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Abstract

High-throughput sequencing (HTS) has revolutionized researchers’ ability to study the human 

transcriptome, particularly as it relates to cancer. Recently, HTS technology has advanced to the 

point where now one is able to sequence individual cells (i.e., “single-cell sequencing”). Prior to 

single-cell sequencing technology, HTS would be completed on RNA extracted from a tissue 

sample consisting of multiple cell types (i.e., “bulk sequencing”). In this chapter, we review the 

various bioinformatics and statistical methods used in the processing, quality control, and analysis 

of bulk and single-cell RNA sequencing methods. Additionally, we discuss how these methods are 

also being used to study tumor heterogeneity.
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1 Introduction

Cancer research is becoming more computational focused in which researchers require 

working knowledge of data science methods to mine and extract new insights from large 

molecular datasets to derive novel hypotheses. Much of this need stems from the initial 

sequencing of the human genome to the advent of single-cell sequencing technologies, 

which has resulted in an explosion in the ability of cancer researchers to generate and 

acquire high-dimensional data. The most common type of ‘omic data currently generated in 

the study of cancer biological systems is mRNA gene expression or transcriptomic data.

Uncontrolled cell growth and proliferation is a hallmark feature of cancer. In doing so, genes 

that regulate cell growth and differentiation are altered, thus leading to the uncontrollable 

growth and oncogenesis. Often, these changes in gene regulation are caused by mutations 

that disrupt the “normal” function of the gene and the downstream protein, such as in the 

case of p53 [1]. In other cases, the gene regulation is changed by aberrant DNA methylation, 
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where by silence the expression of a given gene [2]. Thus, studying the gene expression 

gives us clues into the biological mechanism of oncogenesis, along with tumor progression 

and growth. Additionally, gene expression has been used to subclassify a tumor class into 

smaller, more homogeneous molecular subtypes. For example, gene expression studies have 

been able to successfully subclassify breast cancer tumors into four to six molecular 

subtypes (luminal A, luminal B, HER2-enriched, triple-negative/basal-like, normal-like, 

claudin low) [3–7].

With the advances in technology from microarrays to high-throughput sequencing (HTS), 

one is able to detect other transcriptomic events, such as gene fusions or chimeras, isoform 

expression, and allelic expression [8]. Recently, HTS technology has advanced to the point 

that now one is able to sequence individual cells (i.e., “single-cell sequencing”) [9, 10]. Prior 

to single-cell sequencing technology, HTS would be completed on RNA extracted from a 

tissue sample made up of multiple cell types (i.e., “bulk sequencing”). The difference 

between single cell sequencing and bulk sequencing of RNA is that in the former the 

sequencing library represents a single cell while the latter represents a population of cells 

(Fig. 1). Single-cell technology allows researchers study the transcriptome of different cells 

within the same tissue type. This technology is particular useful in studying cancer 

immunology and the dissection of tumor heterogeneity, as tumors and the stromal 

component of tumors are a composition of (1) different cancer cells developed from 

different genomic events (i.e., clones, tumor heterogeneity) [11, 12] and (2) mixture of 

cancer cells and immune cells (i.e., tumor infiltrating lymphocytes (TILs)) [13, 14]. In the 

following sections we will outline the various bioinformatics and statistical methods used in 

the analysis of bulk and single-cell RNA sequencing.

2 Datasets Used to Illustrate the Methods

Melanoma is the fifth most common malignance in the United States and it is estimated that 

96,480 individuals will be diagnosed with melanoma in 2019 and that an estimated 7230 

will die from melanoma [15]. Many genomic studies have been conducted to understand the 

molecular features of melanoma. Data from The Cancer Genome Atlas (TCGA) determined 

four major subtypes of cutaneous melanoma: BRAF mutant (52% of tumors), RAS mutant, 

NF1 mutant, and Triple Wild-Type [16]. It was also found that the immune system plays a 

central role in the progression and treatment response in melanoma patients. To better 

understand the influence of immune system and tumor heterogeneity in melanoma, many 

studies have recently been completed to understand melanoma at the single-cell level [17–

20]. To illustrate the bioinformatic and statistical methods used in the analysis of bulk and 

single-cell RNA-sequencing, we will use data from the TCGA melanoma study [16] and the 

Tirosh et al. study [20].

2.1 Bulk RNA-Sequencing Study: TCGA Skin Cancer Study

The RNA-seq summarized gene expression levels of skin cutaneous melanoma study 

(SKCM) using data obtained from TCGA project were downloaded via Genomic Data 

Commons (GDC) [16]. To illustrate differential expression analysis using RNA-seq data, set 

out to determine differentially expressed genes between primary tumors (N = 67) and 
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metastatic tumors (N = 213). After filtering nonexpressed or low-expressed genes based on 

counts per million (CPM), 22,236 genes with CPM values above 1 in at least four libraries 

remain. To illustrate assessment of batch effects, technical artifacts were downloaded from 

MBatch (https://bioinformatics.mdanderson.org/tcgabatcheffects) for the SKCM TCGA 

data. This data set included the following variables: tissue source site (25 levels), plate ID 

(16 levels), batch ID (14 levels), and ship date (14 levels).

2.2 Single Cell Sequencing Study: Tirosh et al. Study

Tirosh et al. [20] measured single-cell RNA-seq gene expression of 4645 melanoma, 

immune, and stromal cells from 19 melanoma tumors. These tumors included one primary 

acral melanoma, ten metastases to lymphoid tissues, and eight metastases to distant sites. 

