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Summary

Obesity epidemic responsible for increase in diabetes, heart diseases, infections and cancer shows
no signs of abating. Obesity in children is also on rise, indicating the urgent need of strategies for
prevention and intervention that must begin in early life. While originally posited that obesity
results from the simple concept of consuming more calories, or genetics, emerging research
suggests that the bacteria living in our gut (gut microbiome) and its interactions with immune cells
and metabolic organs including adipose tissues (microbiome-immune-metabolic axis) play
significant role in obesity development in childhood. Specifically, abnormal changes (dysbiosis) in
the gut microbiome, stimulation of inflammatory cytokines, and shifts in the metabolic functions
of brown adipose tissue and the browning of white adipose tissue are associated with increased
obesity. Many factors from as early as gestation appear to contribute in obesity, such as maternal
health, diet, antibiotic use by mother and/or child, and birth and feeding methods. Herein, using
evidence from animal and human studies, we discuss how these factors impact microbiome-
immune-metabolic axis and cause obesity epidemic in children, and describe the gaps in
knowledge that are warranted for future research.
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1| INTRODUCTION

Obesity is on rise in both adults and children, posing significant a health risk for humans.
Presently, one-third of children in United States are either overweight or obese.! Obesity is
increasing at 2.3% each year among school-aged children (aged 6-11 years), which is
unacceptably high and indicates worrisome prospects for next generation health. Therefore,
developing a better understanding about factors involved in the progression of obesity will
devise ways to design successful preventive and therapeutic strategies to check the rise of
obesity in our children.
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Obesity is simply defined by the extra-accumulation of fat in the adipose tissues due to
either excess caloric intake, reduced energy expenditure, or both. In mammals, white
adipose tissue (WAT) accumulates such extra calories in the form of triglycerides,? while
brown adipose tissue (BAT) burns the fat to produce heat in maintaining body temperature.
WAT is the major culprit in the pathogenesis of obesity, as it accumulates fat/triglycerides
and keeps expanding; while BAT consumes fat to produce heat, thus combating obesity.2
Individuals with lower BAT functionality have a higher risk of weight gain and obesity,
while those carrying more active BAT remain relatively resistant to weight gain despite
consuming excess calories. Although BAT remains relatively more active in children, it
remains unknown whether decreased BAT activity contributes to childhood obesity.

In addition, the sedentary lifestyle due to digitalization and increased consumption of less
nutritious and highly purified diets in the Western world plays an important role in the
epidemic of obesity.3 A series of studies over the past decade has confirmed that the
microbes living in our gut (the gut microbiome) not only associate with obesity but are one
of the causative factors for the obesity epidemic. The changing of lifestyle and diets both
impact the gut microbiome that contributes to the progression of obesity in both children and
adults. The abnormal alterations (dysbiosis) in the gut microbiome result in abnormalities in
nutrient absorption and metabolism, xenobiotic/drug metabolism, intestinal barrier functions
controlling gut permeability to stop bacterial translocation, and activation of inflammatory
immune functions.? This dysbiosis in the gut microbiome and change in immune functions
not only impacts children with obesity, but can also be passed from parental unhealthy gut
microbiome and immune memories because of their unhealthy eating and lifestyle habits as
well as overall health status.

Additionally, the population of healthy bacteria in the microbiome during infancy is one of
the crucial determinants for the risk of obesity. Infants are born sterile (although recent
studies showing the presence of bacteria in prenatal niches including placenta, amnion and
meconium challenge this notion); however, their microbiomes start developing immediately
after birth. The gut microbiome of infants born vaginally harbor the bacteria of maternal
birth canal and vagina, which are typically beneficial bacteria. In contrast, the gut of infants
born through Cesarean-section (C-section) is relatively populated by bacteria from maternal
skin. Babies born by C-section have a higher risk of developing childhood obesity compared
to babies who are vaginally delivered.® In addition, infants who are formula-fed have higher
incidences of childhood obesity and harbor different gut microbiomes compared to infants
who are breastfed, suggesting that early-life feeding method impacts the risk of childhood
obesity. Breastfed infants are expected to receive healthy nutrients like human milk
oligosaccharides (HMOs) that promote healthy bacteria in the infant’s gut. The use of
antibiotics during infancy and early childhood also significantly increases the risk of
childhood obesity by inducing gut dysbiosis and affecting normal functioning of
microbiome-associated metabolism regulation and immune system. These early life
processes are determinants of the maturation of the gut microbiome, immune, and metabolic
functions that regulate obesity incidences from childhood through adult life. In this review,
we describe and discuss the interactions between gut microbiome, immune, and metabolic
functions that can impact the WAT versus BAT functioning, thereby contributing to
childhood obesity (Figure 1).
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Microbiome-immune-metabolic (MIM) axis regulating WAT and BAT functioning

