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Abstract

Background: High rates of anterior cruciate ligament (ACL) injury and surgical reconstruction 

in both skeletally immature and mature populations have led to many studies investigating the size 

and shape of the healthy ligament. The purposes of the present study were to compile existing 

quantitative measurements of the geometry of the ACL, its bundles, and its insertion sites and to 

describe effects of common covariates such as sex and age.

Methods: A search of the Web of Science was conducted for studies published from January 1, 

1900, to April 11, 2018 describing length, cross-sectional area, volume, orientation, and insertion 

sites of the ACL. Two reviewers independently screened and reviewed the articles to collect 

quantitative data for each parameter.

Results: Quantitative data were collected from 92 articles in this systematic review. In studies of 

adults, reports of average ACL length, cross-sectional area, and volume ranged from 26 to 38 mm, 

30 to 53 mm2, and 854 to 1,858 mm3, respectively. Reported values were commonly found to vary 

according to sex and skeletal maturity as well as measurement technique.

Conclusions: Although the geometry of the ACL has been described widely in the literature, 

quantitative measurements can depend on sex, age, and measurement modality, contributing to 

variability between studies. As such, care must be taken to account for these factors. The present 

study condenses measurements describing the geometry of the ACL, its individual bundles, and its 

insertion sites, accounting for common covariates when possible, to provide a resource to the 

clinical and scientific communities.
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Clinical Relevance: Quantitative measures of ACL geometry are informative for developing 

clinical treatments such as ACL reconstruction. Age and sex can impact these parameters.

Background

The anterior cruciate ligament (ACL) is one of the primary ligaments in the tibiofemoral 

joint and acts to stabilize the knee under multiple loading conditions, including anterior 

tibial loads, varus-valgus moments, and internal-external moments1–5. In order to resist 

excess joint motion, the ACL is composed primarily of highly aligned collagen fibers 

connecting the lateral wall of the femoral intercondylar notch and the anteromedial aspect of 

the tibial plateau6–8. ACL injury leads to knee instability, and, as such, ACL reconstruction 

(ACLR) procedures are performed at a rate of 250,000 per year9,10. These injuries are 

associated with high rates of early-onset osteoarthritis (even following reconstruction)11–13 

and an increased likelihood of future ACL injury14,15. In order to identify risk factors for 

ACL injury and improve outcomes following ACL injury, a large body of work has been 

developed to describe the native structure and function of the ACL.

Previous reports on the size and shape of the ACL have included qualitative descriptions and 

quantitative analysis of the tissue. Specifically, these descriptions have included geometric 

properties (length, cross-sectional area, and volume), descriptions of the existence and 

number of ACL bundles, angular orientation, tissue shape, fiber orientation and torsion, and 

insertion site properties, among other parameters. Many of these parameters have been 

studied in order to develop anatomical ACLR procedures. For example, ligament cross-

sectional area and length can be used to determine graft sizes, angular orientation can inform 

bone tunnel placement, and multi-bundle ACL descriptions can motivate multi-bundle 

ACLR procedures. These properties have been assessed with covariates, including sex 

differences16,17 and differences between patients with a history of ACL injury and healthy 

controls18,19. Recently, increasing numbers of ACL injuries in young athletes have led to 

increased interest in age-dependent changes20–22.

Technological advances over the past 3 decades have led to changes in data-collection 

modalities and improvements in accuracy. Increased field strength for magnetic resonance 

imaging (MRI) scanners has led to higher-resolution images, whereas measurements during 

movement can be assessed with dynamic imaging instead of invasive gauges23–26. New scan 

sequences and relaxometry techniques provide the opportunity to study regional properties 

within tissues noninvasively27–29.

At a basic-science level, these parameters can be applied to advance computational modeling 

of the ACL. Such models can be valuable tools to study mechanisms of injury and function 

under various loading conditions that are difficult to simulate experimentally. The ability to 

determine structural measurements (e.g., cross-sectional area) along the ligament, including 

at the insertion sites, allows the behavior of the ACL and interactions at its boundaries to be 

more accurately modeled.

To facilitate both clinical and basic-science research, the objectives of the present study are 

to provide an overview of qualitative descriptions of human ACL morphology and to 
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systematically review the available quantitative values of the size and shape of the human 

ACL and its insertion sites. When available, the geometric properties of the anteromedial, 

intermediate, and posterolateral bundles of the ACL will be reported. Sex and age will be 

identified as covariates when possible. We will also highlight data on the skeletally 

immature ACL.