The immune (CD45+) and nonimmune (CD45−, including melanoma and stromal) cells 

were sorted into 96-well plates by flow cytometry (fluorescence-activated cell sorting). 

Single cell RNA was then isolated and sequenced with SMART-Seq2 protocol [21]. The 

gene expressions were quantified as y = log2 (TPM + 1), where TPM refers to transcripts 

per million. Cells with either fewer than 1700 detected genes or average housekeeping gene 

expression below 3 were excluded.

3 Statistical and Bioinformatics Methods for Analysis of Bulk RNA-Seq 

Data

Current RNA-seq protocols still possess several essential biases and limitations, such as 

nucleotide composition bias, GC content, and polymerase chain reaction artifact or 

contaminations [22, 23]. Raw RNA-seq data must be checked and processed by quality 

control (QC) procedures to ensure accurate transcript measurements. Initial steps in the QC 

process typically involve assessing such biases of the raw reads using metrics generated by 

the sequencing platform or calculated directly from the raw reads (Table 1). One of the most 

popular tools for the generation of these quality metrics is FastQC (https://

www.bioinformatics.babraham.ac.uk/projects/fastqc/). The RNA-seq raw data and alignment 

files include various formats such as FASTA to store reference genome [24], gene transfer 

format (GTF) to store transcript/gene annotations, FASTQ to store raw read data [25], and 

the sequence alignment map (SAM/BAM) to store read alignments [26]. RNA-seq analysis 

typically is consisted of major steps including raw data quality control (QC), read alignment, 

transcriptome reconstruction, expression quantification, and end with downstream analysis 

(Fig. 2).

3.1 Quality Control of RNA-Seq Data

QC of raw data should be performed as the initial step which involves assessing such biases 

using metrics generated by the sequencing platform or calculated directly from the raw 

reads. In addition, depending on the RNA-seq library construction strategy and sequencing 

[27], trimming strategies include “adapter trimming” and “quality trimming” can be used to 

remove low-quality reads, trim adaptor sequences, and eliminate poor-quality bases. Adapter 

trimming is not necessary as most recent sequencers provide raw read in which the adapters 

are already trimmed, while quality trimming may be an important step depending on the 

analysis procedure used. Table 1 represents the widely used sequencing QC software tools.
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3.2 Methods for Read Alignment

Reference-based alignment is the process used to determine the potential mapping locations 

by exact match or scoring sequencing similarity. Reads are typically aligned to either a 

genome or a transcriptome as a reference using two common approaches; (1) splice-aware 

read aligner or (2) nonsplice-aware read aligners (Table 1). The spliced read aligners use of a 

gapped or spliced mapper as reads may span splice junctions. Various spliced aligners have 

been developed including TopHat2 [28], MapSplice [29], STAR [30], and GSNAP [31]. 

Unspliced read aligners do not allow large gaps, such as those arising from reads spanning 

exon boundaries, or splice junctions including Stampy [32], mapping and assembly with 

quality (MAQ) [33], Burrow–Wheeler Aligner (BWA) [34], and Bowtie2 [35].

3.3 Methods for Transcript Reconstruction

Transcript reconstruction includes two approaches to identify all transcripts expressed in a 

specimen depends on the presence or absence of a reference sequence (Table 1). When the 

reference annotation information is well-known, then the reference-based approaches such 

as Cufflinks [36] and StringTie [37] are used to reconstruct transcripts by assembly of 

overlapping aligned reads. When a reference genome or transcriptome is not available or is 

incomplete, assembled de novo algorithm directly builds transcripts from short reads using 

platforms such as Trinity [38], transABySS [39], and Oases [40].

3.4 Methods for Gene Summarization or Abundance Estimation

One of the most widely used applications of RNA-seq is to quantify expression levels of 

genes and transcripts. Generally, the methods for gene quantification can be divided into two 

categories: “union exon”-based and “transcript”-based approaches (Table 1). Transcript-

based approach fundamentally distributes reads among transcript isoforms including RSEM 

[41], Cufflinks [36], and StringTie [37]. However, some transcript-based quantification tools 

such as Sailfish [42] are alignment-free tools to estimate isoform abundances directly from a 

set of reference sequences. The “union exon”-based methods, such as featureCounts [43] 

and HTSeq [44], are widely used in RNA-seq gene quantification because of its simplicity to 

aggregate raw counts of mapped reads.

3.5 Normalization

Variability in measurement can be attributed to both the biological and technical factors. 

Sources of technical variation, involving, differences in library preparation across samples, 

sequencing error, mapping and annotation bias, sequencing composition and similarity, gene 

length, and sequencing depth [45–47] that can significantly reduce the accuracy of statistical 

inferences and also prevent researchers from properly modeling biological variation and 

group-specific changes in gene expression [48–51]. Some sources of between-sample 

technical variation are due to differences in library size or sequencing depth [47]. To correct 

for library size, most of methods use a common scaling factor per sample to normalize genes 

such as upper quartile (UQ) [45], median (Med) [45], relative log expression (RLE) [52], 

trimmed mean of M-values (TMM) [53], and quantile (Q) [54, 55]. Many of these methods 

are implemented in the edgeR and DESeq2 packages.
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Additionally, gene length impacts the comparison of abundance estimates between genes 

[56], as longer genes contribute more sequenced fragments compared to shorter ones [47]. 