Several factors are involved in the induction of childhood obesity. Here, we specifically
discuss the interactions among microbiome, immune, metabolic cells, and adipocytes, which
are known to play a crucial role in the obesity epidemic. BAT is abundant during infancy.
Brown adipocytes uniquely express a mitochondrial uncoupling protein 1 (UCP-1) protein,8
that uncouples the electron transport chain to produce heat instead of ATP formation.” Thus,
BAT helps in preventing obesity by consuming calories.8 Although the abundance of BAT in
adulthood has been debated, recent studies demonstrate that there are physiologically
relevant amounts of functional BAT present in adults.® The BAT stimulation using cold,
and/or any other means, enhances the burning of calories and weight reduction; thus, the
stimulation of BAT is of significant importance to develop novel therapies against obesity.
Conversely, WAT stores fat in the form of triglycerides? and also plays an important role in
regulating the whole body metabolic functions by releasing several adipokines such as
leptin, adiponectin and resistin that regulate appetite and energy expenditure.10 However,
extra accumulation of fat in WAT develops low-grade inflammation and insulin resistance
that instigates type 2 diabetes. In leaner and metabolically efficient individuals, brown
adipocyte-like cells (also called Beige cells) are dispersed into the WAT, but upon extra
caloric intake and high fat accumulation, WAT begins to replace BAT/Beige cells. Increasing
the abundance of beige cells in WAT by exercise, cold exposure, and other stimulations is
linked to the reduction of obesity and type 2 diabetes. Therefore, the “conversion of WAT to
BAT” remains an area of great interest to control obesity in adults!; however, its importance
in children remains largely unknown. Also, the interactions of the gut microbiota and
immune cell with WAT versus BAT cells are not well known.

Emerging evidence indicates that immune cells and adipocytes interact to regulate metabolic
functions that impact obesity. In general, to fight with infections or other threats, immune
cells disperse energy to release cytokines and cell proliferation by consuming glucose and
other sources of energy from the body.12 However, upon surplus energy situations,
adipocytes also start releasing inflammatory cytokines that bi-directionally influence the
functions of adipose tissue resident immune cells such as macrophages,2 and this condition
is called low-grade inflammation. In these conditions, adipocytes do not function properly
and cause different forms of cellular stress which activate the inflammatory signaling
pathways, which in turn cause insulin resistance in adipocytes. Thus, this alteration of
adipocyte functioning and metabolism can lead to weight gain, even once the overnutrition
has ceased.14 In contrast, the role of macrophages is pivotal in the process of non-shivering
thermogenesis, stimulating brown adipocytes to increase UCP-1 expression.1® Specifically,
the browning of adipose tissue is caused by increased type 1 (M1) and 2 (M2) cytokines.
Type 1 cytokines activate classical (M1) macrophages, and type 2 cytokines polarize
macrophages to the alternative M2 state.18 There are also specific links between adipose
tissues and immunometabolic pathways. For instance, mice deficient in Smad3, a protein
involved in transforming growth factor-beta (TGF-B) signaling, are more resistant to weight
gain when exposed to high-fat diet (HFD). Smad3 deficiency in mice enhances conversion
of white to brown adipocytes in WAT milieu.1” This demonstrates the interactions of
immune cells such as macrophages and adipocytes that can play a dual role in both gaining
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and losing weight. The detailed immune cell and adipocyte interactions have been reviewed
elsewhere.