Methods

This review was registered on the PROSPERO international prospective register of 

systematic reviews (ID: CRD42018096338), where the goals of the review were described 

and the search and inclusion criteria were defined. The initial registration of this review was 

approved on June 6, 2018. To summarize qualitative descriptions of the ACL, we referenced 

both recent and highly cited manuscripts describing ACL morphology found through the 

Web of Science (Thomson Reuters, Web of Science Core Collection).

To condense quantitative measurements of the ACL, 2 reviewers conducted literature 

searches through the Web of Science. All searches were date-restricted to January 1, 1900, 

through April 11, 2018. The search and selection process followed Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Fig. 1)30. Studies 

that included graphic data representation without numerical reports were excluded. For 

length, a search was performed using key terms “anterior cruciate ligament” AND 

“length*.” Of the 1,165 reports that were identified, 25 included quantitative data on the 

length of the human ACL at full knee extension. For cross-sectional area, we used key terms 

“anterior cruciate ligament” AND “area.” Of the 960 reports that were identified, 21 

included quantitative data on the cross-sectional area of the human ACL. For volume, we 

used key terms “anterior cruciate ligament” AND “volume*.” Of the 463 reports that were 

identified, 13 included quantitative data on the volume of the human ACL. For the ACL 

angle, we used key terms “anterior cruciate ligament” AND “angle*” AND “orientation*” 

OR “inclination*.” Of the 148 reports that were identified, 10 included quantitative data on 

the ACL angle. For the ACL insertions, we used key terms “anterior cruciate ligament” 

AND “insertion*” AND “size” OR “area” OR “footprint.” Of the 282 reports that were 

identified, 23 included quantitative data on human ACL insertion sites.

Results

Qualitative Descriptions of the ACL

Decisions regarding how to qualitatively describe ACL geometry inform subsequent 

quantification of geometric parameters. As such, we will first review these qualitative 

descriptions before presenting quantitative data.

At the most general level, the ACL has been described as a single structure connecting the 

tibial and femoral insertions. Although the ACL is more complex, such simplification 

mimics most ACLR procedures that replace the ACL with a single bundle of graft tissue 

spanning tunnels in the femur and tibia31–34. Such procedures reestablish the primary 

function of the ACL, although some studies have suggested that this method may fail to 

replicate full biomechanical function, particularly with regard to rotational stability35,36.
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Other descriptions of the ACL divide the tissue into multiple bundles, frequently defining 

the ACL as a double-bundle structure. These 2 bundles are classically defined as 

anteromedial and posterolateral bundles and are often distinguished by a tissue sheath 

between the bundles and separate locations of the insertion sites4,37–41. Functionally, the 

anteromedial bundle of the ACL is dominant at deeper knee flexion, whereas the 

posterolateral bundle is engaged near full extension42. Additionally, the anteromedial bundle 

contributes more to ACL function under anterior tibial loads, whereas the posterolateral 

bundle plays a greater role under rotational loads43,44. Double-bundle ACLR procedures 

attempt to restore the function of both bundles36,45. Surgical advantages and disadvantages 

of these procedures compared with traditional single-bundle ACLR have been well 

described45–47.

Some investigators have described the ACL as a triple-bundle structure. In those studies, the 

bundles most commonly have been defined as anteromedial, intermediate, and posterolateral 

bundles48 or as anteromedial-medial, anteromedial-lateral, and posterolateral bundles49. The 

third bundle (i.e., the anteromedial-lateral or intermediate bundle) is situated between the 

anteromedial (or anteromedial-medial) bundle and the posterolateral bundle. In 1 study, the 

intermediate bundle was located in approximately 20% of 73 patients (Fig. 2)48. Laboratory 

studies have shown that the intermediate bundle has increased function at 30° and 45° of 

flexion under anterior drawer testing50. Triple-bundle ACL studies have been limited 

primarily to the laboratory setting and have not become common in the operating room. In 1 

clinical study involving 41 patients who underwent a triple-bundle ACLR procedure, 

anteromedial and intermediate bundles were found to be well preserved with taut graft 

tension and good synovial coverage at second-look arthroscopy 6 to 22 months after initial 

ACLR51. However, 10% of patients had a complete posterolateral bundle rupture.

