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The principal source of vitamin D in humans is its biosynthesis in the skin through a chemical reaction
dependent on sun exposure. In lesser amounts, the vitamin can be obtained from the diet, mostly from
fatty fish, fish liver oil and mushrooms. Individuals with vitamin D deficiency, defined as a serum level of
25 hydroxyvitamin D < 20 ng/dl, should be supplemented. Vitamin D deficiency is a prevalent global
problem caused mainly by low exposure to sunlight. The main role of 1,25 dihydroxyvitamin D is the
maintenance of calcium and phosphorus homeostasis. However, vitamin D receptors are found in most
human cells and tissues, indicating many extra-skeletal effects of the vitamin, particularly in the immune
and cardiovascular (CV) systems. Vitamin D regulates blood pressure by acting on endothelial cells and
smooth muscle cells. Its deficiency has been associated with various CV risk factors and appears to be
linked to a higher mortality and incidence of CV disease (CVD). Several mechanisms have been proposed
relating vitamin D deficiency to CV risk factors such as renin-angiotensin-aldosterone system activation,
abnormal nitric oxide regulation, oxidative stress or altered inflammatory pathways. However, in the
latest randomized controlled trials no benefits of vitamin D supplementation for CVD have been
confirmed. Although more work is needed to establish the protective role of vitamin D in this setting,
according to current evidences vitamin D supplements should not be recommended for CVD prevention.

© 2020 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
1. Introduction

Cardiovascular (CV) diseases (CVD) are the most common cause
of death globally. In 2016, it was estimated that 17.9 million people
died from a CVD. In the United States (US), the prevalence of CVD in
adults over 20 years of age was 48.0% over the period 2013e2016
(121.5 million in 2016). The annual direct and indirect costs of CVD
have been estimated at $351.3 billion (2014e2015) [1]. The main
source of vitamin D in humans is skin synthesis dependent on
sunlight exposure. The amount of sunlight needed to satisfy our
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vitamin D requirements is difficult to estimate as it depends on
many factors such as skin pigmentation, age, latitude, season or
time of the day [2,3]. As there are very few natural sources of
vitamin D in food, diet does not provide adequate amounts of
vitamin D for most people [4,5]. Hence, in many situations inwhich
sunlight exposure is inadequate, supplementation with vitamin D
may be necessary [3,4,6,7]. An example of this situation is the
confinement of people during the current coronavirus disease 2019
(COVID-19) pandemic. This restriction is affecting many people
reducing their sunlight exposure and consequently their cutaneous
vitamin D synthesis. Vitamin D plays an important role in main-
taining bone health, has many extra-skeletal effects and plays an
important role in CV health. There are many vitamin D-related
components in the heart and blood vessels, and vitamin D defi-
ciency has been linked to several CVDs. However, its relevance is
still unknown [7,8]. Therefore, this review aims to elucidate the
relation between vitamin D levels and CV health and determine
whether vitamin D supplementation is effective in reducing the
lism. All rights reserved.
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Abbreviations list

25(OH)D 25-hydroxyvitamin D
7-DHC 7-dehydrocholesterol
BP blood pressure
CHD coronary heart disease
COVID-19 coronavirus disease 2019
CV cardiovascular
CVD cardiovascular disease
DBP vitamin D binding protein
HF heart failure
HTN hypertension
IL interleukin

IOM Institute of Medicine
LV left ventricular
NFkB nuclear factor kappa beta
NO nitric oxide
RAAS renineangiotensinealdosterone system
RCT random controlled trials
ROS reactive oxygen species
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
SZA solar zenith angle
T2DM type 2 diabetes mellitus
UVR ultraviolet radiation
VDR vitamin D receptors
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risk of the main CVD, including high blood pressure (BP), hyper-
tension (HTN), endothelial dysfunction, coronary heart disease
(CHD) and heart failure (HF).

2. Vitamin D sources

2.1. Dietary sources of vitamin D

There are two main dietary sources of vitamin D: cholecalciferol
or vitamin D3 and ergosterol or vitamin D2. The structures of these
two forms differ in their C-17 side chain such that vitamin D2 has
an additional C-22 to C-23 double bond and a C-24 methyl group
[9]. Vitamin D3 is mainly found in fish liver oil, fatty fish, egg yolks,
liver and kidney, and vitamin D2 in fungi and yeast [10] (Table 1).

Serum levels of circulating 25-hydroxyvitamin D [25(OH)D] is
the recommended measurement to assess vitamin D status. Serum
levels of 25(OH)D considered physiologically adequate by the
Institute of Medicine (IOM) in 2010 were 20 ng/ml [7]. However,
according to some specialists, 30e50 ng/ml or even 40e60 ng/ml
should be considered the minimal concentration necessary for
human well-being [7]. According to vitamin D requirements for
optimal human health, vitamin D deficiency or insufficiency are
defined as serum 25(OH)D concentrations lower than 50 nmol/l
(20 ng/ml) or 525e725 nmol/l (21e29 ng/ml) respectively [4,11,12].

Before the IOM publication in 2010, the recommended vitamin
D daily allowance (RDA) up to the age of 50 years was 200 IU/day.
After 2010, the IOM recommended 400 IU/day for infants up to 12
months of age, and 600 IU for children, adolescents and adults up to
70 years of age. In individuals over 70 years of age, the RDA is 800 IU
[7]. Nevertheless, many countries have their own guidelines for
vitamin D intake [13].
Table 1
Natural sources of Vitamin D. Adapted from Charoenngam et al. [5].

Source Vitamin D content

Cod liver oil (1 tsp) 400e1000 IU D3
Fresh wild salmon (3.5 oz) 600e1000 IU D3
Canned salmon (3.5 oz) 300e600 IU D3
Fresh farmed salmon (3.5 oz) 100e250 IU D2 or D3
Canned sardine (3.5 oz) 300 IU D3
Canned mackerel (3.5 oz) 250 IU D3
Canned tuna (3.5 oz) 230 IU D3
Fresh shiitake mushrooms 600e1000 IU D2
Sun-dried mushrooms (3.5 oz) 1600 IU D2
Egg yolk 20 IU D3 or D2
Beef kidney (1lb) 20e500 IU D3
Beef muscle (1lb) 0e180 IU D3
Pork liver (1lb) 70e220 IU D3
Pork muscle (1lb) 10e250 IU D3
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Vitamin D deficiency can be the outcome of different factors
such as reduced cutaneous synthesis, reduced absorption and ac-
quired and heritable disorders of metabolism and responsiveness
to the deficiency [14]. Accordingly, several different populations
should be considered for vitamin D screening.

