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ABSTRACT Lyme disease is a tick-borne infection caused by the bacteria Borrelia
burgdorferi. Current diagnosis of early Lyme disease relies heavily on clinical criteria,
including the presence of an erythema migrans rash. The sensitivity of current gold-
standard diagnostic tests relies upon antibody formation, which is typically delayed
and thus of limited utility in early infection. We conducted a study of blood and skin
biopsy specimens from 57 patients with a clinical diagnosis of erythema migrans.
Samples collected at the time of diagnosis were analyzed using an ultrasensitive,
PCR-based assay employing an isothermal amplification step and multiple primers. In
75.4% of patients, we directly detected one or more B. burgdorferi genotypes in the
skin. Two-tier testing showed that 20 (46.5%) of those found to be PCR positive re-
mained serologically negative at both acute and convalescent time points. Multiple
genotypes were found in three (8%) of those where a specific genotype could be
identified. The 13 participants who lacked PCR and serologic evidence for exposure
to B. burgdorferi could be differentiated as a group from PCR-positive participants by
their levels of several immune markers as well as by clinical descriptors such as the
number of acute symptoms and the pattern of their erythema migrans rash. These
results suggest that within a Mid-Atlantic cohort, patient subgroups can be identi-
fied using PCR-based direct detection approaches. This may be particularly useful in
future research such as vaccine trials and public health surveillance of tick-borne dis-
ease patterns.

KEYWORDS Lyme disease, diagnosis, polymerase chain reaction, host response,
immunology

Lyme disease is the most commonly reported tick-borne disease in the United States
and is widespread across temperate regions of North America, Europe, and parts of

Asia (1). In the United States, the number and geographic distribution of cases has
increased steadily since the discovery of Lyme disease in the 1970s (2). Currently, the
Centers for Disease Control and Prevention (CDC) estimate over 300,000 new cases of
Lyme disease in the United States each year (3). At this time, the states with the highest
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incidence rates are regionally localized to the Northeast and the upper Midwest, with
cases also present along areas of the West Coast (2, 4).

The diagnosis of early Lyme disease and its subsequent treatment are currently
guided by clinical signs and symptoms. These criteria in acute disease include the
hallmark erythema migrans (EM) skin lesion and/or symptoms such as fever, fatigue,
myalgia, and arthralgia, as well as an increased likelihood of exposure to infected Ixodes
ticks (5). Although the stereotypical “bullseye” appearance of the EM lesion is most
easily recognizable, EM commonly has a wide variety of clinical presentations (6, 7). In
addition, EM lesions are not specific to infection with Borrelia burgdorferi and can occur
after the bite of Amblyomma americanum (the lone star tick), where they are associated
with an idiopathic illness called southern tick-associated rash illness (STARI) (8).

Lyme disease in the United States is caused by Ixodes tick-mediated infection with
the spirochete Borrelia burgdorferi sensu stricto (9). B. burgdorferi sensu stricto displays
genetic heterogeneity, and many distinct genotypes and serotypes have been identi-
fied (10). The genotype/serotypes causing Lyme disease can vary based on geographic
location, and associations between infecting genotype and disease virulence have been
reported (11–13). Following transmission, B. burgdorferi sensu stricto can disseminate
from the initial site of infection in the skin to other areas of the skin as well as to distal
sites such as the central nervous system, heart, and joints (1). While dissemination of B.
burgdorferi sensu stricto occurs hematogenously, detection of bacteria in blood is
difficult because bacteremia is transient only during acute infection and typically occurs
with only a small number of organisms present per microliter of blood (14, 15).

Antibody-based tests are frequently used in clinical practice to confirm a diagnosis
of early Lyme disease despite significant sensitivity limitations (16, 17). Therefore, there
is an increasing need for diagnostics that directly detect the presence of B. burgdorferi
sensu stricto in the acute phase of Lyme disease. Direct detection technologies include
culture of B. burgdorferi sensu stricto, antigen-based detection, or molecular diagnostics
(i.e., DNA/RNA detection) (18). Molecular approaches offer the greatest potential for
rapid, sensitive, and specific detection of B. burgdorferi sensu stricto to inform diagnosis
and guide treatment. In the current study, we report our experience testing for the
presence of B. burgdorferi sensu stricto using PCR and electrospray ionization mass
spectrometry (PCR/ESI-MS) (19, 20) on skin and whole-blood specimens from patients
diagnosed clinically with EM. In addition, we compare the clinical and immunologic
characteristics of patients with and without detectable B. burgdorferi sensu stricto.