Other descriptions of the ACL have avoided bundle-related definitions. Instead, the shape of 

the ACL has been described as ribbon-like; that is, broad and flat, particularly toward the 

insertions52–54. The midsubstance of the ligament has a rounded or elliptical cross-section, 

with an oval isthmus and larger insertion areas, so the ACL also has been described as 

having the shape of an hourglass55 or a bow tie56. These descriptions of a flat ribbon ex vivo 

and a more rounded structure in vivo are reconciled in the description of the ACL as a 

ribbon under torsion. The fibers in the ACL twist about the long axis of the ligament, 

making the ribbon structure appear rounded. These fibers rotate internally from the femoral 

to the tibial insertion, with reported values ranging from 44° to 84° at 90° of flexion across 

studies57,58. On the basis of MRI measurements, Li et al. reported that the twist angle 

increased by approximately 30° to 35° from full extension to 90° of flexion58. This internal 

twist may be important for the biomechanical function of the ACL within the knee59. In 

summary, the proper qualitative description of the ACL is still hotly debated, but the various 

existing descriptions are important for interpreting the following quantitative descriptions.

Length of ACL

Length is one of the most commonly reported metrics of ACL geometry. Early studies of 

ACL length involved the use of radiographs60, Kirschner wires61, or a digitizer5 to collect 

measurements. While methods involving calipers62–65, 3-dimensional (3D) scanners16,17, 
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and a digitizer66 have been used recently, MRI is the most common method as it allows 

researchers to make noninvasive, in situ measurements67–79.

Quantitative data on ACL length are presented in Table I. For consistency, all lengths 

reported in Table I and Appendix Table S1 were made with the knee at full extension. 

Individual studies showed fairly low variability between subjects. In skeletally mature 

patients, the mean length of the entire ACL at full extension ranged from 27 to 38 

mm60,67–72,77,80,81. In many studies, lengths of the individual bundles of the ACL were 

measured as well, as summarized in Appendix Table S1. In studies with combined male and 

female data, the anteromedial bundle was longest (average length, 30 to 44 mm), whereas 

the posterolateral bundle was shortest (average length, 22 to 30 mm)61,66,70,71,73–75,82. The 

intermediate bundle had an average length of 30 to 33 mm61,71,74.

Quantitative data on ACL length at 0°, 30°, 60°, and 90° of flexion are presented in 

Appendix Table S2. ACL length is dependent on knee flexion, with the length decreasing 

from full extension to 90° of flexion in most studies58,66,67,74,75,80,82. This finding has 

obvious implications for graft fixation during ACLR. Notably, 1 study demonstrated an 

increase in length of the total ACL through flexion77. This difference may have been due to 

measurement method, as Guenoun et al. measured length in 2 dimensions in the sagittal 

plane77, whereas other studies involved the use of 3D methods5,58,61,66–68,70,74,75,80,82. In 

terms of the ACL bundles, studies consistently have demonstrated that the posterolateral 

bundle shortens with flexion5,61,68,70,74,75,82. However, there has been less agreement across 

studies for the anteromedial bundle, with some studies indicating that the anteromedial 

bundle lengthens with increasing flexion5,61 and others indicating that it shortens68,70,75,82.

Sex and age impact ACL length. The ACL has been found to be approximately 4% to 12% 

shorter in females as compared with males (Table I and Appendix Table S1)16,17,65,76,78,79. 

Additionally, ACL length has been examined across age in young subjects. One study 

involved the use of light microscopy to measure fetal ACL length, which averaged 3.7 mm at 

17 to 23 weeks of gestation41. Another study, involving MRI, demonstrated that the average 

ACL length increased from 24.6 mm at the age of 4 years to 39.2 mm at the age of 18 years 

(Fig. 3)83. ACL length consistently increased until the age of 13 to 15 years, at which point 

it plateaued. That study also demonstrated that ACL length was similar for males and 

females until the age of 10 to 12 years, after which ACL length in males was longer by 

approximately 5 mm.