Vitamin D bioavailability is affected by malabsorption syn-
dromes, such as cystic fibrosis, celiac disease, Chron's disease or
intestinal bypass surgery [4]. Vitamin D bioavailability may be also
affected in obese subjects. Moreover, certain medications can in-
crease vitamin D catabolism (antiepileptics, antiretrovirals, gluco-
corticoids, antirejection medication) [14]. This means that patients
under treatment with these drugs may need at least two or three
times more vitamin D than healthy subjects of the same age [4].

Screening for vitamin D deficiency is important in patients with
rickets, osteomalacia, or osteoporosis, in conditions in which D
metabolism is affected such as chronic kidney disease or liver
failure, or in acquired conditions such as granulomatous disorders,
hyperparathyroidism and some lymphomas [4]. Central European
guidelines also recommend vitamin D deficiency assessment in
patients with a chronic autoimmune disease, CVD or patients
admitted to hospital because of certain infections and chronic
allergic disease [6].

Vitamin D treatment should be administered in patients with a
25(OH)D concentration lower than 20 ng/ml [7]. The Endocrine
Society Clinical Practice Guideline makes the following recom-
mendation for vitamin D supplementation for different age groups
in the general population [4]: a) 0e1 year: 2000 IU/day or 50,000
IU/week of vitamin D for 6 weeks to raise blood 25(OH)D levels to
above 30 ng/ml followed by maintenance therapy of 400e1000 IU/
day; b) 1e18 years: 2000 IU/day or 50,000 IU/week of vitamin D for
at least 6 weeks to raise blood 25(OH)D levels to above 30 ng/ml
followed by maintenance therapy of 600e1000 IU/day; c) 18 years
and over: 6000 IU/day or 50,000 IU/week of vitamin D for 8 weeks
to raise blood 25(OH)D levels to above 30 ng/ml followed by
maintenance therapy of 1500e2000 IU/day.

Other supplementation guidelines may slightly differ. The
Central European guidelines recommend treatment for 1e3
months depending on the severity of the vitamin deficiency [6].
After achieving a concentration between 30 and 50 ng/ml, a
maintenance dose may be prescribed. Recommended therapeutic
doses are as follows (depending on body weight): neonates 1000
IU/day, infants 1e12 months 1000e3000 IU/day, children and ad-
olescents 1e18 years 3000e5000 IU/day and adults and older
adults 7000e10,000 IU/day or 50,000 IU/week.

For patients, vitamin D recommendations should consider
specific aspects of their disease including whether it is the cause or
consequence of the deficiency. Many supplementation guidelines
are disease-specific [7].
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Several pharmacological formulations of vitamin D exist.
Cholecalciferol and ergocalciferol are the most used compounds;
the former is more used in Europe and the latter in the US. The
potency of each form of vitamin D is a matter of intense debate.
There is evidence to suggest that when taken daily, both forms
show a similar potency. However, ergocalciferol is much less effi-
cient when administered intermittently.

Many active metabolites also exist: calcifediol (25-
hydroxycholecalferol), calcitriol (1a-25 dihydroxycholecalciferol)
and the synthetic calcitriol analogue alfacalcidol (1a-hydrox-
ycholecalciferol) [15]. Selective vitamin D receptor activators such
as paricalcitol or maxacalcitol can also be used to treat vitamin D
deficiency [16].

Recently, the use of oral calcifediol is on the increase. This
treatment has the benefit over oral cholecalciferol and ergo-
calciferol in that it is more effectively absorbed in the intestine and
leads to a faster increase in 25(OH)D levels, thus restoring normal
levels of vitamin D more rapidly. This form of supplementation is
more useful in patients with malabsorption, obesity or liver
dysfunction [7,15].

Calcitriol is the most active form of vitamin D, and alfacalcidol is
converted to calcitriol in the liver. However, these forms of sup-
plementation increase the risk of hypercalcemia and hypercalciuria
[15] so they are not recommended for the routine treatment of
vitamin D deficiency [17] and are usually reserved for patients with
chronic kidney disease [7,17].

2.2. Sun exposure as an endogenous vitamin D inducer

In humans, the main pathway generating 1,25-dihydroxyvitamin
D3, the most active metabolite of vitamin D [4], occurs via an
intriguing physicochemical process that takes place in the epidermis,
or outer layer of the skin, when UVR is absorbed. Thus, ~90% of all
human requirements of the vitamin arise from this cutaneous pro-
duction [14].

Solar radiation includes a broad spectrum of electromagnetic
radiation characterized by specific wavelengths. Among them, UVR
in the range 100e400 nm is made up of UV-C (100e280 nm), UV-B
(280e315 nm), and UV-A (315e400 nm) [18]. UV-C radiation is fully
absorbed by the oxygen and ozone present in the stratospheric
layer of the Earth's atmosphere, while UV-B and UV-A rays cross the
atmosphere reaching the Earth's surface [19]. However, the amount
of ozone present in the lower layer of the atmosphere, the tropo-
sphere, determines the level of UV-B and UV-A radiation that rea-
ches the surface. In addition, UV-B radiation may be blocked with
glass and plastics objects.

UV-A and B radiation from sunlight can provoke different effects
in human cells and molecules depending on the radiation energy,
which is inversely proportional to its wavelength. Because of this,
UV-A radiation reaches the dermis, while UV-B mainly penetrates
the epidermis and barely enters the dermis [20]. UV-B radiation
(wavelengths of 290e320 nm) drives the synthesis of cholecalcif-
erol (vitamin D3) in the epidermal plasmamembrane keratinocytes
in a two-step non enzymatic reaction (Fig. 1). In the first step, 7-
DHC is converted into 9,10-secosteroid (pre-cholecalciferol) [21],
a thermodynamic unstable molecule. In the second step, thermal
isomerization takes place at body temperature (~37 �C) converting
pre-cholecalciferol into the thermally stable molecule, cholecalcif-
erol. However, prolonged exposure to UV-B induces the conversion
of pre-cholecalciferol to lumisterol and tachysterol [22] as well as
the photoconversion of cholecalciferol into 5,6 transvitamin D3 and
suprasterols I and II [23], thus regulating the epidermal production
of vitamin D3.

