Skip to main content
. 2020 Jul 14;12:149. doi: 10.1007/s40820-020-00489-z

Table 1.

Overview of piezoelectric materials and their individual characteristics for piezo-electro-chemical processes

Materials Piezoelectric material characteristics Piezo-electro-chemical processes Refs.
Synthesis method Polarization Shape Size Piezoelectric constant Piezoelectrically induced potential Application(s) Conditions Performance
PMN-PT Commercially obtained Poled along the <001> direction Slab 24 × 4 × 0.25 mm3 2200–2700 pC/N 20 V Hydrogen production Vibrator (10 and 20 Hz) and linear actuator ~ 0.01–0.08 ppb/oscillation [65]
PZT Sol–gel process Polarized under 14 V by AFM Grains 70–100 nm Selective deposition Hg lamp (400 W) Metal ions can be reduced to metal by photoexcited e at the surface of c+ domains [179]
PZT Sol–gel process Polarized under 12 V by AFM Films Thickness: 70 nm; area: 2 cm2 Selective deposition Hg lamp and Fe-doped Hg lamp (400 W) Deposition of silver on c+ domains [77]
PZT Commercially obtained Two PZT ceramics polarized opposite Wafer 30 × 15 × 0.3 mm3 ~500 pC/N ~12 V Hydrogen production A cyclic force of ~ 0.07 N; a resonance frequency of ~ 46.2 Hz ~10−8 mol/min [66]
PZT Hydrothermal reaction No poling Fibers Diameter: ~ 500 nm; length: several micrometers Dye degradation Ultrasonic mechanical vibration (5.05 × 10 kPa; 40 kHz) Degradation ratio of 80% for acid orange 7 solutions (30 μmol/L) [67]
TiO2/BFO Ball-milling method Polarized by AFM Substrates Selective deposition UV light Reduction of aqueous silver cations from solution [38]
BFO Hydrothermal reaction No poling Square micro-sheets ~ 1 μm ~ 70 pm/V Dye degradation Under an ultrasonic source (5.05 × 10 kPa; ~ 40 kHz) Degradation ratio of ~ 95% for rhodamine B solutions (~ 10 mg/L) [70]
BFO Hydrothermal reaction No poling Square micro-sheets ~ 380 nm ~ 100 pm/V ~ 0.88 V Hydrogen production Under a mechanical vibration excitation for 1 h (100 W 1.01 × 105 kPa; ~ 45 kHz) Hydrogen production rate of ~ 124.1 μmol/g [71]
Dye degradation Degradation ratio of ~ 94.1% for rhodamine B solutions within 50 min
BFO Hydrothermal reaction No poling Nanosheets Area: 2–3 μm; thickness: ~ 150 nm ~ 100 pm/V Dye degradation UV–visible light and ultrasonic mechanical vibrations Degradation ratio of ~ 71% for rhodamine B solutions within 1 h [78]
Nanowires Length: 30 μm; diameter: 200–700 nm Degradation ratio of ~ 97% for rhodamine B solutions within 1 h
BFO-PDMS Hydrothermal reaction No poling Nanoflowers ~ 30 μm 70 pm/V Dye degradation Ultrasonic mechanical vibrations (40 kHz, 400 W) Degradation ratio of ~ 98% for rhodamine B solutions (40 mL, 5 mg/L) [37]
BTO Molten salt flux method No poling Particles 1–5 μm Selective deposition Hg lamp (300 W) Apparent dependence on the surface orientation ((100) > (111) > (110)) [74]
BTO Hydrothermal reaction No poling Microdendrites ~ 10-μm-long rods with a-few-micrometer-long secondary branches Hydrogen production Ultrasonic mechanical vibrations 1.25 × 10−2 ppm/s [32]
BTO–TiO2 High-temperature calcination Polarized by AFM Substrates ~ 50 μm Selective deposition UV light Patterning of products on the film surface, reproducing patterns of products on the bare substrate [74]
BTO Hydrothermal reaction No poling Microdendrites ~ 10-μm-long rods with a-few-micrometer-long secondary branches Dye degradation Ultrasonic mechanical vibrations (40 kHz) Degradation ratio of ~ 80% for acid orange 7 solutions (5.7 × 10−5 M) within 90 min [32]
