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A B S T R A C T   

The virus which belongs to the family of the coronavirus was seen first in Wuhan city of China. As it spreads so 
quickly and fastly, now all over countries in the world are suffering from this. The world health organization has 
considered and declared it a pandemic. In this presented research, we have picked up the existing mathematical 
model of corona virus which has six ordinary differential equations involving fractional derivative with non- 
singular kernel and Mittag-Leffler law. Another new thing is that we study this model in a fuzzy environment. 
We will discuss why we need a fuzzy environment for this model. First of all, we find out the approximate value 
of ABC fractional derivative of simple polynomial function (t − a)n. By using this approximation we will derive 
and developed the Legendre operational matrix of fractional differentiation for the Mittag-Leffler kernel frac-
tional derivative on a larger interval [0,b],b⩾1,b ∈ N. For the numerical investigation of the fuzzy mathematical 
model, we use the collocation method with the addition of this newly developed operational matrix. For the 
feasibility and validity of our method we pick up a particular case of our model and plot the graph between the 
exact and numerical solutions. We see that our results have good accuracy and our method is valid for the fuzzy 
system of fractional ODEs. We depict the dynamics of infected, susceptible, exposed, and asymptotically infected 
people for the different integer and fractional orders in a fuzzy environment. We show the effect of fractional 
order on the suspected, exposed, infected, and asymptotic carrier by plotting graphs.   

Introduction 

It is always not possible to find out the deterministic model of such 
physical problems. In 1965, Zadeh’s introduces the concept of fuzzy sets. 
After it, the application of this fuzzy set in modeling has appeared more 
and more. Thus the development and application of fuzzy differential 
equations (FDEs) are rapidly increasing last few years. The branch of 
mathematics named fractional calculus is a well known branch. 
Although it is developing nowadays also. The researchers J. Liouville 
and N. H. Abel introduced and developed the theory of fractional cal-
culus. The reader can found detail description in [1–3]. With the help of 
fractional calculus, we are able to define and developed the derivative 
and integration of non-integer and real order. Many physical phenom-
ena which are not interpreted with integer order derivatives, are easily 
and accurately described with fractional derivatives. The anomalous 

diffusion phenomena is most occurring which is described by time 
fractional diffusion equation. The concept of memory of system is shown 
by fractional order differential equations. We can find out many frac-
tional derivatives in literature like as Caputo, Hadamard, Grünwald- 
Letnikov, Riesz and Riemann–Liouville fractional derivatives. With the 
development of fractional derivatives, the fractional differential equa-
tions have been emerged and they have a lot of applications in many 
fields of science and engineering as in physics, chemistry, economics, 
biology, medical science, data science, image processing and agriculture 
[4–6]. The fractional differential equations and fractional partial dif-
ferential equations is so vouge and we need to find out the solution of 
these differential equations. Many analytical methods are available in 
literature which are so limited and are unable to deal with many types of 
equations. Seeing this difficulty with the analytical methods, the nu-
merical methods and schemes are developed to derive the solution of 

* Corresponding author. 
E-mail address: jose.ga@cenidet.tecnm.mx (J.F. Gómez-Aguilar).  
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fractional differential equations. Some examples of numerical methods 
available in literature are fractional differential transform method [7], 
Adomain decomposition method [8], homotopy perturbation method 
[9], generalized block pulse operational matrix method [10], and pre-
dictor–corrector method [11], etc. The operational matrix method 
which is easy to apply and has great accuracy includes Haar wavelets 
[12], Legendre polynomial [13], Legendre wavelets [14], Chebyshev 
wavelets [15], Genocchi polynomial [16], and Laguerre polynomial 
[17]. 

The first case of novel corona virus was seen in December 2019 in 
Wuhan city if China. This is a new virus which has never seen before. 
Later it known as COVID-19 by WHO. The main symptoms of this virus 
infected peoples are respiratory illness, cough, fever, pain in muscles 
and difficulty in breathing. WHO has declared this disease cause from 
the corona virus as pandemic. It has spread in the whole world in a short 
time. The reason of its spreadness is infected and asymptomatic infected 
peoples. When they came in a contact with healthy person, that person is 
also infected. Mainly it spreads in the from of cough and sneezing drops 
of infected person. So it spread with the conatct of infected person or 
infected surface having virus. There is no medicine or vaccine which can 
cure this. So we can be safe adopting precautions like as make a distance 
with peoples, using face masks and face shield. Human has the capability 
to change environment according to him and thus violated many natural 
rules. Human has created weapons like as gun, bomb, atom and nuclear 
bomb which are so dangerous they can destroy the whole earth. With 
development of science, human has started to create new viruses for bio- 
war. This nature and sources are not ours, we are just using this. 
Mankind started to eat so many things that are not worthy to eat such as 
so many sea animals, bats, and snakes. The misuse of sexual activity led 
to diseases HIV due to which millions of people were dead in the last 
decades. Ebola virus that killed so many people, it is believed that it 
comes from a fruit bat. Lassa fever or recently the Hantavirus is believed 
to come from rats. The mathematically modeling in these days is an 
important tool to study the behavior and dynamics of physical phe-
nomena. Here in this scientific contribution, we present a model of 
corona virus in fuzzy environment with new type of fractional derivative 
with non-singular kernel. 

We have organized the paper in the following manner. The basic 
definitions and concepts of fuzzy calculus and fractional calculus is 
introduced in section 2. As we have used the operational matrix method 
to deal with this fuzzy model, so we derived the operational matrix of 
fractional differentiation in ABC sense with the help of shifted Legendre 
polynomial in section 3. The presented fuzzy model and its description is 
included in section 4. The numerical simulation and validation of model 
with taking a particular example is integrated in section 5. The 
conclusion of our research work in implemented in last section 6. 