Melanin absorbs both UV-A and UV-B radiation. As melanin and
7-DHC absorb UV-B across the samewavelength range, the amount
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of UV-B that penetrates the inner epidermal layers where 7-DHC is
located, depends on the concentration of melanin in the outer
stratum of the epidermis [24]. Therefore, the epidermal concen-
tration of melanin determines the quantity of vitamin D3 synthe-
sized, such that skin pigmentation is an important factor regulating
vitamin D3 production in the skin [25]. Once cholecalciferol
(vitamin D3) is synthesized by epidermal keratinocytes, it reaches
the bloodstream through the dermal vascular system, and
maximum concentrations of the vitamin occur 24e48 h after UV-B
exposure [26].

Solar vitamin D3 production depends on external factors, which
regulate the quantity of UV-B reaching the skin, and individual
factors, which determine the individual effect of UV-B in the skin
[27]. Among the external factors, the solar zenith angle (SZA) is
inversely proportional to the height of the sun in the sky. When the
SZA is small, as occurs in low-latitude regions, at noon and in
summer, the solar radiation pathlength through the atmosphere is
low, and UV-B reaches the skin surface with little attenuation.
Conversely, a larger SZA, as in high-latitude regions, in themorning,
evening and in winter [27], makes the cutaneous production of
vitamin D3 more difficult. Another external factor modifying the
amount of UV-B radiation that reaches the skin is the ozone level of
the atmosphere. The ozone level in the lower atmosphere is
increased by pollutants like volatile organic compounds, methane
and nitrogen oxides present in densely populated urban regions
[28]. Thus, unhealthy levels of ozone at ground-level, besides
making it difficult to breath, prevent UV-B radiation reaching the
epidermis [2]. In addition, UVR is associated with skin ageing and
cancer [29]. The use of sunscreen is an important strategy pro-
tecting against UVR from sunlight exposure [30]. Sunscreen at-
tenuates the effects of UVR on the skin, mainly as UVR is absorbed
by chemical filters including para-aminobenzoic acid (PABA) de-
rivatives, benzophenones and salycilates [31]. These organic com-
pounds substantially interfere with the skin production of vitamin
D3 [32]. Among the individual factors affecting solar vitamin D3
synthesis is the skin pigmentation of an individual. The different
world populations can be classified according to their skin photo-
types as white (phototype I-IV), brown (phototype V) or black
(phototype VI) [33]. These phototypes are dependent on how
melanin is synthesized, packaged and distributed [34]. Ageing is
another individual factor to consider, as epidermal 7-DHC con-
centrations and cutaneous vitamin D3 production decrease with
age [35,36]. Moreover, obesity (body mass index, BMI, > 30 kg/m2)
is also a risk factor for vitamin D deficiency [37], as this lipophilic
molecule is stored and isolated in the subcutaneous adipose tissue
[4]. Wortsman et al. [38] showed that obese subjects had a serum
concentration ~ 50% lower of vitamin D3 than controls after 24 h of
whole-body UVR exposure. Further, several epidemiological studies
have detected inverse correlation between body mass index (BMI)
and blood levels of vitamin D [39,40].

It is estimated that one billion people worldwide have low
vitamin D levels thus representing a global public health issue
[41e45]. A meta-analysis carried out in 2014 determined that 69.5%
of US and 86.4% of European citizens had vitamin D insufficiency
(<30 ng/ml) [46]. An observational study has also revealed that
~40% of Europeans are vitamin D deficient (<20 ng/ml) [47].

The prevalence of severe vitamin D deficiency, defined as a
serum 25(OH)D concentration <12 ng/ml, has been reported at 5.9%
in US, 7.4% in Canada and 13% in Europe, while prevalence estimates
of a serum 25(OH)D level <20 ng/ml run at 24% for the US, 37% for
Canada and 40% for Europe.

As mentioned earlier, cutaneous derived vitamin D3, as opposed
to dietary intake or vitamin D supplements, is the main source of
systemic vitamin D [11,48,49], supporting the idea that insufficient
sun exposure is the primary cause of vitamin D deficiency [4,50].



Fig. 1. Diagram showing how cholecalciferol (vitamin D3) is synthesized in the human epidermis. In a two-stage process, 7-dehydrocholesterol (7-DHC) present in the cell
membranes of keratinocytes is converted into 9,10-secosteroid (pre-cholecalciferol) by UV-B radiation in sunlight (wavelengths of 290e320 nm). Then, through thermal isom-
erization at body temperature, pre-cholecalciferol is transformed into cholecalciferol (vitamin D3).
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The ideal amount of daily sun exposure needed to balance out
vitamin D requirements and sun skin damage prevention is
therefore difficult to estimate. Many authors consider that sun
exposure to the face, arms and legs for 10e15 min twice a week,
below the erythemal level [14,51e53], could provide adequate
amounts of vitamin D. However, increasing the time or intensity of
exposure does not enhance vitamin D synthesis while it does in-
crease the risk of skin cancer [54]. For dark skinned subjects, this
could be lengthened to 30min twice aweek. Thus, peoplewith skin
phototype V-VI have high epidermal melanin concentrations pro-
tecting against sunburn, but require a 3e5 times higher UV-B doses
to synthesize a similar quantity of vitamin D3 compared with those
with skin phototype I-IV [27,55e58]. In experiments carried out on
human skin samples to examine the transformation of 7-DHC into
previtamin D3, skin phototype II (Caucasian) was 5e10 fold more
efficient than phototype V (Black) [57]. Despite this, however, the
most significant factor underlying the increasing prevalence of
vitamin D deficiency is scarce exposure to sunlight as a conse-
quence of a change over the years in i) lifestyle, whereby outdoor
work has been replaced with more indoor jobs and there are more
forms of transport to replace walking or cycling and, ii) sunscreens
are employed today to absorb UV-B radiation and avoid the harmful
effects of UVR on the skin. For example, the use of a sunscreenwith
a sun protection factor of 15 could reduce skin vitamin D3 synthesis
by more than 97% [32,51].