The gut microbiome can play a key role in the immune-adipocyte interactions regulating
obesity. Studies over the past decade have confirmed that the gut microbiome is not only
associated with obesity but is also a causative factor, having the ability to increase its risk.
The gut microbiome and its metabolites impact WAT versus beige functioning and
abundance. For example, beige adipose tissue growth and insulin sensitivity are higher in gut
microbiome-depleted leptin-deficient (Lep®/°P) and diet-induced obese (D1O) mouse
models using antibiotics, or in germ-free (GF) mice.18 These mice exhibit higher numbers of
multi-lobular, small lipid-droplet containing UCP-1 expressing cells compared to control
mice.18 Host-microbiome derived metabolites such as bile acids (BA) contribute to the
browning of adipose tissue in mouse models by modulating beneficial effects on gut
hormones and modulating healthier microbiomes characterized with decreased Firmicutes
and increased Bacteroidetes, which in turn are associated with increased thermogenesis and
better regulation of glucose and lipid metabolism.1® Such effects have also been
demonstrated in humans orally receiving chenodeoxycholic acid (CDCA,; a bile acid) that
significantly increased BAT activity and UCP-1 expression compared to the placebo group.
20 Short-chain fatty acids (SCFAS) such as acetate, propionate and butyrate are the other
major gut microbiome-derived metabolites that control host metabolism. Butyrate is also a
browning agent that increases BAT functioning and stimulates peroxisome proliferator-
activated receptor gamma (PPAR-y) coactivator (PGC)-1a which enhances fatty acid
metabolism and stimulates adaptive thermogenesis by the upregulation of UCP-1.21.22
Butyrate simulates the metabolite-sensing G-protein coupled receptors (GCPRs) known as
free fatty acid receptors 2 and 3 (FFAR2/3). FFAR2/3 signaling stimulated by butyrate
increases the production of glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) which
increase insulin secretion and affect energy intake/expenditure.23.24 In addition, SCFA-
stimulated FFAR2/3 signaling is also involved in the regulation of immune cell functions
such as anti-inflammatory properties by suppressing interleukin-8 (1L-8) which is known for
inducing diabetes and causing inflammation when present in elevated quantities2°26 and
increasing Treg cells.2” Altogether, these examples support our notion that gut microbiome,
immune, and metabolic (MIM) cells, including adipocytes, closely interact and regulate
functions of each other, which can impact obesity pathology. While the role of the MIM axis
in obesity is emerging considerably in context to adulthood obesity, its role in childhood
obesity is not well developed. Figure 2 depicts the interactions between the gut microbiome,
immune-metabolism, and adipose tissue modulating obesity versus lean phenotypes, and
further sections will describe the role of this MIM axis in childhood obesity.

Maternal health contributing to childhood obesity and influencing MIM axis

Overall maternal health is crucial for the risk of obesity in offspring later in life. Factors
including maternal obesity, diabetes, malnutrition, medications, and lifestyle (during, before,
and after pregnancy) can impact the offspring’s MIM axis.2® Almost two-thirds of American
child-bearing aged women have obesity.2% Maternal obesity and diabetes are known to pose
high risks of developing these ailments in their children3%31 (Figure 3). This is supported by
the facts that: (i) mothers with obesity/diabetes even before pregnancy (prepartum) have
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increased expression of harmful genes in reproductive cells including ovum, that are
imprinted and passed to the offspring; (ii) mothers who become obese or diabetic during
pregnancy (peripartum) can induce gene imprinting in the developing embryonic cells; (iii)
mothers with obesity/diabetes can pass harmful metabolites through placental barriers that
can influence the risk of obesity and diabetes in offspring; (iv) mothers that develop obesity
soon after delivery (postpartum) can also pass harmful metabolites, fat, proteins and bacteria
through breastmilk to the offspring, impacting the MIM axis.32 Thus, prepartum,
peripartum, intrapartum and postpartum health of the mother can impact the risk of obesity
in offspring. However, more research is warranted to investigate factors that can influence
maternal and offspring relationship in the risk of obesity. Some studies are described below
and summarized in Table 1.