Preliminary definitions of fuzzy calculus and fractional calculus 

The concepts of fuzzy sets is applied when uncertainty arises due to 
imprecision and vagueness. To define the fuzzy sets we take a non empty 
set Y and a membership grade function v(y) which is related to each 
member of base set Y. The fuzzy subset of base set X is a non-empty 
subset of X× [0,1]. Considering 

B⊆{(y, u(y)) : y ∈ Y}, (1)  

here B is called fuzzy set and u(y) is a function defined on domain Y with 
co domain [0,1]. Sometimes the function u(y) is used in place of fuzzy set 
B. 

Definition 1. We use the symbol R to denote all the real numbers. We 
say a mapping ̃g : R⟶[0,1] is fuzzy number if it follow these conditions 
[18]  

1. The mapping g̃ is upper semi continuous. 

2. the function g̃ follow the property of convex function. In mathe-
matical form i.e, ̃g(μ yx+(1-μ) z) ⩾min{g̃(y),g̃(z)}with μ ∈ [0, 1] and ∀
y, z ∈ R.  

3. g̃ follow a property named as normality. According to this there exists 
a point z0 ∈ R such that g̃(z0) = 1.  

4. The support of function g̃ demoted by S(g̃) is defined as S(g̃) =

{z ∈ R : g̃(z) > 0}. For function ̃g to be fuzzy number is that S(g̃) is a 
compact set in usual topology. 

The collection of all fuzzy numbers defined on real line is denoted by 
symbol RF. Now for t ∈ [0, 1] the t-level set is defined as 

[g̃]t =
{
{z ∈ R : g̃(z)⩾z}, z ∈ (0, 1],
S(g̃), z = 0, (2)  

where S(g̃) denotes the closure of support of set. From this definition it is 
obvious that t-level set is a closed and bounded interval [̃g− (t), g̃+(t)], 
where ̃g− (t) is left hand end point and ̃g+(t) is right hand end point. The 
scalar multiplication and addition of fuzzy numbers are defined as fol-
lows  

1. g̃ ⊕ h̃ = (g̃− + h̃
−
, g̃+ + h̃

+
), v Λ ⊙ g̃ =

{
(Λg̃− ,Λg̃+), Λ⩾0,
(Λg̃+,Λg̃− ), Λ < 0.

Now the distance function or metric space on the set of fuzzy 
numbers is defined as [19,20] 

χ
(

g̃, h̃
)

= sup
t∈R

max
{⃒
⃒
⃒
⃒g̃

−

(

t
)

− h̃
−
(

t
)⃒
⃒
⃒
⃒,

⃒
⃒
⃒
⃒g̃

+

(

t
)

− h̃
+
(

t
)⃒
⃒
⃒
⃒

}

. (3) 

Here the mapping χ is defined from the set RF × RF to the set R+ ∪ 0. 

Definition 2. Now we define the norm on the space of fuzzy numbers 
as [21] 
⃒
⃒
⃒

⃒
⃒
⃒g̃
⃒
⃒
⃒

⃒
⃒
⃒ = χ

(
g̃, 0̃
)
.

By using the properties of metric space we can find out that ||.|| :
RF⟶R satisfy all properties of a norm. 

Definition 3. The space of all compact and convex functions of space 
Rn are denoted by the notation Kn

c . The definition of generalized 
Hukuhara difference between two sets belonging to Kn

c is defined as 

C⊖gHD = E, ⇔ C = D + E, ⇔ D = C +
(
−
)
E. (4) 

The H-difference is a particular case of Hukuhara difference. 

Definition 4. The H-difference of two fuzzy numbers e and f denoted 
by e ⊖ f , is defined with the help of sum of fuzzy numbers. If there exizts 
a fuzzy number g such that e = f +g then the fuzzy number g is called H- 
difference of numbers e and f. 

Definition 5. After giving the definitions of fuzzy algebra and metrices 
on fuzzy numbers we now define the definition of fuzzy differentiability. 
We consider a function h : (a, b)⟶RF whose co-domain is set of all fuzzy 
numbers belonging to RF then fuzzy differentiability of function h at 
point z0 is defined as follows [22]  

1. We take the fuzzy H-differences h(z0 +k) ⊖ h(z0) and 
h(z0) ⊖ h(z0 − k). If this differences exists then 

lim
l→0+

h(z0 + l ⊖ h(z0))

l
= lim

l→0+

h(z0) ⊖ h(z0 − l)
l

= h
′

(

z0

)

. (5)  

Such type of differentiability is called 1-differentiability on open 
interval (a,b).  

2. Similarly considering the H-differences h(z0) ⊖ h(z0 +l) and 
h(z0 − l) ⊖ h(z0) exists then 
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lim
l→0+

h(z0 ⊖ h(z0 + l))
− l

= lim
l→0+

h(z0 − l) ⊖ h(z0)

− l
= h′

(

z0

)

. (6)  

Such type of differentiability is called 2-differentiability on open 
interval (a,b). 

Fuzzy definition of fractional integral and differential operator 

. 