The skin absorption of UVR can have various adverse effects.
Human-related emissions in the last decades of the 20th century
led to significant depletion of the stratospheric ozone [59].
Reduced ozone levels in this layer of the atmosphere have
resulted in more UVR reaching humans and have been held
responsible for a recent increase in the incidence of UV-induced
cell injury [60,61]. In addition, sun exposure stimulates the
synthesis of melanin which turns the skin darker, and for
cosmetic and social reasons, this often provokes abuse of sun
exposure. Some of the most significant consequences of over-
exposure to UVR are skin ageing, sunburn, non-melanoma skin
cancer and cutaneous malignant melanoma [62], along with eye
diseases like cataract and macular degeneration [63]. Skin pho-
toageing is characterized by loss of color and elasticity and
wrinkle formation, resulting from the modification of the cellular
and extracellular components of the skin by the UVR formation
of reactive oxygen species (ROS) [62]. UV-B radiation is the main
responsible factor for erythema and sunburn, resulting from an
increase in dermal blood volume associated with erythema,
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swelling and pain [64,65]. Sunburn has been directly linked to a
greater risk of skin ageing and skin cancer [66]. In effect, expo-
sure to UVR is the main risk factor for the progression of skin
cancers including non-melanoma skin cancer, basal cell carci-
noma, squamous cell carcinoma, and melanoma [67e69]. Mela-
noma is the most common type of malignant neoplasm in
Caucasians, and non-melanoma skin cancer is the 5th most
commonly occurring cancer [70]. According to Skin Cancer
Foundation Statistics, one in five Americans will develop skin
cancer by the age of 70 [71], with solar radiation identified as the
most important environmental risk factor [72]. At the molecular
level, the adverse effects of UV rays are the consequence of a
capacity of proteins and DNA to absorb UVR. Further, it has been
reported that UV cell damage is caused by ROS generated when
UV light disrupts the enzymes catalase and nitric oxide synthase
[73]. UV-A (315e400 nm) photons penetrate the deeper skin or
dermis, where they are mainly responsible for free radical and O2
formation, indirectly damaging proteins and DNA through
oxidative stress [74]. However, endogenous mechanisms protect
against UVR, among which DNA repair machinery, antioxidant
systems and melanin synthesis are the most important [75].
Several authors have proposed UV light absorption by the DNA of
melanocytes, and ROS accumulation in keratinocytes, as the main
mechanisms triggering melanin synthesis [76e78].

3. Vitamin D metabolism and physiology

Vitamin D ingested becomes incorporated in chylomicrons
which are absorbed into the lymph system and enter the circulation
[5,7,79]. Vitamin D3 obtained via skin synthesis and diet, and
vitamin D2 from the diet are bound to vitamin D binding protein
(DBP) and albumin [80,81]. Vitamin D is transported to the liver
where it is converted into 25(OH)D by vitamin-D-25-hydroxylases
[79] and inside the liver, it is converted into 1,25(OH)2D by 25-
hydroxyvitamin D-1a [79,82]. 1,25(OH)2D circulates in the blood
bound to DBP and, after it dissociates from DBP, it binds to the
intracellular nuclear vitamin D receptor to exert numerous physi-
ologic functions and regulate its own levels [7,79]. While 25-
hydroxycholecalciferol and 1,25-hydroxycholecalciferol are pri-
marily synthesized in the liver and kidney, respectively, in the
epidermis, keratinocytes express 25-hydroxylase (CYP27A1) [83]
and 1a-hydroxylase (CYP27B1) and 1,25-hydroxycholecalciferol
[84]. Nevertheless, the capacity of the skin to produce 1,25(OH)2
D3 is scarce [85], as the skin is the target tissue itself [86] and is



F. de la Guía-Galipienso, M. Martínez-Ferran, N. Vallecillo et al. Clinical Nutrition 40 (2021) 2946e2957
where vitamin D produces growth arrest and induces keratinocyte
differentiation (Fig. 2) [87].

While highest VDR concentrations are found in tissues that are
involved in calcium homeostasis [7,46], VDR have been found in
almost all tissues and cells of the human body [5,7,46,88]. Many
tissues and cells also feature 25(OH)D1 alphaehydroxylase activity
(CYP27B1) which allows for the elimination of 1,25(OH)2D by the
kidney. In these tissues, the enzyme is regulated by specific factors
such as inflammatory signaling molecules or cell development
stage. Extra-renal tissues can also catabolize 1,25(OH)2D [7].
Vitamin D receptor activation by 1,25(OH)2D leads to extensive
biological activations in these tissues through genomic and non-
genomic pathways [5,7].

Evidence continues to mount of extra-skeletal vitamin D func-
tions. Vitamin D is known to enhance the immune system and has
strong immunomodulatory capacity. Several vitamin D-related
components exist in the CV system, suggesting an important role of
the vitamin in CV health as discussed below. The vitamin's extra-
skeletal functions are today being considered as targets to reduce
risks of cancer, autoimmune disease, neurocognitive dysfunction
and many other diseases and causes of mortality [7]. However,
much more work is needed in this area [89].

4. Vitamin D improves CV health

Data from observational studies suggest that low levels of
25(OH)D can negatively affect CV health [90]. Currently, however,
there is no consensus regarding the optimal level of the vitamin for
possible preventive CVD or cancer benefits. Despite this, serum
25(OH)D levels >30 ng/ml are considered vitamin D optimal levels
[4,7,58,91].