MATERIALS AND METHODS
Study participants. The current study sample drew from a broader, longitudinal cohort study of

patients with early Lyme disease. Consecutive, ambulatory study participants were recruited from
general internal medicine, primary care, and urgent care settings during the spring, summer, and fall of
2012 to 2015. Patients were eligible to participate if they had a physician-diagnosed EM greater than
5 cm present at enrollment and if they were either antibiotic naive or had started doxycycline treatment
less than 72 h prior to enrollment. Patients were excluded if they had a history of Lyme disease, exposure
to the Lyme disease vaccine, a history of chronic fatigue syndrome, fibromyalgia, alcohol or drug abuse,
major psychiatric illness, or a history of other significant immune-mediated processes such as cancer, HIV,
or autoimmune diseases. The study was approved by the Johns Hopkins Medicine Institutional Review
Board. Written informed consent was obtained from all participants prior to enrollment into the study.

Clinical characterization. At the first study visit during acute infection (V1), a 2-mm skin biopsy
sample was taken from the leading edge of the EM, and 20 ml of whole blood and serum were obtained.
Standard, two-tier (enzyme-linked immunosorbent assay [ELISA] followed by an IgM/IgG Western blot)
antibody testing was performed by a single commercial laboratory (Quest Diagnostics). Complete blood
count (CBC) and complete metabolic panel (CMP) results were also obtained. Demographic and clinical
information were recorded by a trained interviewer. All participants were treated with 3 weeks of
doxycycline, considered standard of care for early Lyme disease (5). At the second study visit approxi-
mately 3 weeks later (V2) and at a final study visit 6 months later (V3), specimens were collected and
repeat antibody testing was performed by the same laboratory. All antibody results were interpreted for
overall positivity status using CDC criteria, which incorporates an estimate of disease duration at the time
the sample was obtained (21). At V3, a second 2-mm skin biopsy specimen was obtained from
approximately the same location as the original biopsy specimen.

Photographs of the EM rash were also taken at V1. These photographs were later reviewed
independently by both a nurse practitioner and a research coordinator and evaluated for shape (round,
oval, or irregular), color (red or blue/red), pattern (ring within a ring, central darkness, central lightness,
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or uniform), the presence of vesicles, and the presence of a visible tick bite puncture. Any interrater
discordant assessments were resolved by one of the authors (J. N. Aucott).

PCR/ESI-MS. Nucleic acids from EDTA whole-blood (from V1) specimens were extracted from four
5-ml aliquots as previously described (19). An extraction control was added to each sample as utilized
previously (22). DNA extraction from skin biopsy specimens was carried using a modified Qiagen
column-based protocol with a bead beating step as previously described (23) with the substitution of the
Qiagen DNeasy columns (Qiagen, Valencia, CA) for the Qiagen Virus MinElute columns (Qiagen, Valencia,
CA).

The entire volume of extracted nucleic acids was employed in the isothermal amplification step prior
to PCR. Both the PCR and isothermal amplification steps target seven B. burgdorferi sensu stricto genome
targets (rpoC, rplB, leuS, flaB, ospC, hbb, and gyrB), and the primer sequences and conditions for
isothermal amplification were previously described (20). Following isothermal amplification, an aliquot of
the DNA was then dispensed into eight broad-range PCRs. PCR cycling conditions and reaction setup,
including the addition of a low-copy-number synthetic positive control, were as previously described
(10). Following PCR, the amplicons were characterized by electrospray ionization mass spectrometry
(PCR/ESI-MS) to detect B. burgdorferi sensu stricto DNA, identify the multilocus genotype, and generate
an inferred OspC type as previously described (10).

Based on the PCR/ESI-MS skin biopsy specimen and blood sample results, three groups were
generated for the clinical and immunologic analyses. Group 1 was PCR/ESI-MS negative on both skin and
blood samples (PCRneg/neg), group 2 had evidence of B. burgdorferi sensu stricto in the skin but it was not
found to have disseminated to the blood at a high enough level to be detected (PCRpos/neg), and group
3 was found to be PCR/ESI-MS positive on both skin and blood samples (PCRpos/pos).