Most commonly used methods for gene length correction include TPM (transcripts per 

million) [57] and RPKM/FPKM (reads/fragments per kilobase per million mapped reads) 

[36, 47], where the former one is considered more robust to differences in RNA library size 

[58, 59]. However, it has been shown that scaling by gene length cannot entirely remove the 

positive association between gene size and read counts, and can introduce new biases to the 

estimates of differential expression [45, 60]. Usual normalization approaches mostly adjust 

the sequencing depth or/and gene length and fail to correct known or unknown technical 

artifacts due to the complex. To adjust known batch effect, appropriate statistical models 

were proposed such as linear regression model or flexible empirical Bayes method 

(ComBat) which is more robust and appropriate for small sample sizes [61]. ComBat can be 

implemented in R using the sva package and the function “ComBat.”

In addition to correcting for known artifacts, assessment and adjustment for potential latent 

factors is also warranted where mostly rely on singular value decomposition (SVD) or some 

other factor analysis approaches (e.g., Remove Unwanted Variation (RUV) in R package 

“ruv” [50] or surrogate variable analysis (SVA) [49] in R package “sva”). Finally, principal 

component analysis (PCA) is often used in which a subset of the principal components are 

used to normalize the data [62–65]. Note that the choice of normalization method to remove 

technical artifacts can affect noticeably the results of differential gene expression analyses 

[45, 53, 66]. For the TCGA skin cancer study, PCA was completed using filtered raw counts 

to assess the effects of the batch ID (Fig. 3a) and biological factor (i.e., primary and 

metastatic tumors groups) (Fig. 3b). Figure 3a represents the effect of batch ID with high 

proportion of variation for top principal component (15%) which leads to consideration of 

batch ID as a technical effect for normalization.

3.6 Methods for Differential Gene Expression Analysis

The main methodologies for differential gene expression analysis for RNA-seq data are 

categorized by the distributional assumptions (Table 2). Models for read counts originated 

from the idea that the number of reads for each gene can be approximated by a Poisson 

distribution where log-linear or generalized linear model were proposed to model the mean 

difference between samples along with using test statistics such as likelihood ratio test, exact 

test, and score test for hypothesis testing are implemented in DEGseq [67], Myrna [68], and 

PoissonSeq [69] packages. The extended Poisson models, two-stage Poisson model [70] and 

generalized Poisson model [71] are also considered to adjust for overdispersion issue.

Poisson and negative binomial distributions are the two widely used models [52, 72], 

whereas the higher variability between biological replicates leads to incorporate negative 

binomial distribution to accommodate overdispersion [45]. The dispersion parameter 

estimation can be based on the conditional maximum likelihood, pseudo-likelihood, quasi-

likelihood, local regression, and conditional inference using hypothesis testing approaches 

such as Wald test, likelihood ratio test, and exact test. Such methods are included in edgeR 

[73], DESeq [52], DESeq2 [74], and NBPSeq [75] packages. A beta-binomial model is 

implemented in BBSeq [76] package which accommodates the overdispersion using logistic 
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regression where maximum likelihood approach is applied to estimate overdispersion 

parameter. Moreover, full or empirical Bayesian frameworks are included in ShrinkSeq [77] 

and baySeq [78] packages. Lastly, methods have been proposed that allow RNA-seq to be 

modeled using a linear model framework (i.e., Gaussian distribution) through limma 

package [79, 80] using voom transformation [81] or approaches that do not assume any 

distribution assumption (nonparametric approaches) such as SAMseq [82] and NOIseq [83]. 

It should be noted that if the modeling assumptions are valid the parametric methods will be 

more powerful than the nonparametric methods. However, if the modeling assumptions are 

not valid, nonparametric methods would be advisable. In practice, it is difficult to assess the 

modeling assumptions and thus parametric methods are mostly often used, particularly when 

the sample size is small. In skin-TCGA study, to identify the differentially expressed genes 

between primary and metastatic tumors groups (Fig. 3b), the voom-transformed UQ 

normalized data is considered where the design matrix contains the estimated latent artifact 

and the batch ID along with the tumor groups using limma package.

3.7 Methods for Correcting for Multiple Testing

With thousands of genes to test, controlling both the overall Type I error rate and the desired 

statistical power becomes important. Multiple comparison adjustment approaches can 

control the familywise error rate (FWER), false discovery rate (FDR) (i.e., Benjamini and 

Hochberg approach [84]), and Bayesian FDR (q-values) [85, 86]. Various approaches 

control FWER and compute the adjusted P values such as Bonferroni [87], Holm [88], and 

Hochberg [89]. In contrast to the strong control of FWER, the FDR-based control is less 

conservative with the increased gain in power and has been widely used in cases where a 

large number of hypotheses are simultaneously tested. Figure 4 represents the heatmap of 

top differentially expressed genes (n = 8928) after correcting multiple testing, FDRBH < 

0.05.

3.8 Studying TME Using RNA-Seq in Bulk Samples

A software tool CIBERSORT is widely used to estimate fractions of multiple cell types 

using gene expression data in bulk samples [90]. It is commonly used to characterize global 

immune landscape by estimating different proportions of different immune cells. For 

instance, in a recent large-scale study to characterize immune landscape by analyzing 10,000 

tumors comprising 33 diverse cancer types, CIBERSORT was used to estimate immune 

infiltration fractions for understanding tumor–immune interaction [91]. Six immune 

subtypes identified are wound healing, IFN-g dominant, inflammatory, lymphocyte depleted, 

immunologically quiet, and TGF-β dominant across cancer types and provided this as a 

source, iAtlas (https://www.cri-iatlas.org/), for researchers to understand tumor–immune 

interaction and potential therapeutic opportunities. In addition to cell type identification, the 

cell–cell interaction from the ligand and receptor database is also incorporated. Although 

CIBERSORT is widely used, its performance potential is affected by statistical 

multicollinearity due to the inclusion of highly correlated immune cell types, and also was 

developed using expression on microarrays. TIMER is developed to select genes, which are 

negatively correlated with tumor purity for each cancer type, and then apply constrained 

least squares fitting to expression to predict the abundance of a subset of TILs: B cells, CD4 

T cells, CD8 T cells, macrophages, neutrophils, and dendritic cells [92]. To capture the 
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complexity in TME better, xCell attempted to infer 64 immune and stromal cell types by 

using gene set enrichment analyses and deconvolution method to analyze the 1822 

harmonized human pure cell type transcriptomics samples [93].

