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Abstract

Databases of consistent, directed- and weighted inter-areal connectivity for mouse, macaque and 

marmoset monkeys, have recently become available and begun to be used to build structural and 

dynamical models. A structural hierarchy can be defined based by laminar patterns of cortical 

connections. A large-scale dynamical model of the macaque cortex endowed with a laminar 

structure accounts for empirically observed frequency-modulated interplay between bottom-up and 

top-down processes. Signal propagation in the model with spiking neurons displays a threshold of 

stimulus amplitude for the activity to gain access to the prefrontal cortex, reminiscent of the 

ignition phenomenon associated with conscious perception. These two examples illustrate how 

connectomics informs structurally-based dynamic models of multi-regional brain systems. Theory 

raises novel questions for future anatomical and physiological empirical research, in a back-and-

forth collaboration between experimentalists and theorists.

Introduction

In 1991 Felleman and van Essen published a landmark paper where they collated data from 

existing literature to propose a hierarchy model of the macaque monkey cortex (1). This 

paper provided an impetus for efforts that, 10 years later, led to an inter-areal cortical 

connectivity matrix, the Collation of Connectivity data on the Macaque brain (CoCoMac) 

(2). The CoCoMac matrix was fairly rough, with connections between area pairs assigned as 

absent, weak or strong. The diversity of experimental approaches means that collated data 

bases are not consistent. Nevertheless, it represented a pioneering event in the field now 

referred to as brain connectomics.
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The past two decades have seen significant advances (3–9). Novel approaches and 

technologies have made it possible to determine wiring of neural circuits in the brain at 

micro-, meso- and macroscopic spatial scales (10–13). Importantly, while it may be true that 

a picture is worth a thousand words, systematic measurements translated into precise 

numbers are essential for discovering general principles of large-scale cortical organization. 

This short review covers recent advances in our description of the cortico-cortical 

connections, and computational modeling based on the new quantitative databases. We shall 

summarize recent approaches and findings, as well as challenges that need to be addressed 

in order for the field to move forward. The word “connectome” as currently used sometimes 

refers to collations of data obtained with different methods, with disparate resolutions. The 

present review focuses on the connectome defined with consistent approaches exploiting 

cellular-resolution tracers (14), which at present can only be used in nonhuman animals.

From spatially constrained large scale anatomical models to multi-regional 

cortical dynamics

A major advance in recent years has been provided by quantitative and consistent databases 

of inter-areal connectivity macaque (14–17), mice (18–21), and marmoset (22–23). 

Quantification of connection weight has played a major role and this has been greatly 

facilitated by a systematic analysis of retrograde tracing. Specifically, the weight of cortico-

cortical connection is indexed by fraction of labeled neurons (FLNs) between 0 and 1, which 

measures the relative weight of projection from a given source area with respect to all source 

areas to a particular target area (15,16,20,22). In this manner connections are weighted 

parametrically, which is considerably more informative than a binary matrix. It is also 

directed, unlike diffusion tractography which, although non-invasive, cannot differentiate 

fibers from area A to area B and those in the reversed direction. Whereas stream line weights 

can be inferred from tractography, measurements from tract tracing are direct and thus 

constitute a “ground truth”. Data from tractography have relatively low signal-to-noise ratio 

(with numerous false positives and false negatives), and the correlation is modest between 

log-transformed tractography and tracer connection weights in the macaque (r ≃ 0.59). 

Further, this correlation drops dramatically when the confounding influence of distance is 

removed via partial correlations (24).

Three results are noteworthy. First, the Felleman-van Essen structural model is significantly 

modified by quantification (16,25) (Figure 1). Retrograde tracers show that source neurons 

for a feedforward projection (e.g., from V1 to V2) reside principally in the superficial layers 