Midsubstance Cross-Sectional Area of ACL

The cross-sectional area of the ACL affects tissue stiffness, and cross-sectional area (or, as a 

proxy, graft diameter) is an important parameter for sizing reconstruction grafts. Cross-

sectional area is measured as the area of the ACL on a plane perpendicular to the long axis 

of the ligament80. Quantitative cross-sectional area has been measured with use of a variety 

of methods, including MRI, 3D scanners, and cameras (Table II)16,52,54,64,80,84–96. It also 

has been calculated from caliper measurements based on the assumption of rectangular53 or 

circular62,97 shapes. In studies with combined male and female data, the average ACL cross-

sectional area has ranged from 30 to 53 mm2 in the literature52–54,62,64,80,85–88,90. Both 

intra-study and inter-study variability of cross-sectional area measurements has been greater 
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than that of ACL length measurements. Within studies, standard deviation values have been 

an average of 24% of the mean reported cross-sectional area values but only 9% of the mean 

reported length values. Similarly, between studies, reported means have fallen within a range 

of approximately 50% of the mean cross-sectional area and 30% of the mean length.

In terms of covariates, ACL cross-sectional area in females has been found to be 17% to 

39% smaller than that in males16,91–95,97,98. Average cross-sectional area typically has been 

reported to range from 24 to 58 mm2 in females and from 33 to 83 mm2 in males (Table 

II)91–95,98. In 1 study involving 3 groups of skeletally immature females with average ages 

of 9.7, 12.9, and 14.8 years, the average ACL cross-sectional area was 26, 29, and 27 mm2, 

respectively99. Furthermore, that study demonstrated that ACL cross-sectional area 

normalized to body weight and height decreased with age, from 0.007 to 0.003 cm2/kg-m.

Volume of ACL

ACL volume has been reported less commonly than ACL length and cross-sectional area. 

ACL volume has been most often measured through segmentation and reconstruction from 

sequential MRI scans16,17,64,100. Quantitative measurements of ACL volume are 

summarized in Appendix Table S3. Average ACL volume as measured with MRI has been 

reported to range from 854 to 1,858 mm3 in the literature64,91,101–103. This roughly 1,000-

mm3 range in reported mean values indicates high variability in ACL volume across studies. 

Additionally, the reported standard deviations within studies were 25% to 38% of the means. 

As volume measurements often require image processing, factors such as variability among 

users, software differences, and smoothing algorithms likely affect these differences. One 

study evaluated the volumes of the anteromedial and posterolateral bundles separately and 

demonstrated that these bundles comprised approximately 45% and 55% of the total ACL 

volume, respectively104.

On the average, ACL volume in females has been found to be 10% to 35% smaller than that 

in males (Appendix Table S3). Comparisons of ACL volume between right and left knees 

have revealed no significant side-to-side differences105. Tuca et al. reported that average 

ACL volume increased throughout skeletal growth, from approximately 300 cm3 in patients 

aged 3 to 7 years to approximately 1,300 cm3 at skeletal maturity20. Interestingly, volume 

plateaued at 10 years of age.

Angular Orientation of ACL

The angular orientation of the ACL is important because alterations in orientation can result 

in changes in joint stability, tissue force levels, and distributions under loading. Graft 

orientation is an important variable in ACLR. Commonly reported angles include coronal 

and sagittal plane angles relative to the tibial plateau and the angle between the ACL and the 

Blumensaat line.

Quantitative values for ACL orientation are summarized in Appendix Table S4. As these 

parameters are sensitive to knee flexion, the values reported here were measured at full 

extension. The sagittal plane angle of the ACL has been reported to range from 

approximately 45° to approximately 65° in skeletally mature patients58,63,77,81,106–108. 

Fewer studies have evaluated the coronal angle63,81,106,107, with mean values ranging from 

Cone et al. Page 6

JBJS Rev. Author manuscript; available in PMC 2020 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approximately 65° to approximately 78°. Typical values for the angle between the ACL and 

the Blumensaat line have ranged from 7° to 13° on average63,77,108; however, alternative 

calculation methods have provided lower values106,109.

In a study of the impact of sex on ACL orientation, no significant differences were found 

between skeletally mature males and females in the sagittal or coronal planes (Appendix 

Table S4)110. Similarly, in a study on the impact of sex and skeletal maturity on ACL 

orientation, sex was not found to significantly impact the sagittal or coronal ACL angles or 

the angle between the ACL and the Blumensaat line in subjects with open or closed 

physes22. In contrast, age was found to have a significant effect on sagittal and coronal ACL 

angles in skeletally immature subjects. Kim et al.22 and Reid et al.21 found that the sagittal 

and coronal ACL angles increased by approximately 20° from birth through maturity (Fig. 