4 Statistical and Bioinformatics Methods for Analysis of Single-Cell RNA-

Seq Data

Single-cell RNA-sequencing (scRNA-seq) has been playing important roles in the study of 

tumor heterogeneity and tumor evolution. In contrast to the bulk RNA-seq where the average 

gene expressions are measured across a large population of cells, scRNA-seq quantifies 

transcriptome of individual cells. With the newly developed high-throughput cell separation 

technologies, thousands of cells per tumor can be profiled in parallel to capture intra-tumor 

heterogeneity at an unprecedented resolution. Multiple different platforms have been 

developed for scRNA-seq including SMART-seq [21], CEL-seq [94], Fluidigm C1 [95], 

Smart-seq2 [96], and more advanced droplet-based platforms including Drop-seq [97] and 

Chromium 10X [98]. In droplet-based platforms, cells are encapsulated in water-based 

droplets together with unique molecular identifiers (UMIs), a cell-specific and transcripts-

specific barcoding system. These barcodes help to diminish the sequencing reads 

representation biases due to library amplification.

The considerable differences in cell isolation and molecule capture lead to large variations in 

sensitivity, specificity, and capacity of these platforms [99, 100]. However, they all rely on 

similar computational pipelines to reveal transcription dynamics. In the following sections, 

we will review the algorithms in major steps of scRNA-seq data analysis using the most 

commonly used droplet-based platforms, but the discussion applies to all platforms.

4.1 Quality Control

The droplet-based scRNA-seq platforms encapsulate thousands of cells individually into 

barcoded-droplets and sequence their RNA material simultaneously. All computational 

analyses and interpretations of results reply on the assumption of single-cell behavior, such 

that only one living cell exists in a single droplet. However, even for the most sensitive 

protocols, it is inevitable to have dead cells and doublets (multiple cells encapsulated in one 

droplet) [101]. Therefore, it is essential to apply quality control (QC) to identify the low-

quality droplets/barcodes/cells which ought to be excluded from downstream analyses [97, 

101–105].

A common QC metric for scRNA-seq is the number of transcripts/UMIs detected per 

droplet. A small number of transcripts detected per barcode are often an indicator for poor 

droplet capture, which can be caused by cell death and/or capture of random floating RNA 

molecules released by dead cells. Inversely, a considerable large number of transcripts with 

the same barcode can suggest doublets or floating RNA encapsulated together with a living 

cell. Percentage of mitochondrial transcripts is another common QC metric. A high number 

of mitochondrial transcripts suggest the cells might be undergoing stress, for example, from 

cell isolation and sorting process. It is advised to remove these cells since stress level is 

usually not the interests of scRNA-seq analysis. In addition to the cell-level QC, gene-level 
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QC is often performed to exclude genes expressed in only a very small proportion of cells. 

Removing such genes can decrease technical noise, and speed up the downstream 

normalization and clustering.

When deciding on the cutoffs for scRNA-seq QC, it is important to take into the 

consideration the cell compositions of the samples being analyzed. Different cell types 

actively express different number of genes, different number of mitochondrial transcripts, 

and different sets of transcripts, especially when comparing tumor to normal cells. A too 

stringent cutoff can remove a cell population of interests if this population is rare in sample 

of cells. Therefore, we suggest that if the researchers have no prior knowledge about the cell 

compositions, a possible solution is to carry out initial cell type identification and use that 

information to guide the QC process.

4.2 Drop-Outs, Normalization, and Spike-Ins

When analyzing scRNA-Seq data, normalization is a critical step to adjust for unwanted 

biological effects and technical noise collectively known as “batch effects” that mask the 

real signal. Similar to bulk RNA-seq, scRNA-seq batch effects can come from the variations 

in handling protocols, library preparation, sequencing platforms, and sequencing depth. In 

addition to these variations commonly seen in bulk RNA-seq, a prominent characteristic of 

scRNA-seq data is zero inflation, where the expression count matrix of single cells is mostly 

filed with zeros [106–108] (Fig. 5). There are two sources of zero inflation: (1) biological 

reason—the real zeros, where the cells are in transient state of transcript bursting [109] or 

the genes simply do not express in a subpopulation of cells; (2) technical reason—dropout, 

which is caused by the inefficiency of mRNA capture such that a large percentage of mRNA 

molecules are not captured and consequently not sequenced. Besides the dropout events, 

individual cells can show stronger overdispersion than typically observed in bulk RNA-seq 

data, even for genes with median-to-high expression levels [108]. Furthermore, compared to 

bulk RNA-seq, scRNA-seq data is much more heterogeneous since the sequenced cells are 

usually of different populations, cell types, or statuses. Even the cells from the same 

population but undergoing different cell cycles can show very different expression profiles 

[110, 111]. To uncover the cellular heterogeneity, scRNA-seq studies often start with 

choosing the HVG (highly variable genes) that are most informative in distinguishing cell 

populations. It has been shown that the choice of HVG is highly affected by normalization 

[112, 113]. Therefore, it is important for scRNA-seq normalization to retain the cell-to-cell 

biological heterogeneity while removing the cell-specific noise at the same time.