Ag2O-BTO Chemical precipitation No poling Nanocubes ~ 50 nm Dye degradation Ultrasonic mechanical vibrations (40 kHz, 50 W) and UV light irradiation Total degradation for rhodamine B solutions within 1.5 h [36]
Si/CNT/BTO High-energy ball-milling process Poling BTO to create a piezoelectric potential Nanocomposite particles < 100 nm 350 pC/N Li-ion batteries Deformation of Si nanoparticles during lithiation (1.7 GPa) Coulombic efficiency converged to 98% by the fifth cycle and increased to 99.8% at around the hundredth cycle [49]
BTO Hydrothermal reaction No poling Microcrystals with a coral-type surface texture Coral branches with a diameter of 200−400 nm Dye degradation and dechlorination Ultrasonic mechanical vibrations (40 kHz) and ferrous ions added Degradation ratio of 93.4% for acid orange 7 solutions (5.7 × 10−2 mmol/L, 5 mL, pH 3.0) [76]
BTO Hydrothermal reaction No poling Particles 32.5 nm Dechlorination Ultrasonic mechanical vibrations (40 kHz, 110 W) Dechlorination ratio of 35.2% and degradation ratio of 71.1% for 4-chlorophenol solutions (25 mg/L) [75]
BTO Hydrothermal reaction No poling Nanowires Diameter: 100 nm; length: a few micrometers Dye degradation Ultrasonic mechanical vibrations (40 kHz, 80 W) Effective enhancement degradation in BTO nanowires for methyl orange solutions within 160 min (100 mL, 5 mg/L) [101]
Nanoparticles 200 nm
BTO–PDMS Electrospinning No poling Particles < 1 μm 180 pm/V Dye degradation Ultrasonic mechanical vibrations (40 kHz, 400 W) Degradation ratio of ~ 94% for rhodamine B solutions (40 mL, 5 mg/L) [37]
ZTO Hydrothermal reaction No poling Nanowires Length: 500 nm Dye degradation UV irradiation (15 W) and pressured by an array of multiple stress probes ~ 27% degradation improvement in piezo-photocatalysis for methylene blue solutions (4 ppm) [68]
ZTO Hydrothermal reaction No poling Nanowire arrays Dozens of micron Dye degradation UV irradiation (320–340 nm, 30 W), ultrasonic mechanical vibrations, and a piece of glass Piezophotodegradation rate of ~ 1.5 × 10−2 min−1 for methylene blue solutions (10 mL, 4 ppm) [89]
ZnO Hydrothermal reaction No poling Fibers Diameter: ~ 0.4 μm; length: 4–10 μm Hydrogen production Ultrasonic mechanical vibrations 3.4 × 10−3 ppm/s [32]
Ag/Ag2S–ZnO/ZnS Modified polyol process No poling Nanorods Length: > 100 nm 1 V Hydrogen production Xenon arc lamp (300 W, 100 mW/cm2) and ultrasonic mechanical vibrations 1250 μmol h−1 g−1 [69]
Dye degradation Highest rate constant of 0.0224 min−1 for methyl orange solutions
ZnO Hydrothermal reaction No poling Nanowire arrays Length: 1600 nm; diameter: 50 nm ~ 0.4 V Piezoelectric nanogenerator External 500 Pa pressure Close circuit current peak reached ~ 2 nA [47]
Supercapacitor External 3 mV power supply for 0.1 s Close circuit current peak reached ~ 2 nA
CuS/ZnO Hydrothermal reaction No poling Nanowires Diameter: ~ 100 nm; length: ~ 4 μm Dye degradation Xenon lamp (500 W, 200−1100 nm) and ultrasonic probe (200 W) Complete degradation for methylene blue solutions (50 mL, 5 mg/L) within 20 min [80]
ZnO/C Hydrothermal reaction No poling Nanowires Diameter: 500 nm; length: 6 μm 20 mV Dye degradation UV irradiation (50 W, 313 nm) and periodically applied force (1 Hz, 1 cm) Degradation ratio of ~ 96% for methylene blue solutions (100 mL, 5 mg/L) within 120 min [88]
Ag2O/ZnO Thermal evaporation No poling Tetrapod structure Diameter: ~ 200 nm; leg length: ~ 4 μm Dye degradation UV irradiation (50 W) and ultrasonic probe (200 W) Degradation ratio of 99% for methylene blue solutions (100 mL, 5 mg/L) within 2 min [79]