Vitamin D is thought to play a protective role against CVD
because its receptor, VDR, is intracellular and is able to bind to
1,25(OH)2D3. This event then stimulates VDR to join to the retinoid
X receptor (RXR), translocate to the nucleus, and bind to the
regulator site in the promotor region of elements of the DNA
sequence, promoting the synthesis of proteins that are regulated by
vitamin D [92]. Vitamin D receptors have been identified in the
main CV cell types (vascular smooth muscle cells, endothelial cells,
cardiomyocytes), platelets, macrophages, dendritic cells and other
Fig. 2. Diagram showing the synthesis of 1,25-hydroxy-cholecalciferol (1,25-hydrox
hydroxycholecalciferol by 25-hydroxylase, and this 25-hydroxyvitamin D3 is then transfor
the liver and kidney, respectively. Both reactions can nevertheless take place in the epiderm
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immune cells [93]. An advanced age has been significantly associ-
ated with a reduction in VDR expression independently of serum
levels of 25(OH)D [94]. Vitamin D crosses the cell membrane and
cytoplasm to reach the nucleus where it binds to VDR. When this
complex joins to the retinoic acid receptor it modifies gene func-
tion, inducing protein synthesis. The vitamin D binding protein is a
58 kDa glycoprotein which is synthesized in the liver and is the
main transporter of calcitriol. Its functions are the activation of
macrophages, removal of actin and binding of fatty acids, helping
vitamin D reach its target tissues. Polymorphisms in vitamin D
binding proteins may affect their binding affinity for vitamin D and
could be directly related to a risk of vitamin D deficiency or CVD
[93]. Vitamin D, thus, has CV pleiotropic effects by activating nu-
clear VDR in cardiomyocytes and vascular endothelial cells and
regulating the renin-angiotensin-aldosterone system, adiposity,
energy expense and pancreatic cell activity [94]. In humans,
vitamin D deficiency can be linked to vascular dysfunction, arterial
stiffness, and left ventricular (LV) hypertrophy. A lack of VDR leads
to increased LV mass and increased levels of atrial natriuretic
peptide along with imbalance of homeostasis, cardiac metal-
loproteases and fibroblasts. In turn, this promotes the formation of
a fibrotic extracellular matrix and leads to LV dilation and impaired
electromechanical coupling [95,96].

In addition, vitamin D deficiency can induce inflammation of
epicardial fat and the vessel wall through direct interaction with
nuclear factor kappa beta (NFkB) [43], which increases the in-
flammatory response and promotes atheromatosis and CVD.
Accordingly, vitamin D insufficiency gives rise to increased arterial
stiffness and endothelial dysfunction in blood vessels, inducing
atherogenesis with an important role in regulating blood pressure,
while vitamin D deficiency could lead to vascular smooth muscle
cell proliferation, endothelial cell dysfunction and increased
inflammation [97].

In relation to a proposed anti-diabetic role of vitamin D, VDR are
expressed in pancreatic beta cells such that vitamin D induces the
secretion of insulin [98,99]. In other studies, vitamin D supple-
ments have shown improved sensitivity to insulin mediated by the
increased production of insulin receptors, modulating inflamma-
tion [100,101]. Obese subjects have lower vitamin D levels than
non-obese individuals, and this is probable related to the storage of
yvitamin D3) in humans. Cholecalciferol (vitamin D3) is converted into 25-
med into 1,25-hydroxycholecalciferol (1,25-hydroxyvitamin D3) by 1a-hydroxylase in
is.
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vitamin D in body fat. Moreover, obese individuals respond worse
to vitamin D supplements and show smaller increases in the
vitamin than non-obese controls when the same dose of supple-
ment is used, meaning they need higher doses than recommended
[38,102,103].

These findings indicate that vitamin D regulates blood pressure
by acting on endothelial and smooth muscle cells and thus plays an
important role in CV health.

4.1. Vitamin D deficiency in CVD

Observational studies have detected an inverse relationship
between a good vitamin D status and mortality [104]. Further, ac-
cording to the findings of systematic reviews and meta-analyses of
random controlled trials, it seems that vitamin D supplementation
could have a slight overall survival benefit [105]. However, the
authors of a recent meta-analysis reported that vitamin D supple-
ment intake alone was not in itself associated with a significant
reduction in all-causemortality in adults compared with placebo or
no treatment, and neither was there a reduction in death due to
CVD, cerebrovascular disease or ischemic heart disease. These au-
thors highlighted that the intake of vitamin D supplements only
reduced the risk of cancer-related death by around 16% [106].

Despite these results, vitamin D deficiency has been associated
with various CV problems in patients with risk factors such as high
blood pressure, type 2 diabetes mellitus (T2DM) and obesity, and a
greater frequency of vitamin D deficiency has been detected in
subjects with type 1 DM compared to healthy individuals [107e109].

A meta-analysis designed to examine the relationship between
vitamin D status or its supplementation and the incidence of T2DM
showed that subjects with serum levels of the vitamin >25 ng/ml
compared to those with levels <14 ng/ml, had a 43% lower risk of
developing type 2 diabetes and that a daily dose of vitamin D
supplements above 500 IU, compared to one of <200 IU reduced
this risk by 13% [110]. Vitamin D deficiency has also been observed
in patients with cardiac failure [111], myocardial infarction (MI)
[112], stroke [113] and peripheral arterial disease [114].

Hence, vitamin D deficiency has been associatedwith various CV
problems. Below we describe the different mechanisms that could
help explain this association (Fig. 3).

4.1.1. High blood pressure (BP) or hypertension (HTN)
The important role of renin in regulating BP has been well

established and several anti-HTN agents act at the level of the
renineangiotensinealdosterone system (RAAS). A marked increase
in renin expression and angiotensin II production has been
observed in mice and humans with inactivated VDR. This obser-
vation suggests that vitamin D deficiency could activate RAAS, with
the consequence of LV hypertrophy and a greater risk of CVD
[115,116]. However, data emerging from random controlled trials
(RCT) and Mendelian genetic studies have not been able to confirm
a causal relationship between vitamin D supplementation and
improved CVD risk factors [117]. In addition, the results of RCT
designed to assess the impact of the intake of vitamin D supple-
ments on arterial HTN have been inconclusive [118], most likely
owing to suboptimal study designs with significant bias. Despite
these results, it may be concluded that a deficiency in vitamin D
could promote the sustained activation of RAAS, increasing angio-
tensin with the consequences of arterial hardening, endothelial
dysfunction and the development of HTN. Numerous animal model
and observational studies in humans strongly support the hy-
pothesis that vitamin D deficiency contributes to high blood pres-
sure. However, it should be noted that the antihypertensive effect of
vitamin D was not observed in some trials, which could be due to a
sub-optimal study design, the knowledge that a deficiency of
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vitamin D could promote the sustained activation of RAAS,
increasing angiotensin, arterial hardening, and endothelial
dysfunction, could support the hypothesis that vitamin D defi-
ciency contributes to the development of HTN.

