Skip to main content
. 2020 Mar 20;12:77. doi: 10.1007/s40820-020-0415-5

Table 1.

Comparison of capacitance performance of Ti3C2Tx-based materials, where Cs is specific capacitance

Materials Feature Electrolyte Cs Rate References
Ti3C2Tx aerogels N2 spill forming wrinkles 3 M H2SO4 438 F g−1 10 mV s−1 [40]
Freeze-dried Ti3C2Tx aerogel Nanoporous structure and –O replaced by NH, NH2 1 M KOH 1012.5 mF cm−2 2 mV s−1 [96]
Ti3C2Tx ion gel Large number of wrinkles Ion liquid 70 F g−1 20 mV s−1 [97]
Ti3C2Tx/PPy Polymerization of pyrrole using acidity and no Oxidizing agents 1 M H2SO4 416 F g−1 5 mV s−1 [99]
Ti3C2Tx/PPy nanoparticles Well-arranged, uniformly distributed PPy nanoparticles 1 M Na2SO4 184.36 F g−1 2 mV s−1 [101]
Ti3C2Tx/PPy nanowires Three-dimensional porous structure on a foamed nickel 3 M KOH 610 F g−1 0.5 A g−1 [102]
Ti3C2Tx/PANI –OH and –F are reduced and N atoms appear 3 M H2SO4

503 F g−1

(1682 F cm−3)

2 mV s−1 [103]
Ti3C2Tx/MnO2 nanowires Wrinkled silk-like film PVA/LiCl

205 mF cm−2

(1025 F cm−3)

1 A cm−3 [104]
Ti3C2Tx/MnO2 nanosheet Composite film forming by electrostatic self-assembly 1 M Na2SO4 340 F g−1 1 A g−1 [105]
Ti3C2Tx/MnO2 nanoparticles Layered porous structure, uniform distribution of MnO2 6 M KOH 377 mF cm−2 5 mV s−1 [106]
rGO/Ti3C2Tx hybrid film Larger size rGO links the dispersed Ti3C2Tx layer 6 M KOH

405 F g−1

(370 F cm−3)

1 A g−1 [117]
Ti3C2Tx/CNTs Electrospinning method 1 M H2SO4 205 mF cm−2 50 mV s−1 [118]
Ti3C2Tx/CNTs Biscrolling approach 3 M H2SO4

428 F g−1

(1083 F cm−3)

2 mA cm−2 [120]
Ti3C2Tx/CNTs Scrolling into a fiber-shaped spiral structure 6 M LiCl 19.1 F cm−3 1 A cm−3 [119]
N-doped Ti3C2Tx Anneal in ammonia gas directly 1 M H2SO4 192 F g−1 1 mV s−1 [122]
N-doped Ti3C2Tx Solvothermal method (urea as nitrogen source) 3 M H2SO4

927 F g−1

(2836 F cm−3)

5 mV s−1 [123]