4.2.1 Normalization Methods—The global-scaling normalization methods inherited 

from bulk RNA-seq analysis have been widely used in scRNA-seq. However, these methods 

cannot accommodate the cell-specific variability in scRNA-seq data and can lead to biased 

estimation of scaling factors [113–115]. To optimize the modeling of the cell-to-cell 

variability, multiple normalization methods specifically tailored for scRNA-seq data have 

been developed. Table 3 provides a detailed summary of their main features, statistical 

models, and special considerations when modeling cell-specific biological and technical 

variations. In the following sections, we will briefly discuss the key characteristics of these 

methods.

Yu et al. Page 8

Methods Mol Biol. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The first category we consider detects differential expressions among cells while adjusting 

technical variations that are specific to scRNA-seq data. This category includes SCDE [108], 

TASC [116], and MAST [106], which all employs empirical Bayesian frameworks to 

estimate dropout events and real amplification of transcripts. More specifically, TASC takes 

the cell size and cell cycle as covariates, where the former is estimated from the ratio of 

endogenous RNA reads to spike-ins and the latter is represented by the expression of curated 

genes [20]. Alternatively, MAST uses a fraction of genes detected in each cell as a proxy for 

technical and biological variation. Although most of these methods focus on the differential 

expression at the gene level, some go beyond and study the difference in allelic expression. 

One such example is SCALE, which models the allele-specific transcription bursting with 

both technical variation and cell size differences accounted for. However, SCALE requires 

input as allele-specific read counts at heterozygous loci, which can be challenging for many 

scRNA-seq platforms, especially the tag-based quantification methods including Drop-seq 

and 10X.

Another major category is to generate normalized gene expression matrix that can be used as 

input for downstream analysis. Based on how the scaling factors are modeled, we further 

stratify these methods into two groups: cell-specific methods including scran [107] and 

BASiCS [ 117], and gene-specific methods including SCnorm [115]. BASiCS estimates the 

cell-specific biological variations by borrowing information across all cells and all genes 

while quantifies the technical variations replying on spike-ins. Alternatively, scran first 

clusters the cells into more homogenous groups and then deconvolutes the pooled cells to 

yield cell-specific factors. On the other hand, SCnorm groups genes with a similar 

dependence on sequencing depth and then estimates the scale factor within each gene group.

In addition to above approaches that focus on differential expression and normalized gene 

expression matrix, which are concepts adopted from bulk RNA-seq, several methods have 

been developed to specifically target the downstream heterogeneity studies in scRNA-seq 

data. BISCUIT [118] is a cell-type dependent normalization which uses a Bayesian 

probabilistic model to iteratively normalize and cluster cells. It simultaneously assigns cells 

to cluster and learns cell-dependent parameters within each cluster. The inferred parameters 

are then used to generate cell-type dependent normalization that can be fed back to improve 

clustering. It has been shown that BISCUIT can identify more refined subtypes of cells than 

global normalization methods [119].

4.2.2 Drop-Out Imputation—Instead of directly normalizing endogenous genes, many 

chose to impute the drop-out events prior to normalization. There are mainly two strategies 

used in scRNA-seq data imputation:

1. To distinguish the biological zeros from technical zeros using models of expected 

gene expression, which is usually obtained either from borrowing information 

across cells or from spike-in sequences. These methods include DrImpute [120], 

SAVER [121], McImpute [122], scImpute [123], ALRA [124], and scRMA 

[125].

2. To reduce the noise by using information from neighboring data. This category 

includes MAGIC [126], netSmooth [127], and knn-smooth [128].
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Although imputation can rescue missing information that is important to study cellular 

heterogeneity, concerns have been raised about their sensitivity and specificity. A positive-

control based benchmarking study assessed these methods and concluded that most methods 

only provide small improvement [129]. Andrews and Hemberg [130] evaluatedthe false 

discovery rate of these methods using negative controls. They found that SAVER performed 

well on simulated data compared to others; however, all methods introduced false signals at 

various levels in the permuted real data. These limitations of imputing scRNA-seq data are 

probably due to the lack of a comprehensive and independent reference, for example, as in 

GWAS imputation. Until such reference is generated, caution should be used when imputing 

scRNA-seq data.

4.2.3 Spike-Ins—As shown in Table 3, many scRNA-seq normalization methods rely on 

the spike-ins to estimate the cell-specific technical variations. Spikes-ins are a set of 

synthetic RNA sequences added to the samples in a theoretically constant and known 

amount, in order to calibrate the gene measurement and distinguish the biological vs. 

technical variations in RNA-seq experiments. The most commonly used spike-ins are the 92 

External RNA Control Consortium (ERCC) molecules [46] and the Spike-in RNA variant 

control mixes (SIRVs, Lexogen). These extrinsic control sequences have also been used in 

scRNA-seq experiments [131–133], where the spike-ins with different concentrations are 

added with a constant amount across all cells. Vallejos et al. [113] and Lun et al. [134] have 

discussed the benefit of extrinsic control sequencing in scRNA-seq. However, the use of 

spike-ins remains challenging.