ZnO@TiO2 Hydrothermal reaction No poling Nanofibers Diameter: ~ 20 nm; length: ~ 200 nm Dye degradation High pressure mercury lamp (100 W, 365 nm) and ultrasonic mechanical vibrations (~ 40 kHz, ~ 5.05 × 104 kPa) Degradation ratio of 90% for methyl orange solutions (100 mL, 5 mg/L) within 120 min [109]
ZnO Hydrothermal reaction No poling Nanorods Diameter: ~ 25 nm; length: ~ 1.25 μm Dye degradation Ultrasonic mechanical vibrations Degradation ratio of ~ 80% for acid orange 7 solutions (50 mL, 5 μM) within 50 min [184]
ZnO–PDMS Gas-phase method No poling Tetrapod structure Leg length: ~ 10 μm 22.5 pm/V Dye degradation Ultrasonic mechanical vibrations (40 kHz, 400 W) Degradation ratio of ~ 94% for rhodamine B solutions (40 mL, 5 mg/L) within 120 min [37]
MoSe2 Hydrothermal reaction No poling Nanoflowers 2–3 μm Dye degradation Ultrasonic mechanical vibrations (40 kHz, 250 W) Degradation ratio of ~ 90% for rhodamine B solutions (50 mL, 10 ppm) within 30 s [81]
MoS2 Hydrothermal reaction No poling Nanoflowers 0.5–1 μm Dye degradation Ultrasonic mechanical vibrations (40 kHz, 250 W) Degradation ratio of 93% for rhodamine B solutions within 60 s [72]
MoS2/PDMS Hydrothermal reaction No poling Nanoflowers 0.2–0.4 μm 23 V Dye degradation Ultrasonic mechanical vibrations (40 kHz, 250 W) Degradation ratio of 99% for rhodamine B solutions within 90 min [73]
Triboelectric nanogenerator Output voltage of 23 V for water flow rate of 20 mL/s
PDMS/WS2 Hydrothermal reaction No poling Nanoflowers < 1 μm Dye degradation and antibacterial performance Ultrasonic mechanical vibrations (40 kHz, 300 W) Degradation ratio of 90% for rhodamine B solutions (40 mL, 10 mg/L) within 90 min [82]
PVDF–HFP Crystalline thermoplastic reaction 4 V, 15 h Solid electrolyte sheet Thickness: 4 mm 23 pC/N Self-healing A constant voltage of 4 V A weight gain of 6–7% at anode [186]
PVDF Commercial obtained Polarized Film Thickness: ~ 110 μm ~7 V Self-charging power cell Compressive force (2.3 Hz, 45 N) Voltage increased from 327 to 395 mV within 240 s [44]
CuO/PVDF Spin-coating method Polarized for 30 min under 20 kV/mm at 80 °C Film Thickness: ~ 80 μm ~2.8 V Self-charging power cell Compressive force (1 Hz, 30 N) Voltage increased from 50 to 169 mV within 240 s [180]
PVDF–PZT Spin-coating method Polarized for 30 min under 20 kV/mm at 80 °C Film Thickness: ~ 90 μm 500–600 pC/N ~1.3 V Self-charging power cell Compressive force (1.5 Hz, 10 N) Voltage increased from 210 to 297.6 mV within 240 s [181]
PVDF Spin-coating method Polarized for 30 min under 20 kV/mm at 80 °C Mesoporous film Pore diameter: 700–900 nm; thickness: 2.7 μm 2.84 V Self-charging power cell Compressive force (1.8 Hz, 34 N) Voltage increased from 160 to 299 mV within 250 s [83]
PVDF Spin-coating method Polarized for 2 h under 20 V/μm Highly porous film Pore diameter: 1–3 μm; thickness: 30–40 μm 3.84 V Self-charging power cell Compressive energy (1 Hz, 282 mJ) Voltage increased from 1.2 to 1.4 V within 200 s [84]
PVDF–ZnO Solution-casting method No poling ZnO nanowires in a PVDF film Length of ZnO: 3–5 μm 5 V Self-charging supercapacitor power cell Compressive force (18.8 N) Voltage increased from 35 to 145 mV within 300 s [45]
PVDF–PTFE Commercial obtained Polarized Film Size: 3 × 2.5 cm2; thickness: 110 μm 2.3 V Hybrid nanogenerator Vibration frequency of 3 Hz and temperature variation period of 200 s Carbon steel electrodes can be protected from corrosion for 15 h [90]
Collagen Obtained from rabbits’ bones No poling Self-healing Compression; immersed in SBF for 28 days Appreciable deposition of hydroxyapatite [85]