Definition 1. The α cut set fuzzy definition of fractional integration of 
function Ξ(x) in Riemann–Liouville sense is expressed as 

IγΞ
(

x
))(

α
)

=

[
1

Γ(γ)

∫ x

0
(x − ω)γ− 1Ξ

(

ω
)

dω,

1
Γ(γ)

∫ x

0
(x − ω)

γ− 1Ξ
(

ω
)

dω
]

, (7)  

here γ ∈ R+, x > 0. Now the α level fuzzy differentiation in Rie-
mann–Liouville sense is given by 

Dγ
l Ξ
(

x
)(

α
)

=

[(
d
dx

)n(

Il− γΞ
)(

x
)

,

(
d
dx

)n(

Il− γΞ
)(

x
)]

. (8)  

Definition 2. Caputo definition of fuzzy fractional differentiation with 
α level set is defined as  

with parameters n ∈ N and z ∈ [0,∞[. 

Dρ
cyβ =

⎧
⎨

⎩

0, β∈N∪0 & β< ⌈ρ⌉

ρ (1+β)
ρ(1 − ρ+β)

y− ρ+β, β∈N∪0 & β⩾⌈ρ⌉.,β ∕∈ N & β> ⌊ρ⌋,

(10)  

where ⌊γ⌋ represent the floor function. The fractional operator either 
integration or differentiation follow the property of linearity 

Dγ (M1Ξ1
(
t
)
+M2Ξ2

(
t
))

= M1Dγ
cΞ1
(
t
)
+M2Dγ

cΞ2
(
t
)
, (11)  

with M1 and M2 are constants. 

Fuzzy definition of fractional differentiation with Mittag–Leffler law 
[23–25] 

Letting a function Ξ(t) ∈ H1(0, 1) with H1(0,1) represents the 
Sobolev space. Now we give the α-level fuzzy definition of ABC deriv-
ative of order n − 1 < γ⩽n as follows 

( ABC
0Dγ

t Ξ
(
t
))(

α
)
=

[
B(γ)
n − γ

∫ t

0

∂nΞ
(

w
)

∂wn × Eγ

[ − γ
n − γ

(t − w)γ
]
dw,

=
B(γ)
n − γ

∫ t

0

∂nΞ(w)
∂wn × Eγ

[ − γ
n − γ

(t − w)γ
]
dw
]

. (12) 

The function B(γ) is a special type of function known as normaliza-
tion function which satisfies the property B(0) = B(1) = 1 and Eγ(x) is 
well-known Mittag–Leffler function 

Eγ

(

x

)

=
∑∞

l=0

xl

Γ(lγ + 1)
.

Legendre operational matrix of fractional differentiation 

Numerical approximation of ABC approximation of function (z − c)k 

In the available literature, we have seen that there are many articles 
in which operational matrices of fractional integration and fractional 
differentiation of power law kernel derivative have been derived. The 
Legendre operational matrix of fractional differentiation on a larger 
interval [0, a], a⩾1, a ∈ N is derived in this section. 

Theorem 1. The numerical approximation of fractional derivative of 
function f(z) = (z − c)l with l⩾⌈ρ⌉ is given by the following expression 

ABC
0Dρ

z (z − c)k
=

c(ρ)
n − ρ × k(n) ×

h
3
[
Mρ,k

(
p0, z

)
+ Mρ,k

(
pm, z

)

+4
{

Mρ,k
(
p1, z

)
+ Mρ,k

(
p3, z

)
+ ⋯ + Mρ,k

(
pm− 1, z

)}

+ 2
{

Mρ,k
(
p2, z

)
+ Mρ,k

(
p4, z

)
+ ⋯ + Mρ,k

(
pm− 2, z

)}]
,

with n − 1 < ρ < n. 

Proof. From the definition (9),Dnzk = 0, k = 0,1,⋯, n − 1 and equip-
ped with the inequality k⩾⌈ρ⌉ we have the following 

ABC
0Dρ

z (z − c)k
=

c(ρ)
n − ρ

∫ z

0
Dn(p − c)kEρ

( − ρ
n − ρ(z − p)ρ

)
dz

=
c(ρ)
n − ρ

∫ z

0
k(n)(p − c)k− nEρ

( − ρ
n − ρ(z − p)ρ

)
dz

=
c(ρ)
n − ρk(n)

∫ z

0
pk− nEρ

( − ρ
n − ρ(z − p)ρ

)
dz,

where k(n) is defined as k(n) = k(k − 1)(k − 2)⋯(k − (n − 1)). The above 
integration is a complicated integration which is too difficult to solve so 
we can adopt any numerical scheme like as Simpson 13 

Dγ
cΞ

⎛

⎜
⎜
⎜
⎜
⎝

x

⎞

⎟
⎟
⎟
⎟
⎠

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[dnΞ
(

x
)

dxn ,
dnΞ(x)

dxn

]

, γ = n ∈ N,

[
1

Γ(γ)

∫ x

0
(x − ς)n− γ− 1Ξ l

(

ς
)

dς, 1
Γ(γ)

∫ x

0
(x − ς)n− γ− 1Ξl

(

ς
)

dς
]

, n − 1 < γ < n,

(9)   
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=
c(ρ)
n − ρ × k(n) ×

h
3
[
Mρ,k

(
p0, z

)
+ Mρ,k

(
pm, z

)

+4
{

Mρ,k
(
p1, z

)
+ Mρ,k

(
p3, z

)
+ ⋯ + Mρ,k

(
pm− 1, z

)}

+ 2
{

Mρ,k
(
p2, z

)
+ Mρ,k

(
p4, z

)
+ ⋯ + Mρ,k

(
pm− 2, z

)}]
.

For numerical integration scheme implementation we have divided 
the interval [0, z] into m equal sub parts 

h =
1 − 0

m
,Mρ,k

(

p, z
)

= pk− nEρ

( − ρ
n − ρ(z − p)ρ

)
,

p0 = 0, p1 =
1
m
, p2 =

2
m

⋯pm = 1.