422).

Insertion Site Morphology of ACL

The size of the femoral and tibial insertion sites of the ACL has been described according to 

many parameters, including length and width, cross-sectional area, and the ratio of major 

and minor diameters52,80,96. In the present discussion, we focus on studies in which cross-

sectional area has been used to describe the sizes of the insertion sites. Many techniques, 

including MRI, computed tomography (CT) scans, intraoperative measurements, laser scans, 

photographs, and caliper measurements, have been used to assess ACL insertion sites.

The cross-sectional area of the femoral ACL insertion site most frequently has been reported 

to range from 60 to 130 mm2 (Table III)38,80,96–98,111–121. Higher values, on the order of 

190 mm2, have been reported in some studies122,123. The high variability across studies may 

represent natural anatomical variation, inclusion or exclusion of the fan-like fibers extending 

from the ligament, altered sensitivity between scan sequences, or varied measurement 

precision. In terms of individual bundles, the cross-sectional area of the femoral insertion 

site of the anteromedial bundle has been reported to range from 35 to 65 mm2, whereas the 

cross-sectional area of the femoral insertion site of the posterolateral bundle has been 

reported to range from 32 to 66 mm2 (Appendix Table S5)37,39,111,116,124.

In terms of sex, 1 study demonstrated no significant difference between male and female 

subjects in terms of the overall femoral insertion cross-sectional area98, whereas another 

study found that the individual cross-sectional area values for both the anteromedial and 

posterolateral bundles were approximately 25% larger for males than for females38. Another 

study demonstrated no significant side-to-side differences within individuals in terms of the 

femoral ACL insertion site96.

The tibial insertion of the ACL also has been extensively characterized. Reported average 

values for tibial insertion cross-sectional area have generally ranged from approximately 100 

to 160 square millimeters39,85,87,97,113,114,117,118,120,122,125 while a few studies have 

demonstrated mean values closer to 180 square millimeters80,126. For the anteromedial 

bundle, the tibial insertion cross-sectional area has generally ranged from 60 to 70 square 

millimeters37,39,124, although 1 study demonstrated a mean value of 98 square 

millimeters126. For the posterolateral bundle, the tibial insertion site cross-sectional area has 
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ranged from 50 to 75 square millimeters37,39,124,126. One study demonstrated that the tibial 

insertion site was approximately 10% larger in males than in females38,39; however, another 

study demonstrated no significant difference124. Similar to the femoral insertion of the ACL, 

the cross-sectional area of the tibial insertion was not found to vary between right and left 

knees96.

While cross-sectional area is a valuable tool for describing insertion site size, the shape of 

the ACL insertion site is far more complex than a single number can encompass. Guenther et 

al., in a study of 100 patients, divided the tibial insertion of the ACL into 3 shape 

classifications (elliptical, triangular, and “C”-shaped) and reported frequencies of 51%, 33%, 

and 16%, respectively (Fig. 5)127. This type of classification points toward the potential need 

for individualized clinical approaches based on patient anatomy, although the ultimate 

functional impact of these different shapes has not been fully determined. Along with 

differences in ACL insertion footprint shape, the anatomy of the enthesis, including the fan-

like fibers extending from the primary ligament, also varies. Previous studies analyzing the 

microanatomy of the ACL enthesis have evaluated parameters such as the enthesis insertion 

angle, the enthesis width and length, and the relative areas of calcified or uncalcified 

fibrocartilage128, but much work remains to determine the clinical importance of these 

parameters.

Discussion

The present systematic review summarized the available literature on the size and shape of 

the human ACL. Qualitative descriptions of the morphology of the ACL were first 

presented. Then, quantitative measurements of ACL length, cross-sectional area, volume, 

angular orientation, and insertion areas were condensed from the existing literature. The 

impact of covariates such as sex, age, side (right/left), and measurement modality was also 

detailed. Such data can be used by clinicians and researchers to better understand the native 

ACL, to identify risk factors associated with injury, and to design better treatments to 

improve patient outcomes after injury.