4.1.2. Endothelial dysfunction
A role has been also ascribed to vitamin D in regulating endo-

thelial function [119]. Endothelial dysfunction is strongly related to
the pathogenesis of several CV problems, such as T2DM, HTN,
atherosclerosis and peripheral arterial diseases. One of the most
significant vasoactive substances, nitric oxide (NO) has a strong
vasodilator action and this confers protection against vessel
inflammation and the formation of vascular lesions. Some studies
have suggested that vitamin D and VDR could play a key role in
regulating NO synthesis [118]. Observational studies have identified
a link between insufficient vitamin D levels and increased oxidative
stress or a lowered antioxidant capacity [120]. Further, circulating
serum 25(OH)D concentrations have been inversely correlatedwith
endothelial dysfunction, as assessed by dilation measured through
brachial artery flow in patients with chronic non-dialysis renal
disease [121]. In the absence of endothelial VDR, endothelial cells
show a deteriorated vasodilator response to perfused acetylcholine
[122]. This points to a relationship between vitamin D and endo-
thelial function, and an association between deficient serum levels
of the vitamin and CVD. However, despite these promising findings
supporting a link between the genomic effect of vitamin D and the
regulation of endothelial function involving the regulation of NO
bioavailability and bioactivity, there is still insufficient evidence
that vitamin D supplementation could improve endothelial func-
tion in humans. Long term studies are therefore warranted to
confirm that the intake of these supplements could be beneficial for
human endothelial function [119].

4.1.3. Coronary heart disease (CHD)
Numerous studies have sought to identify a relationship be-

tween vitamin D deficiency and CHD. Results so far indicate that
patients with reduced concentrations of vitamin D have an elevated
risk of experiencing a major adverse CVD event (MACE) [123,124].
Lee et al. [125] examined the prevalence of vitamin D deficiency
among patients suffering acute MI, finding that 75% were vitamin D
deficient and 21% were vitamin D insufficient. These authors
concluded that vitamin D deficiency is present in practically all
those with MI.

In a cross-sectional study it was confirmed that patients with
T2DM and vitamin D deficiency show a greater frequency of mul-
tivessel lesions than individuals without type 2 T2DM,mainly those
with serum levels of the vitamin <10 ng/ml. Strong correlation has
also been reported between vitamin D deficiency and CHD, and
results indicate a significant association between deficiency of the
vitamin and disease severity. Moreover, when the risk of CHD was
compared between individuals with severe hypovitaminosis
(<10 ng/ml) and those with a normal vitamin D status, the adjusted
odds ratio was 1.73 (95% CI: 1.18e2.52) [126].

Only a few RCT have been able to identify a beneficial role of
vitamin D in the treatment of CHD. In a study in which calcitriol
(0.5 mg/day) was administered over 6 months in patients with
stable CHD, improvements were noted in the SYNTAX score and
cardiometabolic variables, and a significant reductionwas observed
in CHD and vascular inflammation. These results prompt future
studies designed to examine the benefits of potent analogs of
vitamin D like calcitriol [127].

Among the studies designed to explore the possible mecha-
nisms explaining the effects of vitamin D in CHD, a study in pigs
revealed that vitamin D suppresses the kappa-light-chain-
enhancer nuclear factor of the activated B-cell pathway NFkB



Fig. 3. Diagram showing how vitamin D from the diet and sun exposure can improve skeletal function and prevent several cardiovascular problems. AHT (arterial hypertension),
CAD (coronary artery disease), CV (cardiovascular), HF (heart failure), RAAS (renineangiotensinealdosterone system), UV (ultraviolet), VED (vascular endothelial dysfunction).

F. de la Guía-Galipienso, M. Martínez-Ferran, N. Vallecillo et al. Clinical Nutrition 40 (2021) 2946e2957
activation by targeting karyopherin a4 (KPNA4), attenuating the
progression of CHD, thus vitamin D deficiency increases the regu-
lation of KPNA4, increasing the activation of NF-kB [43].

Epicardial adipose tissue cells play a major role in atherogenesis
progression in the coronary arteries through the synthesis of local
inflammatory cytokines [128]. NFkB acts as a transcription factor in
the nucleus by binding to different kB elements, which promotes
the transcription of inflammatory cytokines such as interleukin
(IL)-6, IL-8 and tumor necrosis factor (TNF)-a [129].

Collectively, the available data indicate that adequate levels of
intracellular 1,25(OH)2 D3 could have the capacity to reduce the
inflammatory response during the atherosclerotic process but it
still remains unclear how vitamin D3 suppresses the transcription
of KPNA4 [43].

4.1.4. Heart failure (HF)
Vitamin D deficiency could be a predictor of worse survival in

patients with HF, who could perhaps benefit from vitamin D sup-
plementation [130]. The results of the National Health and Nutri-
tion Examination Survey (NHANES III) have revealed a growing
prevalence of HF in patients with lower serum vitamin D levels
[131]. These authors noted that vitamin D therapy rescues tissue
sensitivity to angiotensin II in a similar manner to the actions of an
angiotensin-converting enzyme inhibitor in obese-HTN subjects,
which suggests inhibitory effects of vitamin D on RAAS and a
possible regulatory effect of the vitamin D-VDR complex on renin
activity [132].
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Schleitfoff et al. [133] assessed the effects of vitamin D on
survival rate and several biochemical variables in patients with
HF. Their findings indicated that vitamin D3 could be useful as a
new anti-inflammatory agent and suggested the participation of
an altered vitamin D-parathyroid hormone axis in the progression
of HF.