Definition of extended Legendre polynomial defined on interval [0, a]

We have used the shifted Legendre polynomial to derive the frac-
tional differentiation operational matrix. The series definition and basic 
properties is used throughout the article. These polynomial satisfies the 
orthogonal property on interval [ − 1,1]. But our computation domain is 
[0, a] so we have to shift these polynomials on from interval [ − 1,1] to 
interval [0, a]. The following expression represent the Legendre poly-
nomial 

Ψi

(

z

)

=
∑i

k=0

(
k
i

)(
k + i

i

)(z − a
a

)i
. (13) 

The orthogonality condition is changed as according the shifted 
Legendre polynomial 

∫ a

0
Ψj

⎛

⎝z

⎞

⎠Ψl

⎛

⎝z

⎞

⎠ =

⎧
⎨

⎩

a
2i + 1

, k = j,

0 k ∕= j.
(14) 

We can write a function χ(z) belongs to the space k2[0, a] in a linear 
combination of shifted Legendre polynomials as follows 

χ
(

z

)

= χN

(

z

)

=
∑N

k=0
rjΨi

(

z

)

, (15) 

By using orthogonality condition, we can find out the coefficients rj 

as follows 

rj =
(2j + 1)

a

∫ a

0
χ
(

z
)

Ψj

(

z
)

= AT ΠN

(

z
)

. (16)  

where, 

AT =
(
a0, a1,⋯, aN− 1

)
.

ΠN(x) = (ψ0(x),ψ1(x),⋯,ψN− 1(x)).
(17)  

Theorem 2. Letting ΠN(y) denotes the column vector of shifted Leg-
endre polynomial, then numerical approximation of fractional 

derivative of this Legendre vector in terms of operational matrix is given 
by 
ABC

0Dγ
t ΠN

(
y
)
= RγΠN

(
y
)
, (18)  

with n − 1 < γ < n. The Rγ denotes the N × N size operational matrix of 
fractional differentiation 

Rγ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮

∑⌈ρ⌉

l=⌈ρ⌉
ξ⌈ρ⌉.,l,1

∑⌈ρ⌉

l=⌈ρ⌉
ξ⌈ρ⌉.,0,l ⋯

∑⌈ρ⌉

l=⌈ρ⌉
ξ⌈ρ⌉.,m− 1,l

⋮ ⋮ ⋯ ⋮
∑i

l=⌈ρ⌉
ξi,0,l

∑i

l=⌈ρ⌉
ξi,1,l ⋯

∑i

l=⌈ρ⌉
ξi,m− 1,l

⋮ ⋮ ⋯ ⋮
∑m− 1

l=⌈ρ⌉
ξm− 1,0,l

∑m− 1

l=⌈ρ⌉
ξm− 1,1,l ⋯

∑m− 1

l=⌈ρ⌉
ξm− 1,m− 1,l

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where ξi,j,l can be evaluate by the following formula 

ξi,j,l =

(
i

l

)(
l + i

l

)
1
bl ×

B(ρ)
n − ρl(n) ×

(2j + 1)
bl+1

∑j

l=0

(
j

l

)(
l + j

l

)

×(λ0 + λ1 + ⋯ + λM).

The values of i and j taken from the indexed set i = ⌈ϑ⌉.⋯,N − 1 and 
j = 0,1,⋯,N − 1. 

Proof. In view of Theorem 1, the value of ABC
0Dρ

t (y − b)l is as follows 

ABC
0Dρ

y(y − b)l
=

B(ρ)
n − ρ × l(n) ×

h
3
[
Mρ,l
(
p0, y

)
+ Mρ,l

(
pm, y

)

+4
{

Mρ,l
(
p1, y

)
+ Mρ,l

(
p3, y

)
+ ⋯ + Mρ,l

(
pm− 1, y

)}

+ 2
{

Mρ,l
(
p2, y

)
+ Mρ,l

(
p4, y

)
+ ⋯ + Mρ,l

(
pm− 2, y

)}]
.

Now from the definition of Legendre polynomial (series form) and 
using the linearity of fractional derivative 

ABC
0Dρ

yΨi

(
y
)

=
∑i

l=0

⎛

⎝
l

i

⎞

⎠

⎛

⎝
l + i

i

⎞

⎠ABC
0Dρ

y

(
y − b

b

)i

, i = 0, 1,⋯

=
∑i

l=0

⎛

⎝
l

i

⎞

⎠

⎛

⎝
l + i

i

⎞

⎠ 1
bi ×

ABC
0Dρ

y(y − b)i
,

=
∑i

l=⌈ρ⌉

(
l

i

)(
l + i

i

)
1
bi ×

B(ρ)
n − ρ × l(n) ×

h
3
[
Mρ,l
(
p0, y

)
+ Mρ,l

(
pm, y

)

+4
{

Mρ,l
(
p1, y

)
+ Mρ,l

(
p3, y

)
+ ⋯ + Mρ,l

(
pm− 1, y

)}

+ 2
{

Mρ,l
(
p2, y

)
+ Mρ,l

(
p4, y

)
+ ⋯ + Mρ,l

(
pm− 2, y

)}]
.