Although often neglected, calibrating the amount of spike-ins sequences is critical and 

should depend on the endogenous mRNA content [50]. However, due to the large and 

unknown heterogenous among tumor microenvironment, it is difficult to obtain prior 

knowledge about the cell-type specific endogenous mRNA content before sequencing. In 

addition, the spike-in sequences do not reflect the gene-length and GC content in the 

mammalian transcriptome, such that the technical effects may be different for the extrinsic 

and intrinsic genes [113]. Moreover, it has been shown that spike-ins signals can vary across 

technical replicates [50], and only partial spike-in sequences can be actually sequenced and 

aligned [113]. Furthermore, the use of spike-ins in the recent developed large-scale droplet-

based platforms is not as cost-effective as in small scale platforms. For example, to reduce 

the doublet rate in Chromium 10X, the percentage of cell-containing droplets is deliberately 

designed as low as 1–10%. The spike-ins are added evenly across all droplets, not just the 

cell-containing ones and consequently takes up the vast majority of sequencing reads. Due to 

these limitations and challenges, caution should be used when employing spike-ins for 

technical variation estimations. Additionally, efforts should be made to design spike-ins 

sequences accommodating the unique characteristics of scRNA-seq experiments.

As discussed above, normalization methods that are specially tailored for scRNA-seq are 

theoretically and operationally superior over the global-scaling normalization inherited from 

bulk RNA-seq. However, these methods vary substantially in terms of their assumptions and 

their models, where none of them outperform others under all scenarios in the performance 

assessment [114, 135]. Great efforts are actively underway to develop more efficient and 

robust normalization for scRNA-seq.
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4.3 Data Integration and Batch Correction

Due to the complexity of scRNA-seq experiments, it is often difficult for a study to process 

all samples at the same time and/or using the same protocols. In such situations, it is 

necessary to integrate samples of different batches or even of different scRNA-seq 

platforms. Due to the unique data structure of scRNA-seq, batch correction methods 

designed for bulk RNA-seq are not suitable. Several approaches have been recently proposed 

to deal with sample-level batches in scRNA-seq data. kBET (k-nearest neighbor correct 

effect) [136] quantifies the sample-level batch effects using a χ2-based test. MNNs (mutual 

nearest neighbor) [137] corrects the effect using only a subset of populations shared between 

batches and has been implemented in scran [102] as the mnnCorrent function. The Seurat 

group [138] uses cell pairwise correspondences between single cells across datasets, termed 

as “anchors,” to integrate gene expressions across technologies and batches. All these 

approaches have been shown to have better performance than bulk RNA-seq batch-

correction methods.

4.4 Dimension Reduction, Clustering, and Cell Type Identification

One of the most popular uses of scRNA-seq is to identify and characterize cell types within 

the heterogeneous tissues or samples. The de novo identification of putative cell types has 

been considered as an unsupervised clustering problem. In this section, we will discuss the 

main classes of clustering methods having been applied to scRNA-seq, as well as the 

remaining issues and challenges. We will also briefly touch on the supervised and 

semisupervised clustering.

4.4.1 Dimension Reduction and Feature Selection—The high dimensional 

transcriptome data generated by scRNA-seq provides tremendous information for 

uncovering the biology of cells. However, it also introduces challenges to statistical analysis 

which is often referred to as the “curse of dimensionality.” With a large number of genes 

measured in scRNA-seq, the distance between individual cells can become small and thus 

make it difficult to distinguish between-population differences and within-population 

differences [139]. The two main approaches to deal with the issue of high dimensionality are 

feature selection and dimension reduction.

Feature selection removes the uninformative genes in terms of their ability to distinguish 

cells, in order to reduce the dimensions used in analysis and speed up calculations. The most 

commonly used feature selection in scRNA-seq is to select the highly variable genes (HVG), 

assuming that genes with high variance are more likely due to biological signals rather than 

technical noise [140]. The normalization and usage of spike-ins can facilitate the selection of 

HVG as we discussed in the previous section. Other feature selection approaches include 

identifying biological relevant genes based on expression correlation between cells [97, 141, 

142] and using the magnitude and/or significance of the correlation to select genes.

Dimension reduction, on the other hand, completes a projection of the gene expression data 

onto a lower dimensional space. There are many generic dimension reduction methods that 

can be applied to any high dimensional data, including principal component analysis (PCA), 

independent components analysis (ICA) [143], Laplacian eigenmaps [144], and t-distributed 
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stochastic neighbor embedding (t-SNE) [97, 145]. In this section we will focus on PCA and 

t-SNE due to their popularity in scRNA-seq data analysis. PCA uses the orthogonal 

transformations to project the gene count matrix onto a reduced number of linear 

independent dimensions called principal components. The advantage of PCA is that it is 

relatively fast and can preserve the distance information among cells. However, PCA is 

restricted to linear combinations of variables, which can be inappropriate in the context of 

scRNA-seq. In particular, it has been reported that the first components are often related to 

the number of genes detected per cell rather than the biological signals [106, 146]. To 

improve PCA, Risso et al. [147] proposed ZINB-WaVE which uses a zero-inflated negative 

binomial to deal with the dropouts in scRNA-seq data.

T-distributed stochastic neighbor embedding (t-SNE) is a stochastic method that reduces 

high dimensions to two or three embeddings while preserving the local structure among 

cells, such that neighbor cells stay close and distant cells remain distant. Due to the 

probability distribution used in embedding estimation, t-SNE follows two rules: (1) all 

points (cells) repel each other, and (2) each point (cell) attracts its nearest neighbors [148]. 

Therefore, t-SNE can specifically project cells into more distantly isolated clusters, making 

it almost the standard choice in visualization exploration of scRNA-seq data. Figure 6 

projects 4645 single cells extracted from 19 melanoma tumors [20] onto t-SNE 2D planes. 

