Table 1.
Comparison of capacitance performance of Ti3C2Tx-based materials, where Cs is specific capacitance
Materials | Feature | Electrolyte | Cs | Rate | References |
---|---|---|---|---|---|
Ti3C2Tx aerogels | N2 spill forming wrinkles | 3 M H2SO4 | 438 F g−1 | 10 mV s−1 | [40] |
Freeze-dried Ti3C2Tx aerogel | Nanoporous structure and –O replaced by NH, NH2 | 1 M KOH | 1012.5 mF cm−2 | 2 mV s−1 | [96] |
Ti3C2Tx ion gel | Large number of wrinkles | Ion liquid | 70 F g−1 | 20 mV s−1 | [97] |
Ti3C2Tx/PPy | Polymerization of pyrrole using acidity and no Oxidizing agents | 1 M H2SO4 | 416 F g−1 | 5 mV s−1 | [99] |
Ti3C2Tx/PPy nanoparticles | Well-arranged, uniformly distributed PPy nanoparticles | 1 M Na2SO4 | 184.36 F g−1 | 2 mV s−1 | [101] |
Ti3C2Tx/PPy nanowires | Three-dimensional porous structure on a foamed nickel | 3 M KOH | 610 F g−1 | 0.5 A g−1 | [102] |
Ti3C2Tx/PANI | –OH and –F are reduced and N atoms appear | 3 M H2SO4 |
503 F g−1 (1682 F cm−3) |
2 mV s−1 | [103] |
Ti3C2Tx/MnO2 nanowires | Wrinkled silk-like film | PVA/LiCl |
205 mF cm−2 (1025 F cm−3) |
1 A cm−3 | [104] |
Ti3C2Tx/MnO2 nanosheet | Composite film forming by electrostatic self-assembly | 1 M Na2SO4 | 340 F g−1 | 1 A g−1 | [105] |
Ti3C2Tx/MnO2 nanoparticles | Layered porous structure, uniform distribution of MnO2 | 6 M KOH | 377 mF cm−2 | 5 mV s−1 | [106] |
rGO/Ti3C2Tx hybrid film | Larger size rGO links the dispersed Ti3C2Tx layer | 6 M KOH |
405 F g−1 (370 F cm−3) |
1 A g−1 | [117] |
Ti3C2Tx/CNTs | Electrospinning method | 1 M H2SO4 | 205 mF cm−2 | 50 mV s−1 | [118] |
Ti3C2Tx/CNTs | Biscrolling approach | 3 M H2SO4 |
428 F g−1 (1083 F cm−3) |
2 mA cm−2 | [120] |
Ti3C2Tx/CNTs | Scrolling into a fiber-shaped spiral structure | 6 M LiCl | 19.1 F cm−3 | 1 A cm−3 | [119] |
N-doped Ti3C2Tx | Anneal in ammonia gas directly | 1 M H2SO4 | 192 F g−1 | 1 mV s−1 | [122] |
N-doped Ti3C2Tx | Solvothermal method (urea as nitrogen source) | 3 M H2SO4 |
927 F g−1 (2836 F cm−3) |
5 mV s−1 | [123] |