The EVITA trial (Effect of Vitamin D on All-Cause Mortality in
Heart Failure Patients) is one of the larger studies, with a follow up
of 3 years and 400 participants with functional NYHA class HF � II
and serum 25(OH)D levels <75 nmol/l. Patients were adminis-
tered vitamin D3 at a dose of 4000 IU/day. The primary end-point
was all-cause mortality. Results revealed a similar mortality
among patients given vitamin D or placebo, while the need for a
pacemaker was greater in the patients assigned to receive vitamin
D. The conclusion of this trial was a need for caution when pre-
scribing moderately high long-term doses of vitamin D in patients
with HF [134].

In another study, patients with HF received optimal medical
therapy and cholecalciferol at a dose of 100 mg daily for 1 year.
Significant improvements were recorded in LV dimensions and
LV ejection fraction [135]. However, these results contrast with
those obtained in patients with chronic renal disease admin-
istered paricalcitol (a synthetic vitamin D analog) over 48
weeks. This intervention led to no structural or functional
changes in the left ventricle as determined through cardiac
resonance and echocardiography in comparison with subjects
receiving placebo [136].
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Thus, the results of numerous RCTandmeta-analyses examining
the possible benefits of vitamin D supplements in patients with CV
risk factors have been conflicting. While vitamin D plays roles in
modulating RAAS, endothelial function and sympathetic activity, its
precise role in this setting remains unclear. Few studies have lent
support to the notion that vitamin D could be beneficial in the
treatment of CHD. Further work is needed to clarify whether special
subgroups (e.g., those with HTN, T2DM, CHD, obesity, or HF) could
benefit from vitamin D supplementation.

4.2. Vitamin D to treat CVD

The use of vitamin D supplements has increased widely in the
past few years even when there is still debate about the role of
these supplements, their doses and which is the optimal vitamin D
status. Recent large intervention studies, meta-analyses and RCT
have not been able to demonstrate clear benefits of vitamin D
supplements at the CV level, although epidemiological studies have
related low 25(OH)D levels with CVD risk factors and adverse
outcomes [137].

Evidence does exist to suggest that low serum 25(OH)D levels
could have detrimental impacts on CV health. Thus, deficient
vitamin D activates RAAS and could predispose to LV hypertrophy
and high BP. Similarly, vitamin D deficiency causes an increase in
parathyroid hormone with the consequence of insulin resistance
and T2DM. Further, the results of some observational studies have
pointed to a link between low serum 25(OH)D levels and T2DM risk
[138]. Thus, it has been postulated whether vitamin D supple-
mentation could have significant health benefits given that an
insufficient vitamin D status could be a key factor in the etiology of
several chronic diseases such as CVD and glucose intolerance. It
should be underscored that these diseases are responsible for 50%
of all deaths in middle to high income countries [111].

The likely cardioprotective effect of vitamin D is based on the
findings of observational studies that suggest that low vitamin D
levels could play a determinant role in various CVD risk factors,
such as the development and progression of endothelial dysfunc-
tion, vascular and myocardial cell calcification and inflammation
(Fig. 3) [139]. Recently, Pittas et al. examined whether vitamin D
supplementation could reduce the risk of T2DM in adults fulfilling
at least 3 glycemic criteria for prediabetes and no diagnostic criteria
for T2DM. The daily intake of 4000 IU of vitamin D3 supplements
was found to confer a similar risk of diabetes than placebo after a
median follow-up duration of 2.5 years [140].

In view of the uncertain benefits of vitamin D supplementa-
tion even among the general non vitamin D-deficient population
and the weak cardioprotective effect of vitamin D suggested by
the data available, several large RCT have tried to shed light on
this topic. The Vitamin D Assessment (ViDA), a double-blind
placebo-controlled trial, examined the possible preventive ef-
fect on CVD of monthly supplementation with high vitamin D
doses in the general population. Thus, more than 5000 people in
New Zealand received oral vitamin D3 or placebo at a starting
dose of 200,000 IU followed a month later by a monthly dose of
100,000 IU over a median interval of 3.3 years. Around 25% had
vitamin D deficiency. The primary outcome measure of CVD was
detected in 11.8% of participants in the vitamin D group and 11.5%
in the placebo group, regardless of the presence or not of base-
line vitamin D deficiency. Accordingly, the conclusion offered
was that monthly high-dose vitamin D supplementation does not
prevent CVD [141].

The D-Health Trial assessed the capacity of vitamin D supple-
ments to prevent mortality and cancer in over 21,000 subjects. This
RCT examined the benefits of oral monthly doses of 60,000 IU of
cholecalciferol or equivalent placebo in an intervention planned for
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5 years plus another 5 years of passive follow up through access to
health records and death registries. The authors concluded that it
was not clear if vitamin D supplementation has any benefits on the
objectives analyzed and that data from observational studies
should not be used to support the use of the vitamin to prevent
disease in healthy persons [142]. Neither have CV improvements
emerged following supplementation with cholecalciferol in the
results of a recent review [143] and meta-analysis including more
than 83,000 individuals, in which no benefits of vitamin D were
observed in terms of protection against CVD events [144].

In another double-blind placebo-controlled RCT, it was assessed
whether 12 weeks of daily cholecalciferol supplements (800 IU/
day) could serve to reduce BP, heart rate and other CVD risk
markers in healthy participants. Results indicated that vitamin D
failed to improve CVD risk markers although it did improve serum
levels of 25(OH)D [145].

The DIMENSION study assessed the impact of daily cholecal-
ciferol supplementation over 16 weeks (2000 IU/day or 4000 IU/
day) on endothelial function in patients with T2DM in terms of
possible improvements in vascular biomarkers and the reactive
hyperemia index. Vitamin D status improved significantly in the
intervention arm. However, a multivariate regression analysis
revealed no significant impacts on endothelial function [146].

Neither were significant changes observed in markers of heart
lesions in response to a cholecalciferol dose of 300,000 IU given
prior to percutaneous coronary intervention. In this study, a
similar incidence was observed in MACE in the study and control
groups [147].

In a setting of primary care, the BEST-D trial investigated the
effects of daily supplementation over a year with cholecalciferol
(4000 IU or 2000 IU) on disease risk and biochemical markers in
healthy individuals. Again, the results of this RCT were not prom-
ising as, while vitamin D supplementation improved serum 25(OH)
D levels, no significant changes were observed in CVD risk factors,
arterial stiffness, blood lipids or BP after the intervention [148].