We can find out the (i, j)th element ϖi,j of fractional differentiation 
operational matrix with the help of inner product as follows 

=
c(ρ)
n − ρk(n) ×

h
3

[
pk− n

0 Eρ

( − ρ
n − ρ(z − p0)

ρ
)
+ pk− n

m Eρ

( − ρ
n − ρ(z − pm)

ρ
)

+4
{

pk− n
1 Eρ

( − ρ
n − ρ(z − p1)

ρ
)
+ pk− n

3 Eρ

( − ρ
n − ρ(z − p3)

ρ
)
+ ⋯ + pk− n

m− 1Eρ

( − ρ
n − ρ(z − pm− 1)

ρ
)}

+ 2
{

pk− n
2 Eρ

( − ρ
n − ρ(z − p2)

ρ
)
+ pk− n

4 Eρ

( − ρ
n − ρ(z − p4)

ρ
)
+ ⋯ + pk− n

m− 2Eρ

( − ρ
n − ρ(z − pm− 2)

ρ
)}]

,
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ABC
0Dρ

y Ψi

(

y

)

=
∑m− 1

j=0
ϖi,jψ j

(

y

)

,

ϖi,j =
〈

ABC
0Dρ

yΨi

(
y
)
,Ψj

(
y
)〉

,

(19)  

=
∑i

l=⌈ρ⌉

(
i

l

)(
l + i

l

)
1
bl ×

B(ρ)
n − ρl(n) ×

h
3
[〈

Mρ,l
(
s0, y

)
,ψj
(
y
)〉

+
〈
Mρ,l
(
sM , y

)
,ψj
(
y
)〉

+4
{〈

Mρ,l
(
s1, y

)
,ψj
(
y
)〉

+
〈
Mρ,l
(
s3, y

)
,ψj
(
y
)〉

+⋯ +
〈
Mρ,l
(
sM− 1, y

)
,ψj
(
y
)〉}

+ 2
{〈

Mρ,l
(
s2, y

)
,ψj
(
y
)〉

+
〈
Mρ,l
(
s4, y

)
,ψj
(
y
)〉

+⋯ +
〈
Mρ,l
(
sM− 2, y

)
,ψj
(
y
)〉}]

. (20) 

We evaluate the inner products in the above expression by using the 
orthogonal property of Legendre polynomials 
〈

Mρ,l

(

sk, y
)

,Ψj

(

y
)〉

=
(2j + 1)

b

∫ b

0
Mρ,l

(

sk, y
)

Ψj

(

y
)

dy, k = 0, 1,⋯M,

(21)  

=
(2j + 1)

b

∫ b

0
Mρ,p

⎛

⎝sk, y

⎞

⎠
∑j

l=0

⎛

⎝
j

l

⎞

⎠

⎛

⎝
l + j

l

⎞

⎠

(
(y − b)

b

)l

dy,

=
(2j + 1)

bl+1

∑j

l=0

⎛

⎝
j

l

⎞

⎠

⎛

⎝
l + j

l

⎞

⎠

(∫ b

0
Mρ,p

(

sk, y
)

(y − b)ldy
)

,

=
(2j + 1)

bl+1

∑j

l=0

(
j

l

)(
l + j

l

)

×
h
3
[
Mρ,l
(
p0, y

)
+ Mρ,l

(
pm, y

)

+4
{

Mρ,l
(
p1, y

)
+ Mρ,l

(
p3, y

)
+ ⋯ + Mρ,l

(
pm− 1, y

)}

+ 2
{

Mρ,l
(
p2, y

)
+ Mρ,l

(
p4, y

)
+ ⋯ + Mρ,l

(
pm− 2, y

)}]
.

=
(2j + 1)

bl+1

∑j

l=0

(
j

l

)(
l + j

l

)
B(ρ)
n − ρ × l(n)λs,

where, 

λp =
h
3
[
Mρ,p

(
pl, y0

)
0l + Mρ,l

(
pl, yM

)
Ml

+4
{

Mρ,l
(
pl, y1

)
1 + Mρ,l

(
pl, y3

)
3l + ⋯ + Mρ,l

(
pl, tM− 1

)
(M − 1)l}

+ 2
{

Mρ,l
(
pl, y2

)
2l + Mρ,l

(
pl, y4

)
4l + ⋯ + Mρ,l

(
pl, yM− 2

)
(M − 2)l}]

.

We obtained the following expression ϖi,j after putting the value of 
all inner products in equation (19) 

ϖi,j =
∑i

l=⌈ρ⌉

(
i

l

)(
l + i

l

)
1
bl ×

B(ρ)
n − ρl(n) ×

(2j + 1)
bn+1

∑j

n=0

(
j

n

)(
n + j

n

)

×(λ0 + λ1 + ⋯ + λM).

(22) 

Assuming ϖi,j =
∑i

l=⌈ρ⌉ξi,j,l we get the final desired result 

ξi,j,l =

(
i

l

)(
l + i

l

)
1
bl ×

B(ρ)
n − ρl(n) ×

(2j + 1)
bn+1

∑j

n=0

(
j

n

)(
n + j

n

)

×(λ0 + λ1 + ⋯ + λM).

This operational matrix is derived for fractional order. Now to find 
the operational matrix of integer order we can use the following 
expression 

ρi,j =

{
ζj, j = i − l,
0, otherwise, (23)  

where, 

l =
{

1, 3,⋯m, m ∈ odd,
1, 3,⋯m − 1, m ∈ even. (24)  

Table 1 
Parameters description and their numerical values.  