1.2.1| Animal Studies—Animal studies also indicate that mothers with obesity status
can raise offspring’s risk for obesity.33 Offspring from dams with obesity demonstrate
increased hypertrophy in adipose tissues and leptin resistance with enhanced adipogenesis.3*
Interestingly, even the mice colonized with fecal microbiota of infants from mothers with
obesity had increased weight gain and non-alcoholic fatty liver disease (NAFLD) rate as
well as impaired macrophage function in the liver and increased Firmicutesto Bacteroidetes
ratio,3° indicating that the gut microbiome that was passed from mothers with obesity to
infants passed along a strong risk of obesity for infants. Additionally, a rat study
demonstrated significantly increased expression of lipogenesis/fatty acid synthesis genes in
the WAT of adult offspring born from mothers with obesity compared to mothers that were
lean.33Maternal lifestyle and daily level of activity can also impact the infant’s obesity risk.
Vega et al30 demonstrated that maternal obesity increases fat mass, triglycerides, and leptin
levels in male offspring while exercise protects against the increase of these obesity
measures in offspring. When pregnant rats with both obese and lean phenotypes are
subjected to volunteer exercise, their offspring maintain better insulin sensitivity and glucose
homeostasis compared to offspring from mothers that are not subjected to any exercise.3’
Another study reported that the offspring of sedentary mothers with obesity had increased
expression of inflammatory interleukin-6 (IL-6) in WAT and hypothalamus while the
offspring of mothers with obesity who exercised were protected against this elevated I1L-6
expression.38 Overall, these studies suggest that maternal obesity has a negative impact on
childhood obesity. Unfortunately, the precise factors and mechanisms remain largely
unknown; however, the MIM axis factors can be important in childhood obesity and further
comprehensive research is warranted in this area.

1.2.2| Human Studies—Human studies also demonstrate that the offspring from
mothers with peripartum or intrapartum obesity/overweight are more likely to have obesity/
overweight.39 Infants of mothers with less gestational weight gain (GWG) have lower fat
mass, while offspring with excessive GWG have greater fat mass.3? The microbiome is
significantly less diverse in children from mothers with obesity, demonstrating that
environmental factors like microbiome may contribute to human childhood obesity.4°
Maternal smoking and alcohol consumption is also associated with increased risk of late
onset overweight in offspring.*! Emerging studies have determined that maternal exercise
significantly reduces offspring’s risk of developing obesity.*2 However, well controlled and
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large-scale studies are missing to indicate which factors of mothers with obesity are
significantly contributing to childhood obesity that can be targeted to curve the childhood
obesity epidemic.

Maternal diet contributing to the risk of childhood obesity via MIM axis

Maternal diet during pregnancy and breastfeeding is critical as mother’s nutrition is directly
transferred to the infant/child through placental circulation and breast milk, respectively.
Maternal diet during pregnancy can impact the risk of obesity in progeny in several ways
during embryo development. Unhealthy diet can modulate the maternal gut microbiome and
produce detrimental metabolites exposing embryos by crossing placental barriers*3 and can
impact the epigenetic signatures affecting the molecular and cell mechanisms of highly
proliferative and developmentally active embryos to imprint postnatal susceptibility to
obesity. Therefore, alterations to the embryonic environment in nutrient availability, gut
microbiome metabolite exposure, and/or immunological cytokines can imprint risk of
obesity in children. Figure 4 illustrates the interactions between maternal diet and offspring
MIM axis.

1.3.1| Animal Studies—The impact of maternal diet on the risk of childhood obesity in
offspring are reported in several animal models, and a few of them are reviewed here. Ma et
al* reported that although the host diet is a major modulator of the gut microbiome, mothers
fed with HFD during pregnancy and lactation had progeny with a microbiome signature
similar to animals with obesity, suggesting that the mother’s diet passes effects to offspring
microbiome and obesity phenotype. Another study demonstrated that the offspring from
HFD-fed rats have significantly (2-times) higher WAT and total adiposity, compared to
control counterparts,3’ again suggesting that maternal diet is highly important for progeny
metabolic health.%> In contrast, when ewes mothers were overfed during pregnancy, the
offspring exhibited increased UCP-1 levels and higher thermogenic activity,*6 indicating that
maternal overnutrition could lead to stimulated BAT in offspring. Summerfield et al*’ found
that the closer the mothers ate HFD to pregnancy, the higher the adipocyte hypertrophy,
macrophage infiltration with increased inflammation, and over-activation of JNK signaling
in WAT of progeny. During breastfeeding, the negative effects of maternal HFD on offspring
can be recovered if maternal diets are supplemented with dietary resveratrol which promotes
beige adipogenesis.*® Maternal low-protein diets decrease offspring birth weight by
increasing the BAT thermogenesis by 2—6 times compared to the level exhibited in control
rat offspring.4? Overall, these studies indicate that the maternal diet (in terms of not only the
fat contents but also the protein content) also influences the risk of obesity in offspring
linked to MIM axis modulation.