(above layer 4), and are reciprocated by a feedback projection (V2 to V1) originating 

principally from neurons in the deep layers (below layer 4) (16). Quantitative formulation of 

these laminar-depedent projections is based on the measured fraction of supragranular 

layered neurons (SLNs) for a given projection (Figure 1). This allows a description of a 

determined model of hierarchy (Figure 1). Fururthermore, SLN has been used to extracting a 

functional hierarchy in macaque (26) and, via comparison of homologous pathways, in the 

human brain (27). Second, the weight of connections between two areas decays 

exponentially with their distance as measured by their estimated white matter tract (the 

exponential distance rule EDR). The EDR has been shown to be a powerful organizing 
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principal that predicts numerous empirical features of the inter-areal network including 

motif distributions, global and local efficiency, core-periphery organization and wire 

minimization in both non-human primates and rodents (17,20,23,28). Third, the weights of 

inter-areal connections are highly heterogeneous, spanning five orders of magnitude and 

following a lognormal distribution (15). Therefore, a graph-theoretical view of cortical 

networks is inadequate unless spatial relationships between areas are taken into 

consideration (29). This finding has inspired a new class of generative models for the 

cortical networks that are explicitly spatially embedded (30).

The directed and weighted macaque connectivity matrix provides a structural scaffolding for 

the development of large-scale functional dynamical models of macaque cortex. Chaudhuri 

et al. (31) constructed a multi-regional model of macaque monkey cortex with the inter-areal 

connectivity matrix from (15). In the model, each area was mathematically modeled by a 

generic excitatory-inhibitory network, in accordance with the commonly accepted notion of 

the canonical cortical circuit (32). The quantitative connection strengths, however, vary from 

one area to another. These variations are not random, but systematically change along low-

dimensional axes across the cortical mantle. Chaudhuri et al. (31) considered the number of 

spines (loci of excitatory synapses) in the basal dendritic tree of pyramidal neurons, as a 

proxy of the strength of synaptic excitation per neuron, which displays an increasing 

gradient along the cortical hierarchy (33). Interestingly, in this model, temporal dynamics of 

each area is dominated by a time constant that ranges from tens of milliseconds for early 

sensory areas to more than a second for prefrontal areas at the top of the cortical hierarchy, 

precisely what is required for functional differentiation. Importantly, the prevalent time 

constant of an area is not a monotonic function of its hierarchical position. For instance, the 

frontal eye field in the quantitatively defined hierarchy is located at a relatively low position 

in the hierarchy as shown in figure 1 (16), but it displays a slow time constant by virtue of 

being part of the frontal lobe in close interactions with other frontal areas that display slow 

dynamics. The timescale spectrum in the cortex is constrained by both the macroscopic 

gradient of synaptic connection strength and the weighted inter-areal cortical network. 

Experiments lend empirical evidence in support of such hierarchy of temporal response 

windows in macaque monkey (34), mouse (35) and human (36).

The concept of macroscopic gradients (37) applies to both synaptic excitation and inhibition 

processes. For instance, counts of diverse inhibitory cell-types across the mouse cortex 

shows that the density of GABAergic cells expressing calcium-binding protein parvalbumin 

(PV), which control spiking outputs of excitatory pyramidal neurons, is highest in the 

primary visual cortex and much lower in association areas (38–39). Assessment of such 

macroscopic gradients can be carried out using a variety of data, including levels of gene 

expression that encode receptors for synaptic excitation and inhibition (40–41). This 

approach allows identification of the biological fingerprint of different cortical areas; these 

data can then be incorporated into dynamical computational modeling. They also are 

valuable for comparison across species. In particular, we will discuss below the definition of 

cortical hierarchy in primates versus rodents.
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Cortical hierarchy in mouse and marmoset

Cortico-cortical connectivity in mouse also displays a wide range of connection weights and 

the exponential distance rule (20,28). However, whether the mouse cortex displays a well-

defined hierarchy remains unsettled. Previous studies note various biological markers are 

high in V1 and low in association areas, such as PV neuron density (38) and the T1w:T2w 

ratio from structural magnetic resonance imaging, which is thought to correlate with the 

level of myelin content in the grey matter (42). Such measures gradually change across the 

cortex in a way reminiscent of a hierarchy. However, many biomarkers exhibit statistical 

macroscopic gradients (37). Ideally, one would like to identify an objective and robust 

definition of hierarchy, then assess the variations of properties as dependent variables along 

the hierarchy defined as an independent variable.