The clusters formed by t-SNE are in good agreement with the cell types identified by the 

original study, and show a high degree of intra-tumor heterogeneity for malignant cells but 

not for immune/ stromal cells. However, t-SNE has its limitations. First, t-SNE is 

computationally expensive. This is particularly problematic in large-scale scRNA-seq 

studies which require analyzing hundreds of thousands of cells simultaneously. In addition, 

although t-SNE captures the local structure it often fails to preserve the global geometry of 

the data. When t-SNE places cells into distinctive clusters, the relative position of these 

clusters is almost arbitrary and with little biological meanings [148]. Moreover, the 

embedding is governed by a parameter “perplexity,” which controls the number of nearest 

neighbors each point is attracted to. Different perplexity choices can lead to different degrees 

of separation and the judgment of the appropriate perplexity is subject to the analysts. 

Several reviews have provided in-depth discussion and practical suggestions for using t-SNE 

in scRNA-seq analysis [148–150]. We would recommend readers consult with these reviews 

before making conclusions with t-SNE results.

More recently, a nonlinear dimension reduction method, uniform manifold approximation 

and projection (UMAP) [151], implemented in R package “umap,” was developed as an 

alternative to t-SNE. It is claimed to preserve as much of the local structure and more of the 

global geometry with a shorter run time than t-SNE. Becht et al. [152] performed a 

systematic evaluation using well-annotated scRNA-seq data, and concluded that UMAP 

provided faster run times, higher reproducibility, and more meaningful cell clusters. 

Recognizing its advantage, several scRNA-seq analysis tools incorporate UMAP into their 

standard dimension reduction and visualization pipeline. Feature selection and dimension 

reduction are not necessarily mutually exclusive. As a matter of fact, dimension reductions 

are susceptible to the batch effects caused by cell-specific technical variations [106, 153]. 

Performing feature selection that removes genes with little biological relevant prior to 
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dimension reduction can greatly reduce the technical noise [154]. The combination of these 

methods has been widely adopted by scRNA-seq analysis pipelines.

4.4.2 Unsupervised Clustering—Recent single-cell sequencing technologies enable 

the study of tumor or TME heterogeneity at a single cell level [155, 156]. One of the 

ongoing challenges on scRNA-seq data analyses is that cell type recognition or 

subpopulation classification since the tumor–stromal interaction has been shown to be 

important. The diverse cell types would often be visualized in t-SNE space (Fig. 6) or other 

similar linear or nonlinear projections. Unsupervised clustering is a central component of 

scRNA-seq analysis, as it can identify cell populations and thus strongly affects any 

downstream analysis. Although many methods have been developed and applied to scRNA-

seq, clustering and the interpretation of clusters are still facing great biological and 

computational challenges. Kiselev et al. [139] and Andrews and Hemberg [ 154] reviewed 

the commonly used clustering methods in the context of scRNA-seq and summarized their 

advantages and limitations. Duo et al. [157] systematically evaluated 15 clustering methods 

using simulated data and found substantial differences in their performances. In this section, 

we briefly review the four main classes of clustering methods.

K-means clustering iteratively assigns cells to the nearest cluster center and recomputes the 

new center. Although this method is fast, it requires a predetermined number of clusters and 

assumes the clusters are of equal sizes, which can be easily violated in TME studies. Tools 

that implement K-means include SC3 [158], SIMLR [159], RaceID [160], and pcaReduce 

[161]. The next method is hierarchical clustering which sequentially merges cells into larger 

clusters (bottom-up) or divides clusters into smaller communities (top-down). This method 

is deterministic but more computational expensive than k-means. Many scRNA-seq tools 

have modified hierarchical clustering either to accommodate low-depth samples by adding 

imputation of zeros [162] or to improve identification of small clusters by iteratively 

performing dimension reduction [161, 163]. Hierarchical clustering-based tools include 

CIDR [162], BackSPIN [163], pcaReduce [161], SINCERA [164], mpath [165], and ascend 

[166].

The third type of clustering methods is density-based, which can identify dense clusters 

without any assumption on the shape or size on the clusters. However, it assumes equal 

homozygosity (density) of the clusters, requires a predetermined density cutoff, and works 

better with datasets with a large number of cells (e.g., droplet-based scRNA-seq assays). 

Such methods include DBSCAN [167], GiniClust [168] which employs DBSCAN, and 

monocle [169]. Lastly, there is graph-based clustering, which identifies cells densely 

connected by edges. Compared to k-means and hierarchical clustering, graph-based 

clustering does not require any predefined parameters, makes the minimal assumption on 

cell populations, and can scale to a large number of cells [170, 171]. The most population 

application of graph-based clustering combines k-nearest-neighbor graphs and Louvain 

community detection [171, 172]. However, the main drawback of graph-based clustering is 

that it heavily relies on how well the scRNA-seq is translated into graph space. Therefore, it 

is often necessary to perform dimension reduction or feature selection beforehand to boost 

the search for nearest neighbors. Graph-based clustering has been implemented in multiple 
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tools including Seurat [97], Pheno-Graph [173], densityCut [174], SNN-Clip [175], 

SACNPY [176], and MetaCell [177].

4.4.3 Supervised Classifier and Cell Type Identification—To characterize the 

sample heterogeneity, the groups of cells defined by unsupervised clustering are often 

assigned to different cell types based on enriched canonical markers. In cancer researches, 

the single-cell type identification has been focusing on the subpopulations of immune cells, 

stromal cells, and tumor-related cells present in TME and/or the circulating system. 

