterial 

diversity analyses and differential abundance analysis for asthma and atopy outcomes.
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Figure 2. 
Overall bacterial (alpha) diversity in relation to asthma, atopy, and hay fever. Richness and 

Shannon index (H) were calculated using rarefied (minimum number of sequences across 

samples=8,182) OTU data. Error bars represent 95% confidence interval. Mean (95% CI) of 

alpha diversity measures by health outcomes are as follows: current asthma – richness 

663.74 (654.60-672.89) and Shannon index 4.58 (4.51-4.66) for non-asthmatics, richness 

670.35 (660.35-680.36) and Shannon index 4.58 (4.50-4.67) for asthmatics; current atopy – 

richness 670.02 (661.81-678.23) and Shannon index 4.61 (4.49-4.72) for non-atopics, 

richness 649.67 (641.18-658.16) and Shannon index 4.48 (4.35-4.6) for atopics; current 

atopy and asthma – richness 666.90 (657.20-676.60) and Shannon index 4.61 (4.55-4.67) for 

none, richness 642.30 (615.43-669.17) and Shannon index 4.41 (4.21-4.6) for atopy only, 

richness 676.22 (661.05-691.39) and Shannon index 4.60 (4.50-4.70) for asthma only, and 

richness 655.22 (631.4-679.03) and Shannon index 4.53 (4.36-4.69) for both; diagnosed hay 

fever – richness 671.68 (662.62-680.75) and Shannon index 4.60 (4.55-4.66) for individuals 

without hay fever, richness 657.20 (644.25-670.15) and Shannon index 4.54 (4.46-4.63) for 

individuals with hay fever. *indicates p-value<0.1; **indicates p-value<0.05.
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Figure 3. 
Average relative abundance of bacterial taxa associated with current asthma (FDR<0.05). 

Differentially abundant taxa by current asthma were identified by using ANCOM43. Average 

relative abundance (%) of the taxa for non-asthmatics and asthmatics were calculated using 

rarefied (minimum number of sequences across samples=8,182) OTU data.
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Figure 4. 
Average relative abundance of bacterial taxa associated with current atopy (FDR<0.05). 

Differentially abundant taxa by current atopy were identified by using ANCOM43. Average 

relative abundance (%) of the taxa for non-atopics and atopics were calculated using rarefied 

OTU data.
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Figure 5. 
Average relative abundance of bacterial taxa associated with diagnosed hay fever 

(FDR<0.05). Differentially abundant taxa by diagnosed hay fever were identified by using 

ANCOM43. Average relative abundance (%) of the taxa for individuals without or with hay 

fever were calculated using rarefied OTU data.
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Figure 6. 
Average relative abundance of bacterial taxa associated with (a) atopy status and (b) degree 

of asthma control within asthmatics (FDR<0.05). Differentially abundant taxa by atopy 

status or degree of asthma control within asthmatics were identified by using ANCOM43. 

Rarefied (minimum number of sequences across samples=8,182) OTU data were used to 

calculate average relative abundance (%) of the taxa by atopic status (non-atopic asthmatics 

versus atopic asthmatics) or degree of asthma control status (asthmatics with adequately 

controlled asthma versus asthmatics with inadequately controlled asthma) within asthmatics. 

*OTUs also differentially abundant (FDR<0.05) by atopy status in analysis of all 

participants regardless of asthma status.
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Table 1.

Characteristics of the 879 study participants

Characteristics N (%) or mean ± SD

Age, years 62 ± 11

Sex

 Male 517 (58.8)

 Female 362 (41.2)

Smoking status

 Never 566 (64.4)

 Former 263 (29.9)

 Current 50 (5.7)

Current asthma

 Non-asthmatic 546 (62.1)

 Asthmatic 333 (37.9)

Current atopy

 Non-atopic 716 (81.5)

 Atopic 163 (18.5)

Seasonal atopy

 Without 809 (92.0)

 With 70 (8.0)

Perennial atopy

 Without 767 (87.3)

 With 112 (12.7)

Inhaled atopy

 Without 730 (83.0)

 With 149 (17.0)

Diagnosed hay fever

 Without 549 (62.5)

 With 330 (37.5)

Current asthma and atopy

 None 476 (54.2)

 Atopy only 70 (8.0)

 Asthma only 240 (27.3)

 Both Asthma and Atopy 93 (10.6)

Note: SD, standard deviation; Percentages may not add to exactly 100 due to rounding.
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