A recent study examined the issue of hierarchy in the mouse cortex based on anterograde 

fluorescent labeling of axons (21). Using multiple Cre driver lines, Harris et al selectively 

traced layer- and cell type-specific projection patterns. An unsupervised method was used to 

consistently assign these laminar projections at the target area to be either feedforward or 

feedback in a hierarchy framework. For instance, different types of thalamocortical 

connections targeting L4 versus L1 in the cortex were separately quantified. Interestingly, it 

was found that the inclusion of the thalamocortical projections enhanced the consistency of 

the hierarchy defined in this manner (21). In a neurophysiological experiment using a mouse 

performing a detection task, the latency of spiking response to a visual stimulus was 

extracted from neurons in 6 visual areas (35), Person correlation of response latency with the 

anatomically defined Harris hierarchy was found to be high ( 0.9).

Another approach was inspired by a recent study of the organization of transmodal default-

mode networks in human and macaque (43). The work was based on a nonlinear 

dimensionality reduction method called diffusion maps (44). Briefly, the connectivity matrix 

is used to define an abstract diffusion between pairs of areas in a hypothetical diffusion 

process. This distance produces a diffusion space where closer areas in this space share a 

larger number of paths connecting them, while areas far apart are less connected. In general, 

the diffusion distance depends on a low number of ‘principal directions’ or ‘principal 

gradients’ in diffusion space, leading to a low dimensional embedding of the connectivity. 

Applying this approach to the whole mouse brain data in (45) and by choosing V1 as the 

origin in the diffusion space, a hierarchy among areas can be built by sorting areas by their 

diffusion distance to the origin.

Figure 2 shows the pairwise correlations between the anatomically defined hierarchy from 

(21), the hierarchy deduced from the diffusion map, PV density (38) and T1w:T2w ratio in 

the mouse brain (41). Intriguingly, Spearman correlation coefficient values are in the range 

of 0.35 to 0.5. The explanation of substantial but far from perfect correlations is presently 

unclear, indicating that future research is warranted to achieve a consensus on the definition 

of cortical hierarchy in the mouse.

It is possible that a cortical hierarchy is flatter or less developed in rodents than primates 

(20). This difference in organization could emerge from simple scaling laws (46–47), which 
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predict that brain size is inversely correlated with “percent connectedness” (the fraction of 

brain cells with which any cell communicates directly). This, in turn, could have the effect of 

increasing the variety of inputs to any given cortical area, hence reducing the dominance of 

any single source, and “blurring” the definition of hierarchical levels. Thus, the current 

evidence point to specific differences between primates and rodents, which are likely to have 

emerged due to specific evolutionary pressures.

Recent analyses based on a dataset of directed and weighted connections in the marmoset 

cortex shed light on this issue (22,23). Marmosets, like macaques, are simian primates, but 

are much smaller (on average, the mass of the marmoset brain is 12 times smaller than that 

of M. fascicularis). In line with the scaling hypothesis, previous studies have indicated that 

the sources of afferents to both sensory and association areas are more widely distributed 

spatially across the cortex in marmosets than in macaques. However, a recent comprehensive 

study of the cortical connectome using statistical techniques applied to retrograde tracer data 

also revealed that this is accomplished without loss of specificity: the cortical connectivity 

matrix is very similar to that in the macaque in terms of overall density (approximately 2/3 

of the possible connections that could exist are observed experimentally in both species), but 

they both differ from the mouse (where 97% of the possible connections exist). The 

similarity between macaque and marmoset extends to more detailed properties of the 

connectome, such as occurrence of reciprocal versus unidirectional connections. Other 

properties of the marmoset connectome, such as the presence of a well-defined core-

periphery arrangement and the log-normal distribution of connection weights, also bring the 

two primates in close alignment. Importantly for the present argument, the marmoset cortex 

is also characterized by a well-defined hierarchy (23), where areas belonging to the different 

sensory domains occupy defined levels, from primary visual, auditory and somatosensory 

areas, though several higher-order association areas, to sensory association and polysensory 

areas. These multiple hierarchies converge to a core of frontal, posterior parietal, rostral 

temporal areas, which occupy the highest hierarchical levels, and include those regions of 

the cortex that expanded most during primate evolution (48). Furthermore, the hierarchical 

levels defined by connectivity are highly correlated with structural measures such as 

neuronal density (49) and number of spines in the basal dendritic trees of pyramidal cells 

(50). Further studies in marmosets, including the integration of cellular connectivity data 

with high-resolution tractography and functional connectivity measures using 

neuroinformatic platforms (51–52) offer the promise of greater insight onto the correlation 

with non-invasive measurements in the human brain, which promise to increase our ability 

to investigate the bases of neuropsychiatric conditions (53–56).