1.3.2| Human Studies—Several human studies also show that maternal diet can
increase obesity in children by impacting the MIM axis. Chu et al®? reported that infants of
mothers who ate a high calorie diet had significantly lower levels of Bacteroides, indicating
a dysbiotic microbiome, compared to normal control. A study matching GWG with
offspring BMI determined that childhood BMI increases for each kilogram of GWG from
maternal overnutrition,®! indicating that regardless of diet type, any form of overnutrition by
mothers can increase obesity risk in the offspring. Another study determined that higher

Obes Rev. Author manuscript; available in PMC 2021 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kincaid et al.

1.4

Page 7

GWG and maternal leptin levels are associated with higher birth weight and lower leptin
levels in offspring, the two factors known to increase the child’s risk of developing obesity
later in life.>2 Although these studies indicate that maternal diet increases the risk of obesity
in children, more comprehensive and planned clinical studies are needed to conclude these
observations and find definitive factors that can be implemented in clinical practice to check
the growing rate of childhood obesity.

Impact of antibiotics use on MIM axis and childhood obesity risk

Most clinically available antibiotics are broad-spectrum and can dramatically modulate the
gut microbiome composition and functions.>3 After antibiotic treatment, pathogenic bacteria
can repopulate faster than beneficial bacteria; therefore, a single antibiotic use can leave a
long-term impact on the gut microbiome. Figure 5 depicts the effects of antibiotic use on
childhood obesity.

A). Use of antibiotics during pregnancy: Antibiotics significantly decrease the
diversity of the gut microbiome. When mothers take antibiotics before and/or during
pregnancy, infants only receive a partial set of bacteria from the mother instead of a fully
diverse healthy microbiome. This can lead to future overweight/obesity. Studies
demonstrating the impact of maternal antibiotic use on obesity in offspring are discussed
below:

Animal Studies: To the best of our search, we found only minimal animal studies
demonstrating the impact of antibiotics during pregnancy on the risk of childhood
obesity. However, a study by Li et al®* found that the expression of BAT UCP-1 in
mice fed antibiotic cocktails was significantly reduced. Additionally, these mice had a
significantly decreased amount of M2 (beneficial) macrophages in the BAT. This
decreased amount suggests that the depletion of the gut microbiome by antibiotics in
adult mothers can reduce BAT and pose a higher risk for obesity that can be passed to
the next generation. Contradictory evidence from a rat study demonstrated that pups
born from mothers fed antibiotics from pregnancy through weaning gain less weight
throughout adulthood,> suggesting that the use of antibiotics during pregnancy can
be beneficial. However, such studies will need further comprehensive investigation to
establish these facts.

Human Studies: A study found that the offspring of women who used antibiotics
during pregnancy have significantly higher BMI/obesity.%8 Keski-Nisula et al. found
that the use of antibiotics during pregnancy causes a significantly reduced transfer of
beneficial bacteria (such as Lactobacillus) to infants.>” Mueller et al. found that the
offspring of mothers taking antibiotics during second or third trimester pregnancy had
an 84% higher risk of offspring obesity, higher BMI, fat mass and waist
circumference.58 Another study determined that increased frequency of antibiotic
exposure increases the risk for developing childhood obesity, especially during
second trimester, which causes the strongest increase in childhood obesity rates.®
Maternal antibiotic use reduces infant microbial diversity, and timing of antibiotics
plays a fundamental role. Administration of antibiotics during pregnancy negatively
affects the infant microbiome while antibiotic use before pregnancy appears to have
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minimal to no effect. However, more research is requisite to validate these impacts
and correlations.

B). Use of antibiotics during infancy: Antibiotic use during infancy increases the
risk of obesity by inducing microbiome dyshiosis.5% Compared to older children and adults,
the microbiome of the infant is much more sensitive to antibiotic-induced alterations.
Specifically, infants struggle to replenish bacteria that have been killed by antibiotics. These
observations are supported by the following animal and human studies:

Animal studies: Cho et al. demonstrated that infant mice that were subjected to an
antibiotic treatment had increased adiposity with an increased detrimental ratio of
Firmicutesto Bacteroides.5! 1t has also been shown that life-long sub-therapeutic
antibiotic treatment (STAT) in mice significantly increases fat mass, insulin
resistance, NAFLD, gut microbiome dysbiosis and expression of proinflammatory
cytokines later in life.52 A pig study demonstrated that feeding two different
combinations of antibiotics increase body-weight gain and adiposity; however, one
combination of antibiotics caused dysbiosis while the other did not.62 Thus, early life
antibiotic exposure can enhance the risk of obesity later in life. However, more
comprehensive studies are needed to address the impact of types and course of
antibiotics during early life on the risk of obesity.