Cytokine/chemokine assays. Multiplex analysis of the following 38 cytokines, chemokines, and
acute-phase markers was performed: eotaxin, fibroblast growth factor (FGF) basic, granulocyte colony-
stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), human thymus
and activation-regulated chemokine (HTARC), gamma interferon (IFN-�), interleukin 1� (IL-1�), IL-1
receptor � (IL-1r�), IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, IL-17A, IL-17F, IL-21,
IL-22, IL-23, IL-25, IL-31, IL-33, interferon-inducible protein of 10 kDa (IP-10), monocyte chemotactic
peptide 1 (MCP-1) (monocyte chemotactic and activating factor [MCAF]), macrophage inflammatory
protein 1� (MIP-1�), MIP-1�, MIP-3�, platelet-derived growth factor �� (PDGF-��), RANTES (regulated on
activation, normal T cell expressed and secreted), soluble CD40 L (sCD40L), tumor necrosis factor alpha
(TNF-�), and vascular endothelial growth factor (VEGF). Cytokines were measured using Bio-Plex cytokine
arrays and the Bio-Plex 200 System (Bio-Rad Laboratories). All tests at the participant level for each
specific immune mediator were run by the same system in a single batch. All tests were run as
recommended by the manufacturer using previously described optimized assay protocols (24). Data
processing was performed using Bio-Plex manager software version 4.4.1, and serum cytokine concen-
trations were interpolated from standard curves for each respective cytokine.

These data were transformed using the log of the ‘‘ratio to average’’ for ease of interpretation. This
was calculated by setting all values less than 1 pg/ml to 1 pg/ml and then calculating the log base 2 of
the (value)/(average value in the cohort). As a result, 0 represents an average value, 1 represents a value
which is 2 times the average, and 2 represents a value which is 4 times the average.

Statistical analyses. All analyses were performed using SAS Software (version 9.4; SAS Institute Inc.,
Cary, NC, USA) or R (version 3.6.1), and all figures were produced using Microsoft Excel (version 2016),
Microsoft Power Point (version 2016), or GraphPad Prism (version 8.1.0; GraphPad Software, San Diego,
CA, USA). Group comparisons were performed using chi-square or Fisher’s exact tests for categorical
variables. For normally distributed continuous variables, group comparisons were performed using t test
or one-way analysis of variance tests, and means and standard deviations are presented. For nonnormally
distributed continuous variables, group comparisons were performed using Wilcoxon rank sum or
Kruskal-Wallis tests, and median (interquartile range [IQR]) [range] is presented. A P value of �0.05 was
considered statistically significant.

Data availability. Any data, metadata, or methods used to replicate findings in this article will be
made available upon request in a timely fashion. Please address requests to Alison Rebman (arebman1
@jhmi.edu).

RESULTS
Participant cohort. A total of 57 participants with complete skin and blood

PCR/ESI-MS and two-tier serology data were enrolled during the acute infection and
diagnosis time frame (V1). Of these 57 participants, 57 (100%) returned at V2, and 47
(82.5%) returned at V3. Of the 47 participants with a V3 visit, 39 (83.0%) provided a
second skin biopsy sample. The overall demographics and clinical characteristics of our
study sample are shown in Table 1. The mean age was approximately 49 years, and
39.3% were female. The proportion of patients with evidence of dermatologic dissem-
ination (i.e., multiple EM present) and abnormal lymphocyte and liver function tests is
similar to those of other previously reported cohorts (25–27). Although participants
were allowed to enter the study having initiated doxycycline treatment for early Lyme
disease, the majority (41/57 [71.9%]) were antibiotic naive at V1, and none had taken
doxycycline for more than 48 h at V1.
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Direct detection of B. burgdorferi sensu stricto by PCR/ESI-MS. Of the 57 partic-
ipants seen at V1, 43 (75.4%) had a positive skin biopsy sample for B. burgdorferi sensu
stricto, 18 (31.6%) had a positive blood sample for B. burgdorferi sensu stricto, and 12
(21.1%) were two-tier antibody positive (Fig. 1). Thirteen participants (22.8%) were
found to be negative on all three measures. An additional 12 (21.1%) of participants
were found to be two-tier antibody positive at V2, and no additional participants were
two-tier antibody positive at V3. All of the participants with a positive blood sample
also had a positive skin biopsy sample; however, the reverse was not true, as an
additional 25 participants were skin biopsy sample positive and blood sample negative.
Among the 43 skin and/or blood PCR-positive participants, 20 (46.5%) remained
antibody negative at both V1 and V2. Of the 39 participants who provided a second
skin biopsy sample at V3, we did not find evidence of B. burgdorferi sensu stricto in any
of the samples.