Dynamic models of hierarchical information processing in the macaque 

cortex

In order to develop a dynamic model showing how bottom-up and top-down processes 

interact, a computational model of inter-areal processing in the cortex is improved by the 

incorporation of a laminar cortical structure (57). In the model, a local area has a superficial 

and a deep layer; each with an excitatory-inhibitory microcircuit (Fig. 3a). The superficial 

layer exhibits noisy synchronous oscillations in the gamma (≃ 40 Hz) frequency range (58–
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59); whereas the deep layer shows coherent oscillations at low beta (≃ 15–20 Hz) or alpha 

(≃ 10 Hz) frequency range (58,60–61). The inter-laminar connections were calibrated based 

on the exiting literature. Consequently, gamma activities in the superficial layer were shown 

to be modulated by alpha (Fig. 3b), agreeing with empirical findings (62).

To assess the plausibility of this model, Mejias et al. (57) evaluated frequency-dependent 

Granger causality, which is a measure of directionality of information flow. Monkey 

physiological studies showed that Granger causality is enhanced in the gamma frequency 

band for a feedforward projection (for example, from V1 to V4) but in the alpha frequency 

band for a feedback projection (V4 to V1) (26,63). This observation was captured by the 

model (Fig. 3c). Bastos et al. (26) had shown that the difference in the Granger causality 

peak values at the gamma and alpha frequencies could be used to establish a functional 

cortical hierarchy. Subsequently, frequency-dependent Granger causality analysis applied to 

magnetoencephalography revealed a functional hierarchy in human species (27). The 

hierarchy, thus deduced purely by physiological measurements, is strongly correlated with 

that from the anatomical analysis in the macaque monkey. The large-scale laminar network 

(57) reproduces this hierarchy (Fig. 3d), thus substantially validating the computational 

model.

This model highlights several questions that deserve attention in future experiments. Firstly, 

inter-areal connectivity weights anatomically do not directly map onto physiological 

strengths of synaptic connections, although both show lognormal distributions (15,64–65). 

In the local microcircuit, synaptic strengths typically vary over 2–3 orders of magnitude (65) 

rather than five found in the inter-areal network (15). Hence an interesting open question is 

to quantify synaptic strengths for long-distance cortical projections. Secondly, the laminar 

targets of diverse top-down projections are poorly understood (66). These issues need to be 

investigated with viral tracers which in principal can overcome the technical limitations of 

classical tracers such as fibers of passage. Thirdly, major distinct inhibitory neuron types 

have relative proportions that vary from area to area and layer to layer. They are 

differentially targeted by long-range connections, but this information is crucially lacking at 

the present time.

Modeling has also been used to re-visit a classical problem in computational neuroscience, 

namely, signal propagation across multiple neural population. Most previous models 

formulated the problem in a purely feedforward network, where neural group 1 receives an 

input and fires a burst of spikes, activating neural group 2, which in turn projects to neural 

group 3, etc (67). A signal either successfully propagates throughout the system, or dies out 

in the middle of the network. As already mentioned the macaque cortical connectivity is 

endowed with numerous, highly heterogenous, feedback projections. As a consequence, it is 

nontrivial to ensure reliable yet stable propagation of activity, say triggered by brief visual 

input to area V1. In a spiking neuron version of the multi-regional large-scale macaque 

cortex model, it was found that whereas activity increases with stimulus intensity in areas of 

the occipital lobe, those in the prefrontal cortex (PFC) exhibit near zero response when the 

stimulus intensity is below a threshold (Fig. 4a, upper panel, black versus red) (68). In other 

words, the sensory stimulus needs to be sufficiently strong in order to be propagated along 

the cortical hierarchy and gain access to the PFC. This phenomenon emerged unexpectedly 
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in the model. Moreover, it is abolished when in the model feedback projections are 

disconnected (Fig. 4a, lower panel), demonstrating the importance of top-down signaling. 