A recent meta-analysis examined for the first time, the rela-
tionship between serum 25(OH)D status and CVD incidence. The
studies included were 25 prospective cohort studies conducted
from April 2000 to September 2017. No significant relationship
was detected, although a reduced vitamin D level was correlated
with a 44% greater relative risk of CVD (incidence-mortality
combined), and increased CVD-related mortality (RR ¼ 1.54, 95%
CI: 1.29e1.84) [149].

The study that has shed most light on this topic is the VITAL trial
(VITamin D and Omega-3 triAL) [150]. This trial assessed the pre-
vention of cancer and CVD using vitamin D3 (cholecalciferol) given
at a dose of 2000 IU/day and omega-3 fatty acids at 1 g/day in men
aged �50 years and women �55 years. The conclusions were that
compared with placebo, vitamin D intake did not confer a reduced
risk of any of the primary endpoints examined of invasive cancer of
any type and of the major CVD events combined: MI, stroke or CV
cause of death. In effect, this has been the most conclusive RCT to
date to rule out any cardioprotective or cancer protective effects of
vitamin D in the general population.

While acute vitamin D toxicity effects are rarewith supplements
and require extremely high doses, toxic effects of the vitamin
include hypercalcemia and low serum parathyroid levels [151].
Hypercalcemia may cause cardiac arrhythmia (shortened QT in-
terval), or even mimic the effects of acute MI in the electrocardio-
gram [152].

5. Vitamin D in the coronavirus Disease-19 (COVID-19) era

Vitamin D treatment could reduce the incidence of viral respi-
ratory tract infections, especially in deficiency situations [153].
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Vitamin D plays a critical role in the immune system, being an
immunomodulatory hormone with antimicrobial and anti-
inflammatory effects. This fact could explain the beneficial and
protective effect attributed to vitamin D against COVID-19 by being
able to prevent severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection, reduce virus replication, accelerate viral
clearance and/or reduce its spread. Likewise, as abovementioned,
vitamin D deficiency impairs vascular function and is associated
with CVD. The severity of COVID-19 is worse in those individuals
with a history of CVD [154]. In effect, the disease process has been
linked to myocardial injury in around 25% of patients, with some
developing significant cardiac manifestations, including biven-
tricular heart failure, arrhythmias, and occasionally cardiogenic
shock and death [155,156].

On the one hand, vitamin D has anti-inflammatory effects by
controlling the adaptive immune system, induces the expression
of various molecules involved in the antioxidant defense system,
reduces oxidative stress and cellular oxidation, and also shows
vasoprotective effects [157]. Besides, vitamin D induces the
expression of several molecules involved in the antioxidant de-
fense system, modulates immune function, promotes viral elimi-
nation, and reduces inflammatory responses by reducing the
generation of inflammatory cytokines such as IL-6, IL -8, IL-12 and
IL-17. Importantly, vitamin D levels are associated with lower
levels of IL-6, which is involved in the so-called cytokine storm
observed in critically ill patients and associated with a worse
COVID-19 prognosis. Kox et al., in small sample size, compared
cytokine levels in critically ill patients with COVID-19 and patients
with other critical illnesses. In this study, plasma concentrations
of proinflammatory cytokine TNF, IL-6, and IL-8 were determined,
and it was found that the levels of the three cytokines were
significantly lower in patients with COVID-19 than in patients
with septic shock with acute respiratory distress syndrome
(ARDS), which explains these findings to lower severity of the
disease despite suffering severe lung injury. Therefore they sug-
gest that the severity of the COVID-19 may not be due to a cyto-
kine storm [158]. Similarly, vitamin D increases the level of
angiotensin-converting enzyme 2 (ACE2) in the lungs, a key re-
ceptor for the acute respiratory syndrome [159,160].

A recent study investigated the association between vitamin D
levels and the incidence of COVID-19 [160]. Individuals with defi-
cient levels of vitamin D at the COVID-19 test had a substantially
higher risk of testing positive than those within normal range. Also,
those individuals who were supplemented with vitamin D before
the pandemic did not have an increased risk of COVID-19 compared
to those with normal vitamin D values and not supplemented,
which could advocate a likely protective effect of vitamin D sup-
plementation. Taken together, these findings suggested that high-
dose vitamin D therapy, in order to restore circulating vitamin D
levels rapidly, could reduce the risk of severity and mortality from
COVID-19 [161]. People with chronic diseases, i.e., elderly, obese,
T2DM, smokers, as well as African Americans, have low concen-
trations of vitamin D and a more aggressive SARS-CoV-2 infection
[162]. Vitamin D deficiency could be a significant risk factor for
COVID-19 infection severity. Thus, vitamin D supplementation can
be considered in risk groups with low vitamin D levels. Vitamin D
supplementation is a relatively cheap, available and safe measure.
However, there is no solid scientific evidence to support the routine
clinical use of vitamin D in COVID-19 patients [163].

Thus, an interesting debate on the efficacy of high-dose vitamin
D supplementation to reduce the risk of COVID-19 infection and
severity has recently emerged. Additional clinical trials that provide
more solid evidence of vitamin D role in reducing hospitalization
rates and mortality, as well as whether vitamin D supplementation
reduces the risk of infection by SARS-CoV-2 virus, are still needed.
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6. Conclusion

In conclusion, despite a likely association between serum
vitamin D deficiency and a greater incidence of CVD and its related
mortality, the intake of vitamin D as supplements has not shown
any appreciable benefits in terms of reducing the risk of CVD in
recent large RCT. This means that no CV benefits can be ascribed to
vitamin D supplements even in cases of its insufficiency (<20 ng/
ml). These supplements should therefore not be prescribed to
prevent CVD until further assessment of the benefits and risks of
vitamin D supplements in the primary prevention of CVD and
cancer. As there is no categorical evidence so far of vitamin D
supplements causing CV damage, their lack of benefits for CV
health should not preclude their use for other indications. Pending
further insight into this topic, we will continue to recommend the
combination of a healthy diet and active lifestyle as the best
strategy to improve our vitamin D status and promote good CV
health.
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