Used fuzzy 
parameters ↓  

Numerical value Description of parameters 

Λ  [0.01,0.1] Rate of removing virus from 
reservoir 

ω̃p  [0.001,0.01] Contribution of virus from Ap  

to M  
ϱp  [0.000398,0.00698] Contribution of virus from Ip  

to M  
τp  [0.09871,0.1] Recovery rate of Ip  

τap  [0854302,1] Recovery rate of Ap  

ρp  [0.005,0.01] Incubation period 
ωp  [0.0047876,0.00878] Incubation period 
ηw  [0.000001231,

0.000024]
Disease transmission coefficient 

ψ  [0.02,1] Transmissibility multiple 
ηp  [0.05,0.1] Contact rate 
Πp  μp × Np(0) Birth rate 
μp  

[
1

365 × 80
,

1
365 × 75

]
Death rate 

Np(0) 8266000 Initial population of city  

Fig. 1. Variation of absolute error for susceptible, exposed, infected and asymptotically infected people in case of lower solution for N = 6.  
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with 

ζj = 2 ×
(2j + 1)

b
.

Fuzzy mathematical model of COVID-19 and why we need of a 
fuzzy model 

In this presented section, we are going to describe a fuzzy mathe-
matical model for COVID-19 and used parameters and data. We also 
discuss why fuzzy mathematical model is more appropriate for this 
model. Considering Np represent the total population of people. We can 
categorized it into 5 parts Ip represents Infected people, Sp denotes 

Susceptible people, Rp denotes Recovered people, Ep denotes Exposed 
people, Ap is corresponds to Asymptotically infected people, and Np =

Sp + Ep + Ip + Ap + Rp. the birth rate and death rate is denoted by 
parameters Πp and μp respectively. The conversion of susceptible people 
into infected people through sufficient contact is denoted by ηpSpIp. The 
disease transmissibility coefficient is denoted by ηp. The conversion of 
susceptible people into asymptotically infected people through suffi-
cient contact is denoted by ψηpApSp with ψ transmissibility multiple of 
Ap to Ip and the values of ψ lies in interval [0,1]. If the value of ψ is 1 then 
contact with asymptotically infected people is considered as contact 
with infected people and ψ = 0 is corresponds to the no transmissibility. 

Fig. 2. Variation of absolute error for susceptible, exposed, infected and asymptotically infected people in case of upper solution for N = 6.  

Fig. 3. Graphical representation of Sp(t) for lower, upper and both solution for different fractional order for N = 4.  
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The parameters ωp and ϱp is corresponds to rate from which susceptible 
people join the category of infected and asymptotatic infected people. 
The τp and τap is corresponds to the removal and recovery rate from the 
class Ip and Ap to the class Rp. The infection from seafood market or 
reservoir is denoted by function M. The disease transmission coefficient 
is denoted by parameter ηw with term ηwSpM. The parameters ωp and ϱp 

is corresponds to the contribution of virus from symptomatic infected 
and asymptomatically infected to the reservoir. The removing rate of 
virus from the reservoir is denoted by parameter Λ. 

The parameters used in model have no fixed value they have a range. 
Like as contact rate is never fixed, rate of removing virus from reservoir, 
contribution of virus to M by infected and asymptotically infected peo-
ple all these parameters have value in the range of an interval. So we 
take the fuzzy version of COVID-19 model because in fuzzy model pa-
rameters are fuzzy numbers more precisely intervals. Thus the fuzzy 
model can depict the dynamics and behaviour of unknown parameters 
number of susceptible, exposed and infected peoples in more precise and 
good way. We present this fuzzy model as follows [26]. 

ABC
0Dγ1

t S̃p

(

t

)

= ⊖
ηp

(
ψÃp ⊕ ĨP

)
S̃p

Np
⊖ μpS̃p ⊖ ηwS̃pM̃ ⊕ Πp,

ABC
0Dγ2

t Ĩp

(
t
)
=
(

1 ⊖ θp

)
ωpẼp ⊖ Ĩp

(
μp ⊕ τp

)
,

ABC
0Dγ3

t Ẽp

(

t

)

= ηwS̃pM ⊖ θpẼpρp ⊖

(

1 ⊖ θp

)

Ẽpωp ⊕
S̃p

(
ψÃp ⊕ ĨP

)
ηp

Np
,

ABC
0Dγ4

t Ãp

(
t
)
= ⊖

(
τap ⊕ μp

)
Ãp ⊕ θpẼpρp,

ABC
0Dγ5

t R̃p

(
t
)
= τpĨp ⊖ μpR̃p ⊕ τapÃp,

ABC
0Dγ6

t M̃
(

t
)
= Ĩpϱp ⊖ ΛM̃ ⊕ ωpÃp.

(25) 

We consider the following equations as initial conditions for our 
model 

Sp
(
0
)
=
[
s0, s1

]
, Ip
(
0
)
=
[
i0, i1

]
,Ep
(
0
)
=
[
e0, e1

]
,

Ap
(
0
)
=
[
a0, a1

]
,Rp
(
0
)
=
[
r0, r1

]
,M
(
0
)
=
[
m0,m1

]
.

(26) 

We have picked up the value of parameters from the literature [26]. 
The value of fuzzy initial conditions are taken as follows 

s0 =8×106,s1 =9×106,i0 =200,i1 =300e0 =2×105,e1 =3×105,a0 =200,
a1 =300,r0 =0,r1 =0,m0 =50000,m1 =60000.