Human Studies: Stark et al. found that antibiotic exposure in early life significantly
increases the risk of early childhood obesity regardless of the strength or type of
antibiotic, and longer exposure increases this risk.54 Another study demonstrated that
specifically the number of antibiotic courses — rather than mere exposure — during
childhood determines the risk of childhood obesity, where children having at least
four course of antibiotics had significant increases in the risk of childhood obesity.%°
Interestingly, administration of antibiotics up to six months in infants of normal
weight mothers significantly increases the risk of developing obesity, while antibiotic
administration decreases the risk of obesity in infants born to mothers with obesity/
overweight.%6 This difference might account for the fact that antibiotics might have
disrupted the normal microbiome in infants from mothers with normal weight, which
might have induced obesity; on other hand, such antibiotics may have killed bad
bacteria in infants from mothers with obesity/overweight and protected them from
obesity.

Impact of birth method on childhood obesity and MIM axis

The risk of childhood obesity is strongly linked with birth methods that impact the MIM
axis. For example, the gut of infants born through C-section is colonized by microbes
primarily from the mother’s skin and the hospital environment whereas the gut of infants
born vaginally harbors mother’s vaginal and perianal microbiome (Figure 6). The microbial
community’s origin depending on birth method largely impacts the risk of childhood
obesity, as described below:

Animal Studies: A study showed that the lambs born through C-section exhibit
lower metabolic rate and UCP-1 expression in BAT compared to vaginally born
counterparts and rely more on shivering thermogenesis.6” A mouse study also
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demonstrated that mice born through C-section were 33% heavier and had less
diverse gut microbiome than normal birth mice.®® However, due to limited need for
C-sections in animal models, there are limited studies discussing its impact on
offspring obesity; therefore, more research is needed in this area to find the definite
factors that can impact childhood obesity risk.

Human Studies: Infants born through C-section demonstrate significantly lower gut
microbiome diversity and richness, which may also be predictive of obesity.5 \eile
et al’0 compared populations in two geographic regions and determined that C-
section significantly increased weight gain for both boys and girls in one region,
while in the other region, just boys born through C-section exhibited significant
weight gain. Thus, while C-section causes weight gain, factors including
geographical region as well as the gender can affect the impact of C-section on
offspring weight gain. Bar-Meir et al’! found significant association of C-section
with overweight/obesity at 17 years. Additionally, Blustein et al’2 found that by 11
years of age, infants born via C-section had 1.83 times higher risk of developing
obesity compared to offspring born vaginally. The risk of childhood obesity is
compounded with C-section in mothers with obesity. However, these data are
scattered and hence further, better-
plannedmultifactorialstudiesareneededtoestablishthesefacts.

Impact of Feeding Method on Childhood Obesity and MIM axis

As mothers have become increasingly busy with new responsibilities at the workplace,
increasing rates of formula feeding have become more common. The mother’s milk harbors
a microbiome of breast and skin; unfortunately, formula lacks this microbiome, thereby
resulting in an imbalanced microbiome in the infant’s gut. One of the most common
components of the mother’s milk are human milk oligosaccharides (HMOs), which are a
nutritional source of healthy bacteria. For example, Bifidobacteria are commonly enhanced
in breast-fed infants and promote a healthy gut microbiome and are associated with reduced
obesity.”3 As research has identified the beneficial effects of these ingredients, a new
generation of infant formulas have begun to include HMOs and Bifidobacteria. Effects of
breastfeeding versus formula-feeding options on offspring health are depicted in Figure 7
and Table 1.

1.6.1| Animal Studies—Hamilton et al’4 found that bovine-milk derived
oligosaccharide feeding reduced weight gain and gut microbiome dysbiosis in HFD-fed
mice. Another study showed that the offspring from dams fed with prebiotic caprine milk
oligosaccharides (CMO) had increased gut microbiome diversity and Bifidobacterium
abundance and decreased weight gain and body fat compared to control offspring 30 days
after weaning.”® However, very limited studies have compared breast-fed versus formula-fed
in animals; whereas, human studies are abundant, as discussed in the following section.