Comparison between sexes is increasingly common, often revealing clinically important and 

statistically significant differences. Overall, the size of the ACL and surrounding anatomy 

tend to be larger in males compared with females. For example, length16,17,65,76,78,79, cross-

sectional area16,91–95,97,98, and volume16,17,19,100,104,129,130 have been found to be larger in 

males. Differences due to sex may be confounded by other variables such as height and 

weight, both of which have been shown to correlate positively with ACL size16,95,104. 

However, Anderson et al. found that ACL area normalized to total body mass remained 

~15% larger in males than in females95. Comparisons in ACL structure between left and 

right knees also have been reported96,105. Few, if any, statistical differences have been found. 

However, in athletes, it may be more relevant to report data between dominant and 

nondominant limbs as the impact of limb dominance on ACL behavior is not clear131.

Furthermore, recent increases in ACL injuries in children and adolescents have led to 

heightened interest in age-specific treatment options132. Currently, the long-term outcomes 

of these procedures are often poor, with high rates of second and third ACL injuries, 
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osteoarthritis, and meniscal lesions133,134. In order to improve ACLR procedures in these 

age groups, many recent studies have aimed to increase our understanding of the structure 

and function of the ACL during growth. In childhood and adolescence, many anatomical 

parameters undergo more complex changes than simply scaling with body size. The angular 

orientation of the ACL steepens in both the sagittal and coronal planes with increasing 

age21,22. Studies have identified age-dependent relationships between ACL cross-sectional 

area and other metrics of growth such as individual muscle cross-sectional area and body 

size, suggesting age-specific relationships between the size of the ACL and the size of other 

tissues20,99. Given that all of these changes could impact ACL function, consideration of 

growth and maturation may be key to developing improved solutions for pediatric ACL 

injuries.

Geometric measures of the ACL are relevant to graft selection, but these data are also 

relevant in the field of computational modeling. Models can be used to predict functional 

behavior of native tissues135–138 and outcomes of surgical procedures that cannot be easily 

tested in vivo79,137,139,140. The desires to develop robust models and move toward 

personalized medicine are driving improvements in the collection, analysis, and reporting of 

structural and functional properties of tissues including the ACL. Some groups have begun 

to incorporate more accurate geometries into finite-element models of the ACL by 

incorporating a double-bundle structure141, hourglass geometries with realistic torsion and 

fiber orientation142, or subject-specific geometries from MRI scans138,143, incorporating 

fiber orientation captured through digitization144. Ultimately, more detailed reporting of the 

structure and properties of the native ACL will result in more accurate and detailed models.

In summary, the present report aggregates information from previous studies that have 

qualitatively and quantitatively characterized the size and shape of the ACL. Specific 

parameters of interest include tissue length and cross-sectional area as well as regionally 

dependent geometries, such as the individual bundles and the insertions into bone. Variations 

due to sex and age are increasingly being reported across studies and may lead to a more 

accurate understanding of ACL size and shape.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
PRISMA flow diagram for study inclusion, showing the number of studies associated with 

the 5 separate searches that were performed (length, cross-sectional area [CSA], volume, 

angle, and insertion).
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Fig. 2. 
Proton-density (Figs. 2-A) and T2-weighted fat-saturated (Figs. 2-C) MRI scans and 2-

dimensional renderings (Figs. 2-B and 2-D) showing the division of the ACL into 

anteromedial, intermediate, and posterolateral bundles. (Reproduced, with permission from 

John Wiley and Sons, from: MacKay JW, Whitehead H, Toms AP. Radiological evidence for 

the triple bundle anterior cruciate ligament. Clin Anat. 2014 Oct;27[7]:1097–102. Epub 

2014 Jun 3https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?

cmd=Retrieve&db=PubMed&list_uids=24890455&dopt=Abstract. © 2014 Wiley 

Periodicals, Inc.)
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Fig. 3. 
Bar graph showing ACL length according to age for males and females as reported by 

Edmonds et al.83. That study included 68 female patients and 64 male patients, with 9 to 18 

subjects per age group. ACL length increased with age from 4 years to approximately 13 to 

15 years and differed between males and females in the adolescent age groups. (Reproduced, 

with permission from Wolters Kluwer Health, from: Edmonds EW, Bathen M, Bastrom TP. 