(see Table 1) 

Fig. 4. Graphical representation of Ap(t) for lower, upper and both solution for different fractional order for N = 4.  
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We can rewrite the model in lower and upper bound form as follows 

ABC
0Dγ1

t Sp

⎛

⎝t

⎞

⎠ = ⊖

ηp

(

ψAp ⊕ IP

)

Sp

Np
⊖ μpSp ⊖ ηwSp M ⊕ Πp,

ABC
0Dγ2

t Ip

(

t
)

=

(

1 ⊖ θp

)

ωpEp ⊖ Ip

(

μp ⊕ τp

)

,

ABC
0Dγ3

t Ep

⎛

⎝t

⎞

⎠ = ηwSp M ⊖ θpEp ρp ⊖

⎛

⎝1 ⊖ θp

⎞

⎠Ep ωp ⊕

Sp

(

ψAp ⊕ IP

)

ηp

Np
,

ABC
0Dγ4

t Ap

(

t
)

= ⊖

(

τap ⊕ μp

)

Ap ⊕ θpEp ρp,

ABC
0Dγ5

t Rp

(

t
)

= τpIp ⊖ μpRp ⊕ τapAp ,

ABC
0Dγ6

t M
(

t
)

= Ip ϱp ⊖ ΛM ⊕ ωpAp . (27)  

ABC
0Dγ1

t Sp

(

t

)

= ⊖
ηp

(
ψAp ⊕ IP

)
Sp

Np
⊖ μpSp ⊖ ηwSpM ⊕ Πp,

ABC
0Dγ2

t Ip

(
t
)
=
(

1 ⊖ θp

)
ωpEp ⊖ Ip

(
μp ⊕ τp

)
,

ABC
0Dγ3

t Ep

(

t

)

= ηwSpM ⊖ θpEpρp ⊖

(

1 ⊖ θp

)

Epωp ⊕
Sp

(
ψAp ⊕ IP

)
ηp

Np
,

ABC
0Dγ4

t Ap

(
t
)
= ⊖

(
τap ⊕ μp

)
Ap ⊕ θpEpρp,

ABC
0Dγ5

t Rp

(
t
)
= τpIp ⊖ μpRp ⊕ τapAp,

ABC
0Dγ6

t M
(

t
)
= Ipϱp ⊖ ΛM ⊕ ωpAp. (28) 

After derivation of operational matrix of fractional differentiation, 
we use this operational matrix in approximation of unknown function 
available in the model 

S̃p

(

t

)

=
∑N− 1

j=0
sj ⊙ Ψj

(

t

)

= ST .ΠN , Ẽp

(

t

)

=
∑N− 1

j=0
ej ⊙ Ψj

(

t

)

= ET .ΠN ,

Ĩp

(

t

)

=
∑N− 1

j=0
ij ⊙ Ψj

(

t

)

= IT .ΠN , Ãp

(

t

)

=
∑N− 1

j=0
aj ⊙ Ψj

(

t

)

= AT .ΠN ,

R̃p

(

t

)

=
∑N− 1

j=0
rj ⊙ Ψj

(

t

)

= RT .ΠN , M̃

(

t

)

=
∑N− 1

j=0
mj ⊙ Ψj

(

t

)

= MT .ΠN ,

(29)  

where S = [sj]1×N,E = [ej]1×N,A = [aj]1×N,R = [ij]1×N,M = [mj]1×N and 
I = [rj]1×N represents the row vector of fuzzy unknowns, and ΠN(x) =
(ψ0(x),ψ1(x),⋯,ψN− 1(x))

T denotes the column vector. Approximating 
the initial conditions with the help of equation (23), we have 

ABC
0Dγ1

t Sp
(
t
)
= ST .Rγ1 .ΠN ,

ABC
0Dγ3

t Ep
(
t
)
= ET .Rγ3 .ΠN ,

ABC
0Dγ2

t Ip
(
t
)
= IT .Rγ2 .ΠN ,

ABC
0Dγ4

t Ap
(
t
)
= AT .Rγ4 .ΠN ,

ABC
0Dγ5

t Rp
(
t
)
= RT .Rγ5 .ΠN ,

ABC
0Dγ6

t M
(
t
)
= MT .Rγ6 .ΠN ,

(30)  

and from the equation (12), yields 

ST .ΠN =
[
s0, s1

]
, IT .ΠN =

[
i0, i1

]
,ET .ΠN =

[
e0, e1

]
,

AT .ΠN =
[
a0, a1

]
,RT .ΠN =

[
r0, r1

]
,MT .ΠN =

[
m0,m1

]
.

(31) 

The residual functions are obtained as follows with the help of 
equations (29) and (30)   

Now collocating equation (31) and (32) at suitable collocation points 
between the interval [0,a], the non-linear system of algebraic equation is 
find out, the system can be solved by any numerical method and we get 
the value of unknowns. By putting these values in equation (30) we get 
the desired solution of model. 

Results and discussion 

This section contains the results that we find out in our study. We 
have used the Wolfram Mathematica version-11.3 to compute all nu-
merical computations. First of all we give a example whose error table 
will depict the validity and accuracy of method. 

Example: We consider the following numerical example with γ1 =

γ2 = γ3 = γ4 = γ5 = γ6 = 1. 

ABC
0Dγ1

t S̃p

(

t

)

=⊖
ηp

(
ψÃp⊕ ĨP

)
S̃p

Np
⊖μpS̃p⊖ηwS̃pM̃⊕Πp+ f̃1

(

t

)

,

ABC
0Dγ2

t Ĩp

(
t
)
=
(

1⊖θp

)
ωpẼp⊖ Ĩp

(
μp⊕τp

)
+ f̃2

(
t
)
,

ABC
0Dγ3

t Ẽp

(

t

)

=ηwS̃pM⊖θpẼpρp⊖

(

1⊖θp

)

Ẽpωp⊕
S̃p

(
ψÃp⊕ ĨP

)
ηp

Np
+ f̃3

(

t

)

,

ABC
0Dγ4

t Ãp

(
t
)
=⊖

(
τap⊕μp

)
Ãp⊕θpẼpρp+ f̃4

(
t
)
,

ABC
0Dγ5

t R̃p

(
t
)
=τpĨp⊖μpR̃p⊕τapÃp+ f̃5

(
t
)
,

ABC
0Dγ6

t M̃
(

t
)
= Ĩpϱp⊖ΛM̃⊕ωpÃp+ f̃6

(
t
)
.