1.6.2| Human Studies—Wang et al”® found that infants who are breastfed are less
likely to develop obesity later in life. Another study demonstrated that breastfeeding has
protective effects in high birth weight (HBW) offspring, who have a higher risk for
childhood obesity.”” Penders et al’® demonstrated that the infants exclusively fed with
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formula had significantly higher levels of C. difficile, E. coli and B. fragilis, bacteria that are
commonly abundant in the gut of people with obesity, thus posing a risk of obesity. Another
study demonstrated that infants fed a combination of breastmilk and formula develop a gut
microbiome more similar to infants that were exclusively formula-fed, indicating that
periodic formula feeding can strongly impact the infant’s gut microbiome.”® However, if a
mother had to choose a type of formula, formulas containing oligosaccharides develop
healthier offspring microbiomes consisting of more Lactobacillus and Bifidobacterium.8° An
analysis of pooled studies demonstrated that infants that are breastfed are less likely to
develop type 2 diabetes later in life compared to infants that are formula-fed.81 Another
problem with infant formulas is that they typically contain higher proteins which promote
lipogenesis and development of fat cells in the infant, leading to childhood obesity.82 Further
studies demonstrated that the infants fed a lower protein formula weighed less compared to
higher protein formula fed infants and have similar weight compared to breastfed infants.83
In addition, Liber and Szajewska’3 found that a combination of three oligosaccharides
proved to increase bifidobacteria in the infant gut compared to individual prebiotics. Not
only does breastmilk contain healthy oligosaccharides and bacteria, but a recent study has
determined that breastmilk also contains a lipid called alkylglycerol-type ether lipids (AKG-
type) which maintains beige adipose tissue when adipose tissue macrophages metabolize the
lipids and activate 1L-6/STAT3 signaling in adipocytes.84Therefore, a combination of
oligosaccharides, AKG-type, and bacteria in infant formulas could be an alternative to breast
milk.

2| CONCLUSION AND FUTURE PERSPECTIVES

As obesity has become a worldwide problem, researchers have naturally searched to
discover causative factors that could be modulated to improve this issue. Early life factors
seem to play a large role in imprinting risk factors for future overweight and obesity. Thus, it
has become crucial to analyze maternal, prenatal, infant, and childhood decisions made that
could impact the child’s health, as early life overweight and obesity lead to significantly
increased risk of persistent obesity in adulthood, contributing to the current obesity
epidemic. Some of the important factors that could significantly alter the risk of childhood
obesity include maternal health, use of antibiotics in both mother and children, and birth and
feeding methods. Because these factors alter numerous biological processes, this article
narrowed its focus to the impact of these risk factors on the microbiome-immune-metabolic
(MIM) axis regulating white adipose tissue and brown adipose tissue functioning. The goal
of analyzing the MIM axis, specifically, is to determine whether certain early life decisions
mentioned above impact the child’s health and encourage future research into these areas
and hopefully prevent future decisions of parents, physicians, and health care agencies that
could cause increased risk for obesity. Specifically, this review identified potential risk
factors for childhood obesity based on the evidence of gut microbiome dysbiosis, elevated
inflammatory cytokine levels, decreased BAT functioning/increased WAT, elevated BMI, or
increased risk for type 2 diabetes.

While research about childhood obesity has increased due to the obesity epidemic, specific
studies analyzing the gut microbiome, immunometabolism, and BAT functioning are still
lacking. For instance, there is good data discussing the effects of certain risk factors on a
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child’s weight gain and risk for obesity; however, there is less data discussing what specific
problems are caused by the risk factor, such as microbiome dysbiosis, and immune and
metabolic dysregulations. More research is needed to determine the specific mechanisms
associated with risk factors in order to discover solutions to these problems. Additionally,
animal studies providing mechanistic evidence of childhood obesity risk factors are lacking.
More research should be done to investigate the impact on the risk of childhood obesity of
both maternal and offspring use of antibiotics, birth method, and feeding method in animal
models, delineating the factors that can be targeted to curve the childhood obesity epidemic.
Studies analyzing BAT and cytokine functioning in particular are extremely limited,
especially when analyzing the risk factors of birth methods and feeding method. Indeed,
with these gaps in research filled, there will be a better understanding of specific
mechanisms and factors causing childhood obesity, and the better understanding will aid in
developing new preventative and interventional strategies to prevent/treat childhood obesity.
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