Threshold crossing for access to the PFC has been hypothesized as a signature of awareness 

of a sensory input (Fig. 4b). When a stimulus appears in the environment with a small 

amplitude, we sometimes detect it, sometimes not. With the same physical stimulation of our 

sense organs, evoked activity remains largely confined to the posterior part of the cortex, and 

the input is reported as absent. When we are conscious of its presence, the Global 

Workspace Theory posits that the cortical core, largely centered in the PFC “lights up” as in 

an “ignition” and activates the whole brain via feedback projections (69). Further work is 

warranted to see if our model can indeed account for salient observations from monkey 

physiology about the ignition phenomenon (70).

Looking into Future

In summary, quantitative connectomic databases are now available (Table 1), including 

directed- and weighted-inter-areal cortical connection matrices for macaque, marmoset and 

mouse. These data are of a different kind from connectomics on μm spatial scale, achieved 

using electron microscopy for much smaller animals such as Drosophila fly (71) but 

possibly for mammals in the future (72). Combined with genetic tools, research in this 

direction blurs the boundary between macroscopic and mesoscopic connectomes towards 

cell-type specific connectivity.

For monkeys, existent datasets are incomplete as they only include a subset of cortical areas. 

This limitation makes it difficult for dynamical models to simulate functional connectivity, 

defined by the covariance of activities between cortical areas. A subnetwork does not 

encompass all areas and their feedback loops, and this could impact on global brain 

dynamics. Therefore, ongoing efforts to complete the full graph of monkey cortico-cortical 

connectivity should be a priority for the field.

The cortico-cortical connectivity discussed above is not cell-type specific. In the short term, 

by parallel laminar specific viral tracing of connections in nonhuman primates coupled with 

laminar resolution fMRI could lead to major progress. This is particularly relevant for top 

down pathways which are thought to play a major role in higher cognitive processes. 

Empowered by genetic tools, future work will yield cell-type specific connection patterns, 

such as how different populations of pyramidal neurons in deep layers 5 and 6 project to 

distinct cortical and subcortical structures in primates. Again, quantification into numbers 

would be required for such data to be utilized in computational modeling, which plays an 

increasing role in our investigations of complex cortical circuitry with its abundance of 

feedback loops.

A long list of open questions can be made for future research; here is a short one. First, how 

can a multi-regional network model shed new insights into distributed cognitive processes 

such as working memory (78)? Second, why do different circuits operate in different 

dynamical regimes, such as brief response, sequential activity and persistent activity? Third, 

can we harness genomic data to quantify biological properties in different cell types across 

cortical areas, that will inform future development of dynamical modeling? Fourth, what are 
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the concise rules for the interactions between the cortex, the hippocampus, thalamus, 

amygdala, claustrum, basal ganglia and cerebellum?

In summary, technological advances, experiments and computational modeling have 

identified several general principles of large-scale cortical organization: (1) weights of inter-

areal connections obey the exponential distance rule, (2) distributions of cortico-cortical 

connection weights are lognormal, (3) a cortical hierarchy can be parametrically quantified, 

(4) synaptic excitation and inhibition vary across the cortex in the form of macroscopic 

gradients. In the next phase of the brain connectome, genetically powered and cell-type 

specific connectome, single-cell RNA-seq mapping, large-scale neurophysiology using 

Neuropixels probes (73–76) will produce a deluge of data. Novel analysis tools, new ideas 

and theory will be critical for us to transform data into knowledge, ushering in an era of 

computational neuroscience of the whole brain.
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• Directed- and weighted inter-areal cortical connectivity matrices of macaque, 

marmoset and mouse exhibit similarities as well as marked differences.

• The new connectomic data provide quantitative information for structural and 

dynamical modeling of multi-regional cortical circuit providing insight to the 

global cortical function.