Notably, one participant who was negative on both skin and blood PCR/ESI-MS
testing was found to be strongly two-tier antibody positive at V1, consistent with recent
infection (ELISA, �5.00; IgM, 3/3 reactive bands; IgG, 4/10 reactive bands). This partic-
ipant also had strong clinical evidence for infection, with disseminated lesions and a
new onset seventh nerve palsy. Therefore, we considered this participant misclassified
and removed this participant from subsequent clinical and immunologic group com-
parisons. However, sensitivity analyses with this participant were performed and are
reported below.

Genotype testing. We determined B. burgdorferi sensu stricto genotypes for 37/43
(86.0%) of the participants with a positive skin sample (Fig. 2A). Of these participants,
3 (8.1%) were found to have multiple genotypes present in the skin. Genotype
detection was lower (10/18 [55.6%]) in the blood samples than in the skin biopsy
samples (Fig. 2B). However, when a genotype was identified in a blood sample, it was
always concordant with the one found in the skin sample from the same participant.
None of the 10 participants for which we could detect a genotype in the blood sample
were found to have multiple genotypes present.

Clinical characteristics. Participants were characterized by PCR/ESI-MS status into
three groups, and their demographic and clinical characteristics were compared across

FIG 1 Skin PCR/ESI-MS, blood PCR/ESI-MS, and two-tier antibody test results among 57 participants with early Lyme
disease. The denominator used to generate the percentages shown in each box is drawn from the box on the figure
directly above it rather than the overall total. Shaded boxes indicate positive results. Visit 1 is at baseline enrollment
during acute infection, and visit 3 is 6 months following the end of standard of care treatment for early Lyme
disease. Two-tier antibody (Ab) status is characterized as follows: Ab (�), two-tier negative on both acute and
convalescent testing; Ab (�/�), two-tier negative on acute testing and positive on convalescent testing; Ab (�),
two-tier positive on acute testing.
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groups (Table 1). We found that the number of presenting symptoms and final two-tier
antibody status were the only variables that were statistically significantly different by
group. Participants were also compared by group on the characteristics of their EM rash
(Table 2), and we found that the primary pattern of the EM, as well as whether or not
a tick bite puncture was present were statistically significantly different by group. While
they did not reach statistical significance, trends were observed for EM size as well as
presence of vesicles in the EM. When pairwise comparisons were performed, it was
predominantly the PCRneg/neg group that accounted for the group differences, while
the PCRpos/neg and PCRpos/pos groups were more similar. In sensitivity analyses, we
included the one misclassified PCRneg/neg participant who was initially removed and
found similar results with less significant P values, given that this participant presented
clinically more similar to the PCRpos/pos group.

FIG 2 B. burgdorferi genotype prevalence in skin (A) and blood (B) samples from participants with early
Lyme disease. Genotype percentages are shown on the chart’s outer edge with our genotype number
shown inside. Where determined, the corresponding inferred OspC type is also included in brackets. The
denominator used to generate the percentages is the total number of genotypes determined (n � 40 for
skin biopsy specimen and n � 10 for blood samples), which accounts for the multiple genotypes found
in the skin of three participants. Any genotypes found in blood samples were concordant with the ones
found in the skin sample from the same participant.

TABLE 2 Erythema migrans (EM) characteristics of 56 participantsa with clinically diagnosed early Lyme disease, by PCR/ESI-MS-defined
subgroup

EM characteristic

No. (%) of participants with the characteristic or value for characteristicb P valuec

All groups
(n � 56)

Group 1 (PCRneg/neg)
(n � 13)

Group 2 (PCRpos/neg)
(n � 25)

Group 3 (PCRpos/pos)
(n � 18) Overall

Group 1 vs
group 2

Group 2 vs
group 3

Group 1 vs
group 3

Disseminated EM 15 (26.8) 3 (23.1) 5 (20.0) 7 (38.9) 0.37 1.00 0.17 0.45
EM size (cm2) 94.5 (49.0–165.5)

[16.0–900.0]
60.0 (36.0–100.0)

[24.0–256.0]
108.0 (60.0–225.0)

[16.0–900.0]
98.5 (44.0–162.0)