(33) 

Σ1

(

t
)

= ST .Rγ1 .ΠN ⊙
ηp
(
ψAT .ΠN ⊙ IT .ΠN

)(
ST .ΠN

)

Np
⊙ μp

(

ST .ΠN

)

⊙ ηw

(

ST .ΠN

)(

MT .ΠN

)

⊖ Πp,

Σ2

(

t
)

= ET .Rγ2 .ΠN ⊕
ηp

(
ψAT .ΠN ⊕ IT .ΠN

)(
ST .ΠN

)

Np
⊖ ηw

(

ST .ΠN

)(

MT .ΠN

)

⊕ θp

(

ET .ΠN

)

ρp,

⊕
(
1 ⊖ θp

)(
ET .ΠN

)
ωp ⊕ μp

(
ET .ΠN

)
,

Σ3
(
t
)
= IT .Rγ3 .ΠN ⊕

(
1 ⊖ θp

)
ωp
(
ET .ΠN

)
⊖
(
IT .ΠN

)(
μp ⊖ τp

)
,

Σ4
(
t
)
= AT .Rγ4 .ΠN ⊕

(
τap ⊕ μp

)(
AT .ΠN

)
⊖ θp

(
ET .ΠN

)
ρp,

Σ5
(
t
)
= RT .Rγ5 .ΠN ⊕ τp

(
IT .ΠN

)
⊕ μp

(
RT .ΠN

)
⊖ τap

(
AT .ΠN

)
,

Σ6
(
t
)
= MT .Rγ6 .ΠN ⊖

(
IT .ΠN

)
ϱp ⊕ ΛM ⊖ ωp

(
AT .ΠN

)
.

(32)   
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The force functions f̃1(t)⋯f̃6(t) are chosen in such a way that exact 
solution of above problem is Sp(t)=t+[s0,s1],Ip(t)=t2+[e0,e1],Ip(t)=
t2+[i0,i1],Ap(t)=t2+[a0,a1],Rp(t)=t2+[r0,r1] and M(t)= t2+ [m0, m1]. 

We see from the graphs of errors for different unknowns that our 
method is valid and feasible for a system of fuzzy fractional ordinary 
differential equations with Mittag–Leffler law. Now we study the dy-
namics of susceptible, exposed, infected and asymptotically infected 
people with different fractional order. Fig. 1(a) is plotted between sus-
ceptible people versus time in case of upper solution and Fig. 1(b) is 
plotted between exposed people versus time in case of lower solution. 
We see in Fig. 1(a) and Fig. 1(b) both that number of exposed people 
increases with time. We observe that this growth increases as we in-
creases the fractional order γ2 from 0.7 to 1. Fig. 2(a) and Fig. 2(b) are 
plotted between asymptotically infected people Ip(t) versus time in case 
of lower and upper solution. Fig. 2(a) and Fig. 2(b) predicts that number 
of asymptotically infected people will increase with time. Fig. 3(a) and 
Fig. 3(b) represents the Sp(t) for lower, upper and both solution for 
different fractional order for N = 4. Fig. 4(a) and Fig. 4(b) represents the 
Ap(t) for lower, upper and both solution for different fractional order for 
N = 4. Fig. 5(a) and Fig. 5(b) represents the growth of infected people 
Ip(t) and Ep(t) with time, respectively. In both case lower and upper 
solution case this growth increases. And as fractional order increases 
from 0.7 to integer order 1 this growth increases with order in both 
upper and lower case. Fig. 5(b) is plotted between fuzzy unknown 
function named as number of exposed people versus time. The number 
of exposed people increases like exponentially behavior with time and 
with increment in fractional order in both upper and lower case solution. 
To study the behavior of this virus with contacting to infected people, we 
plotted the graph between the infected people Ip(t) versus time. We see 

in Fig. 6 that number of infected people increases with time. And an 
important fact can be seen that it increases as contact rate ηp increases. 

Conclusion 

The present paper is devoted to numerical study of fractional 
mathematical model of COVID-19 in fuzzy environment. We have used 
the non-singular fractional derivative with Mittag–Leffler law. First of 
all, we derived the numerical approximation of fractional derivative of 
polynomial function (t − a)n. By using this approximation we developed 
the operational matrix of fractional differentiation on domain [0,a],a⩾1. 
We solved COVID-19 model by using Legendre operational matrix. From 
the error graphs, we can conclude that our method is valid for a system 
of fuzzy fractional ordinary differential equation with Mittag–Leffler law 
and has a good accuracy. The dynamics of model with different frac-
tional exponent is depicted by figures with showing the effect of fuzzy 
environment. The effect of contact rate on infected persons is also shown 
graphically. Our study is consistent with practical results which say this 
virus spread and no of infected people increases with increase in contact 
rate. 
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Fig. 5. Graphical representation of Ip(t) and Ep(t) for different fractional order for N = 4.  

Fig. 6. Graphical representation of Ip(t) with different contact rate case1-[0.05,
0.1], case 2-[50, 100] and case 3-[100,200] for N = 4. 
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