However, this canonical workflow has its limitations. First, as summarized above, each 

clustering method has its own drawbacks and different similarity metrics usually result in 

different cluster separations. Second, this process relies on the researchers’ knowledge on 

the signature genes, and it can become arbitrary when making conclusions based on only a 

handful of genes. Only very recently, alternative methods have been proposed. SuperCT 

[178] is a supervised classifier (SC)-based machine learning method. It trains a nonlinear SC 

from bulk and single-cell RNA-seq data of pure cell types covering a wide range of immune 

and stromal cells, and then uses the trained classifiers to reveal cell types of any scRNA-seq 

data provided as new input. Another single-cell identifier is SingleR [179]. It constructs a 

reference database by collecting bulk RNA-seq data from over 1000 samples with pure cell 

types, and then determines the type of a single cell in scRNA-seq experiment by its 

Spearman correlation with each sample in the reference database. Although these methods 

are still immature for application in cancer research due to the limited cancer-specific 

reference database, they defiantly opened up new avenues for cell type classification in 

scRNA-seq.

4.5 Studying Heterogeneity Using scRNA-Seq

Tumor heterogeneity is commonly observed with wide range of infiltrations, as illustrated in 

Fig. 7 for 19 melanoma tumors from the Tirosh et al. study [20]. As the algorithms for cell 

type or subtype classification has been developed and improved in recent years. Some 

algorithms have been focused on how to quantify cellular heterogeneity. SinCHet estimates 

cellular heterogeneity using Shannon index over the all-possible clustering resolutions is 

developed to analyze cellular heterogeneity and characterize subpopulation composition 

[180]. A recent paper proposes a general diversity index (GDI), a generalized form of 

ecological diversity index, to quantify heterogeneity on multiple scales and relate it to 

disease evolution [181]. The index takes the generalized from the low diversity order, the 

clonal richness, to intermediate diversity, Shannon or Simpson’s indices, to higher order of 

diversity. The results showed that healthy individuals had lower diversity than cancer 

patients and little difference in diversity between pre– and post–bone marrow samples from 

AML patients.

5 Conclusions

High-throughput sequencing (HTS) has revolutionized the study of the transcriptome and its 

relationship with disease. Two types of transcriptomic studies are now possible, bulk or 

single cell sequencing studies. With the advances in technology, many bioinformatics and 

statistical methods have been developed to process and analyses data from bulk sequencing 
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(RNA-seq) and single-cell sequencing (scRNA-seq), with more methods currently being 

developed for scRNA-seq studies.
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Fig. 1. 
Illustration of differences between bulk RNA sequencing (RNA-seq) vs. single-cell RNA 

sequencing (scRNA-seq)
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Fig. 2. 
Typical bulk RNA sequencing workflow
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Fig. 3. 
Plots from Principal Component Analysis to assess technical batch and biological factor 

effects globally in bulk RNA-seq experiments for the TCGA skin cancer study. (a) Fourteen 

levels of known batch ID, where batch ID was downloaded from https://

bioinformatics.mdanderson.org/BatchEffectsViewer/; and (b) primary factor of interest 

(primary tumor and metastatic tumor) using filtered raw counts data
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Fig. 4. 
Heatmap of the top differentially expressed genes (FDRBH < 0.05) from the analysis of the 

TCGA skin cancer study
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Fig. 5. 
Cell-to-cell variability observed in scRNA-seq data of two single B cells
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Fig. 6. 
t-SNE projection of single cells from melanoma tumors colored by patient origin (left) and 

cell type (right)
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Fig. 7. 
Cellular composition of 19 melanoma tumors showing tumor heterogeneity
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Table 1

Selected list of RNA-seq analysis tools for preprocessing, read alignment, transcriptomic reconstruction, and 

expression quantification/abundance estimation

Workflow Category Software tools Reference

Preprocessing RAW data QC FastQC Babraham Bioinformatics website

HTQC Yang et al. [182]

Read trimming NGS QC Patel and Jain [183]

FASTX-Toolkit Cold Spring Harbor Laboratory website

Trimmomatic Bolger et al. [184]

SolexaQA Cox et al. [185]

Read alignment Spliced aligner TopHat Trapnell et al. [186]

STAR Dobin et al. [30]

MapSplice Wang et al. [29]

GSNAP Wu et al. [31]

Unspliced aligner Stampy Lunter and Goodson [32]

MAQ Li et al. [33]

BWA Li and Durbin [34]

Bowtie2 Langmead and Salzberg [35]

Transcriptome reconstruction Reference-guided Cufflinks Trapnell et al. [36]

StringTie Pertea et al. [37]

Reference-independent Trinity Grabherr et al. [39]

Oases Schulz et al. [40]

transABySS Robertson et al. [187]

Expression quantification Gene-level quantification featureCounts Liao et al. [43]

HTSeq Anders et al. [44]

Isoform-level quantification Cufflinks Trapnell et al. [36]

StringTie Pertea et al. [37]

RSEM Li and Dewey [41]

Sailfish Patro et al. [42]
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Table 2

Statistical methods to identify differential gene expressions based on RNA-seq data

Model Software Reference

Poisson DEGseq Wang et al. [67]

Myrna Langmead et al. [68]

PoissonSeq Li et al. [69]

Negative binomial edgeR Robinson et al. [73]

DESeq Anders and Huber [52]

DESeq2 Love et al. [74]

NBPSeq Di et al. [75]

Beta-binomial BBSeq Zhou et al. [76]

Bayesian and empirical Bayesian ShrinkSeq Van de Wiel et al. [77]

baySeq Hardcastle and Kelly [78]

Normal limma+voom Smyth [54, 79]

Law et al. [81]

Nonparametric SAMseq (samr) Li and Tibshirani [82]

NOIseq Tarazona et al. [83]
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