[25.0–240.0]
0.08 0.04 0.28 0.25

EM shape
Round 31 (55.4) 10 (76.9) 13 (52.0) 8 (44.4) 0.18 0.14 0.62 0.07
Oval/irregular 25 (44.6) 3 (23.1) 12 (48.0) 10 (55.6)

EM color
Red 43 (76.8) 12 (92.3) 19 (76.0) 12 (66.7) 0.24 0.39 0.50 0.19
Blue/red 13 (23.2) 1 (7.7) 6 (24.0) 6 (33.3)

EM pattern 0.01 0.009 0.58 0.005
Ring within a ring 14 (25.0) 3 (23.1) 5 (20.0) 6 (33.3)
Central darkness 20 (35.7) 4 (30.8) 9 (36.0) 7 (38.9)
Central lightness 8 (14.3) 6 (46.2) 2 (8.0) 0 (0.0)
Uniform 14 (25.0) 0 (0.0) 9 (36.0) 5 (27.8)

EM vesicles present 7 (12.5) 0 (0.0) 6 (24.0) 1 (5.6) 0.08 0.08 0.21 1.00
EM tick bite puncture

present
26 (46.4) 11 (84.6) 8 (32.0) 7 (38.9) 0.007 0.005 0.64 0.01

aOne participant in group 1 who was misclassified by the PCR/ESI-MS test was removed from this analysis. Groups are distinguished by and labeled with their
PCRskin/blood result status.

bMean � standard deviation for normally distributed variables, median (IQR) [range] for nonnormally distributed continuous variables, and n (%) for categorical
variables are presented.

cAll P values are two sided.
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Serum cytokine profiling. We examined the levels of 38 immune mediators in
serum across the three PCR/ESI-MS skin and blood result status groups to look for
group differences. This analysis found that IL-1r�, IL-6, IP-10 (CXC chemokine ligand 10
[CXCL10]), and eotaxin were statistically significantly different across the three groups
at V1 (Fig. 3). Since IP-10 is thought to be driven by IFN-� and reflects a predominantly
Th1 response and eotaxin predominantly reflects a Th2 response, we also calculated a
ratio of IP-10/eotaxin, which was also statistically significantly different by group. These
results hold at a false discovery rate of 0.2. Results from pairwise comparisons showed
that PCR/ESI-MS group status differentiated all three groups on IP-10 levels, uniquely
identified the PCRneg/neg group on eotaxin levels, and uniquely identified the PCRpos/pos

group on IL-1r� levels. These differences found at V1 did not persist at the later V2 or
V3 time points (P � 0.23 for all overall group comparisons at both visits; P � 0.09 for
all pairwise comparisons at both visits). In a sensitivity analysis where the one initially
removed PCRneg/neg misclassified participant was added back, these results remained
consistent.

DISCUSSION

In this study, we utilized a PCR-based methodology (PCR/ESI-MS) to directly detect
B. burgdorferi sensu stricto from patients with a clinically diagnosed EM of early Lyme
disease and characterized these patients clinically and immunologically based on their
skin and blood sample results. This approach identified several patient subgroups of
interest within our cohort, most notably (i) those with B. burgdorferi sensu stricto
detected who failed to seroconvert on the current two-tier serologic assay and (ii) those
for whom no microbiologic or serologic evidence for infection could be found.

Similar to findings from previous studies (28), PCR/ESI-MS of EM skin specimens was
found to be more sensitive for identifying B. burgdorferi sensu stricto infection than
testing on whole blood or through commercially available two-tier serology. In our
study, 21% were two-tier seropositive at V1, an additional 21% seroconverted between
V1 and V2, and no additional participants seroconverted between V2 and V3, for a 42%
overall seropositive rate in the sample. This rate was somewhat higher (53%) among
those with microbiologically confirmed infection with B. burgdorferi sensu stricto, and
higher still among those with disseminated EM at V1 (63%). The sensitivity limitations
of the serologic test are often appreciated in the academic literature (17); however, this

FIG 3 Statistically significant immune mediator differences among PCR/ESI-MS-defined patient subgroups. Levels
of the four immune mediators found to be statistically significant by subgroup are shown (group 1, PCR skin and
blood negative [PCRneg/neg]; group 2, PCR skin positive/blood negative [PCRpos/neg]; group 3, PCR skin and blood
positive [PCRpos/pos]). Also shown is the calculated ratio of IP-10/eotaxin.
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is not always the case in clinical practice. Our findings illustrate again that in early
disease, physicians should avoid relying on two-tier test results in order to limit
misdiagnoses, treatment delays, and the complication of documentation for potential
later persistent symptoms posttreatment (29). Furthermore, the low rate of serocon-
version in our sample also lead to the identification of a subgroup of patients who were
PCR/ESI-MS positive but who remained seronegative on antibody tests at both V1 and
V2 time points. This phenomenon has been described previously, often in the context
of patients with EM treated promptly with antibiotics (17). We did find that the
PCRneg/neg group presented with shorter duration of illness at V1, although it was
not statistically significant.