• Quantification of cortical hierarchy guides investigations of interplay between 

bottom-up and top-down information processes.
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Figure 1. Quantitatively defined hierarchical model of the macaque visual cortex.
(a) Area frequency distributions of the 150,000 solutions to the Felleman and Van Essen 

(1991) model (77). (b) The indeterminacy shown in (a) is resolved by statistically modeling 

the SLN index. In this scheme the hierarchical distance between levels is determined by the 

laminar distributions of the set of areas (66). This captures many of the features of the 

Felleman and Van Essen model but there are significant differences namely the relatively 

low level of the small-saccade component of the FEF which is at a considerably lower lever. 

In this version of the hierarchy, the box sizes indicating individual areas are proportional to 

there dimensions in the brain. (c) Influence of distance from target area, shows that feedback 

(FB) connections have considerably longer reach than do feedforward (FF). (d) Proportions 

of the two pathways show that FB pathways are twice as numerous as FF pathways. (a) is 

reproduced from(77); (b), (c) and (d) are modified from (16).
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Figure 2: Cortical hierarchy in the mouse can be defined by four different measures:
T1w:T2w ratio (41) and PV neuron density (38) decrease, whereas the diffusion map 

measure and the Harris measure based on layer-dependent connectivity (21) generally 

increase with the hierarchy. The pairwise correlation between these four measures, however, 

typically have a correlation of about 0.3–0.5.
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Figure 3: A multi-regional model of the macaque monkey cortex endowed with a laminar 
structure.
(a) The scheme shows the four levels considered: a within-layer local microcircuit consisting 

of an excitatory(red) and an inhibitory (blue) population (upper left), a laminar circuit with 

two laminar modules (corresponding to supra- and infra-granular layers, lower left), an inter-

areal circuit with laminar-specific projections (lower right), and a large-scale network of 30 

cortical areas based on macaque anatomical connectivity (upper right). Each level is 

anatomically constrained. Only the connections at each level not shown at a lower level are 

plotted, for clarity. (b) Left panel: the superficial layer and deep layer display gamma (upper 

panel) and alpha (lower panel) oscillations. Right panel: the periodogram of the superficial 

layer shows gamma modulated by alpha wave (top), whereas the deep layer is dominated by 

alpha rhythmicity (bottom). (c) Granger causality as a function of frequency for feedforward 

signaling from V1 to V4 (green) and feedback (orange). (d) Cortical hierarchy deduced from 

the frequency-dependent Granger causality measure in the model (left panel) and in a 

monkey experiment (right panel). Reproduced with permission from (57) with experimental 

data from (26).
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Figure 4: Signal propagation and the ignition phenomenon in the cortex.
(a) Top and middle: In a macaque cortex model of spiking neurons, as the amplitude of an 

input to V1 is gradually increased, the peak response in areas of the occipital lobe (black) 

grows gradually. By contrast, activity is absent in the prefrontal cortex unless the stimulus 

intensity exceeds a threshold level (red). The activity map is confined to the posterior part of 

the cortex when the input is weak; if the input is above the threshold, access to the PFC 

leads to enhanced activity throughout the cortex. Note that this model included only a subset 

of cortical areas for which connectivity data are available, therefore the activity map is 

restricted only to those areas in the model. Bottom: The thresholding effect disappears when 

top-down connections in the model are deleted, demonstrating an important role of long-

range feedback loops. (b) The model behavior is akin to the all-or-none ignition 

phenomenon associated with consciousness, that was observed experimentally with humans. 

Panel (a) is reproduced from (68).
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Table 1

Brain connectomes resources

Species Method Spatial scale References Open access database

Fly Electron microscopy Synaptic/sub-cellular (71) https://temca2data.org/

Mouse Viral anterograde tract tracing Cellular (cell-type specific) (18,21) http://connectivity.brain-map.org/

Monkey Retrograde tract tracing Cellular (15) https://core-nets.org/

Marmoset Retrograde tract tracing Cellular (22,23) http://marmosetbrain.org

Human fMRI 1–2mm (79) www.humanconnectome.org
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