Future research is needed to understand the subset of participants with clinically
diagnosed EM who were found to be negative on PCR/ESI-MS and serology measures.
The rate of this subgroup (23%) is similar to other, larger studies which have tested PCR
positivity in clinically diagnosed EM samples in the United States and in Europe (30–32).
Sampling error could have been present if the biopsy specimen was taken too far from
the leading edge or if B. burgdorferi sensu stricto was present below the level of
detection for this assay. We concluded that one participant in the PCRneg/neg group was
likely misclassified given the strong clinical and serologic evidence for infection for this
participant. It is unclear how this misclassification occurred, and similar factors could
have contributed to misclassification of additional members of this subgroup.

It is also possible that diagnostic error of large tick bite reactions or sequelae of
other infecting pathogens could have been present. Specifically, our Mid-Atlantic
location introduces the possibility of Amblyomma americanum-associated infections,
such as STARI (8). While we did not intend to assess the frequency of STARI in this
cohort and do not have proof that any of our patients had A. americanum tick bites
preceding their rash, several of the significant clinical differences we observed in the
PCRneg/neg group, such as the predominance of EM central clearing and the overall
lower severity of illness, are similar to those detailed by Wormser et al. in their
comparison of Lyme disease and STARI (33). Furthermore, it is important to note that
the range of A. americanum was thought to be confined to the southeastern United
States, but it has recently been found to have significantly expanded into several
northern states and is predicted to expand into southern Canada (34). At this time, an
infectious driver of STARI has not been identified. In our study, additional tests were run
on PCRneg/neg specimens, and no known pathogens were identified. These tests
included a broad-range bacterial assay previously characterized on blood samples from
septic patients (35) and a broad-range vector-borne assay previously used for detection
of tick-borne viruses, bacteria, and protozoans (36, 37).

In the current study, individual pairwise comparisons indicated that the PCRneg/neg

group appeared to contribute the most to many of the overall clinical and immunologic
group differences we observed. Interestingly, elevated levels of eotaxin at V1, a
mediator typically associated with Th2 and/or eosinophilic type of immune processes
and low levels of IP-10, a chemokine associated with Th1 responses and known to be
elevated in acute Lyme disease, are observed in this group (38–40). Eotaxin has been
strongly associated with allergic and asthmatic processes of the respiratory and gas-
trointestinal tract as well as allergic skin disease (41). This suggests that this patient
subgroup, while having many features that clinically overlap with early Lyme disease,
may represent a unique clinical or microbiologic subgroup phenotype driven by
distinct immune-mediated processes.

We observed the trend that PCR/ESI-MS-positive participants were more likely to
have a higher disease burden at V1, with a greater number of symptoms, higher
antibody titers to B. burgdorferi sensu stricto, and higher levels of several inflammatory
mediators, including IP-10 (CXCL10), which has been found to be a signature of the
acute phase of infection (24, 42–44). These findings are all consistent with possible
increased representation of B. burgdorferi strains such as RST1 in these participants,
which has been associated with greater inflammation and more virulent infection (42).
IP-10 and IL-1r� levels could also distinguish the PCRpos/pos group not only from the
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PCRneg/neg group but also from the PCRpos/neg group as well. This suggests a possible
immunologic distinction between those with skin-restricted or otherwise not yet
disseminated strains. Finally, we also observed that several EM-related factors differed
by group, in particular the pattern, presence of an observable tick bite puncture, and
presence of vesicles. Notably, these differences were not explained by various degrees
of antibiotic exposure at the V1 visit, and we were able to identify B. burgdorferi sensu
stricto in skin samples taken up to 48 h from initiation of therapy.

A high degree of B. burgdorferi sensu stricto genotype diversity was found in
PCR/ESI-MS-positive skin samples, and we hypothesize that this heterogeneity may
account for the presence of PCRpos/pos and PCRpos/neg subgroups because some
genotypes may be able to disseminate more readily from the initial site of the infection
to other areas of the body, including peripheral blood and areas that may be difficult
to treat, such as joints. Moreover, genotype information can serve as a control across
blood/skin and against contamination, as all genotypes detected in the blood of a
subject were also detected in the skin biopsy specimen (Fig. 2). In this study, the B.
burgdorferi sensu stricto genotyping was utilized as a research tool, and the method
employed is capable of detecting high degrees of genotypic diversity without affecting
PCR results (10). Unfortunately, given the number of genotypes found and the small
number of participants represented within each genotype, we were unable to test for
clinical or immunologic differences by specific genotypes. In addition, we detected
multiple genotypes in three (8%) of those participants with a classified genotype: two
in the PCRpos/neg group and one in the PCRpos/pos group. The presence of multiple
coinfecting genotypes of B. burgdorferi sensu stricto has been reported before in both
humans and ticks (19, 45); however, the clinical implications of this are unknown. In post
hoc analyses comparing those with a single genotype detected to those with multiple
genotypes detected, we did not find a clear pattern of more severe disease as reflected
by differences in lymphocyte count, liver function abnormalities, or dissemination of
EM. We did find a trend toward a higher number of reported symptoms among those
with multiple genotypes, although this was not statistically significant (the first value is
the median value, IQR shown in parentheses, and range shown in brackets; 12.0 (5.0 to
18.0) [5.0 to 18.0] versus 6.0 (4.0 to 12.0) [0.0 to 20.0], P � 0.32) and significantly smaller
EM rash sizes among those with multiple genotypes (32.0 (16.0 to 54.0) [16.0 to 54.0]
versus 143.0 (60.0 to 225.0) [25.0 to 900.0], P � 0.02). However, the sample size among
those with multiple genotypes is very small, and therefore, additional research is
warranted.

Finally, we did not find evidence of B. burgdorferi sensu stricto in skin biopsy
specimens repeated 6 months after completion of antibiotic therapy. This finding is
similar to other, earlier studies in which B. burgdorferi sensu stricto could not be cultured
following antibiotic treatment (46, 47). We therefore conclude that B. burgdorferi sensu
stricto nucleic acid does not remain in host skin for prolonged periods of time after
antibiotic therapy. However, this is expected, as B. burgdorferi sensu stricto is known to
rapidly disseminate from the skin to other organs, and we were unable to assess these
distant sites following early dissemination for the persistence of nucleic acid. This
finding does not rule out the presence of B. burgdorferi sensu stricto or bacterial
fragments in other tissue sites following antibiotic treatment, as has been suggested by
others (48).

This study has several limitations, most notably the number of participants in our
sample. In addition, while our rigorous participant inclusion and exclusion criteria
created a more homogenous sample, it may have also limited our understanding of
participants whose immune response and clearance of the bacteria may be different
(i.e., those with prior exposure to Lyme disease, those with immunosuppressive con-
ditions or medications, etc.). Relatedly, a subset of patients with Lyme disease will not
have an observable EM at the time of early infection (49), which may reflect additional
factors such as host skin color, location of the EM, or host immunologic or bacterial
genotype diversity. Any extrapolation of our findings to clinical management of pa-
tients should take into account these considerations and this level of patient variability.
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PCR-based methodologies on EM skin biopsy samples can identify the greatest
number of patients and can separate those with microbiologically confirmed infection
from those without microbiologically confirmed infection. Therefore, they may have a
key role in future studies where differentiating EM from the rash of STARI is important,
such as vaccine trials or public health surveillance initiatives. In addition, biopsy of the
EM may potentially improve early diagnostics for Lyme disease. While not an attractive
sample type for routine diagnostics because of the need for an invasive biopsy,
molecular testing of EM skin biopsy specimens could be used during the development
of a routine test that utilizes a less invasive sample type, such as whole blood, by aiding
in determining true-positive results and true-negative results. Direct detection of
nucleic acid in the skin may be especially useful for aiding in diagnoses of small lesions
that may not reach the specific case definition of 5 cm and may therefore be missed
(50) or of atypical lesions that may be confused with other diagnoses in consultative
dermatology or infectious diseases practices (51). PCR/ESI-MS and other direct detec-
tion approaches can help identify a larger group of patients to decrease misdiagnosis
and delayed treatment.
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