Normal parameters of the skeletally immature knee: developmental changes on magnetic 

resonance imaging. J Pediatr Orthop. 2015 Oct-Nov;35[7]:712–20https://

www.ncbi.nlm.nih.gov/entrez/query.fcgi?

cmd=Retrieve&db=PubMed&list_uids=25494026&dopt=Abstract. https://

journals.lww.com/pedorthopaedics/pages/default.aspx)
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Fig. 4. 
Scatterplots with polynomial regression curves and 95% confidence intervals showing that 

the sagittal and coronal ACL angles increased significantly from birth through late 

adolescence in both males and females in the study by Kim et al.22. (Reproduced, with 

permission from the Radiological Society of North America [RSNA], from: Kim HK, Laor 

T, Shire NJ, Bean JA, Dardzinski BJ. Anterior and posterior cruciate ligaments at different 

patient ages: MR imaging findings. Radiology. 2008 Jun;247[3]:826–35https://

www.ncbi.nlm.nih.gov/entrez/query.fcgi?

cmd=Retrieve&db=PubMed&list_uids=18487537&dopt=Abstract.)
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Fig. 5. 
Classification of ACL tibial insertion sites as elliptical, triangular, and “C”-shaped as 

assessed intraoperatively. (Adapted, with permission from Springer Nature, from: Guenther 

D, Irarrázaval S, Nishizawa Y, Vernacchia C, Thorhauer E, Musahl V, Irrgang JJ, Fu FH. 

Variation in the shape of the tibial insertion site of the anterior cruciate ligament: 

classification is required. Knee Surg Sports Traumatol Arthrosc. 2017 Aug; 25[8]:2428–32. 

Epub 2015 Dec 12. © 2017 Springer Nature. https://link.springer.com/journal/167.)
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TABLE I

ACL Length

Study ACL Length* (mm)
No. of 
Knees

Male:Female 
Ratio (no. of 

patients) Age† (yr) Acquisition Method‡

Guenoun et al.77 (2017) 32.5 ± 2.6 20 9:11 32 (24–47) 1T open MRI (STIR, T2 
fat sat) (in vivo)

Fujimaki et al.80 (2016) 31.1 ± 3.1 8 8:0 57.5 ± 8.0 Laser scanner (ex vivo)

Taylor et al.67 (2013) 34.5 ± 1.4§ 8 7:1 26 (22–32) 3T MRI (DESS) and 
fluoroscopy (in vivo)

Utturkar et al.68 (2013) 30.2 ± 2.6 8 8:0 30 ± 7 3T MRI (DESS) and 
fluoroscopy (in vivo)

Abebe et al.81 (2011) 27.0 ± 3.0 22 16:6 NR (19–49) 3T MRI (DESS) and 
fluoroscopy (in vivo)

Hosseini et al.69 (2009) 27.1 ± 2.3 9 4:5 NR (23–48) 3T MRI (in vivo)

Hashemi et al.64 (2005) 29.4 ± 4.7 (22.2–
36.5)

15# — — Calipers (ex vivo)

Li et al.70 (2004) 30.1 ± 3.8 5 — 25 ± 5 1.5T MRI (FIESTA) and 
fluoroscopy (in vivo)

Boisgard et al.71 (1999) 34.2 1 — — 1T MRI (T1) (in vivo)

Högerle et al.72 (1998) 38.2 ± 3.4 (30–45) 50 39:11 34 1.5T MRI (in vivo)

Miller and Dandy60 (1991) 36.7 ± 2.2 (31–41) 100# 48:36 32 (16–58) Radiograph (in vivo)

Wang et al.78 (2013), Wang et al.79 

(2015)
1.5T MRI (in vivo)

 Male 37.0 ± 4.1 158# 79:0 NR (15–71)

 Female 35.8 ± 4.7 156# 0:78 NR (15–73)

Stijak et al.65 (2009) Calipers (ex vivo)

 Male 31.9 ± 2.7 32 32:0 37 ± 10

 Female 28.1 ± 3.1 18 0:18 28 ± 10

Chandrashekar et al.16 (2005), 
Hashemi et al.17 (2011)

3D scanner (ex vivo)

 Male 29.8 ± 2.5 10 10:0 39 (26–50)

 Female 26.9 ± 2.8 10 0:10 37.7 (17–50)

Takai et al.5 (1993) Digitizer (ex vivo)

 Anterior 30.6 ± 1.3 8 — 36 (23–46)

 Posterior 26.0 ± 0.8 8 — 36 (23–46)

*
The values are given as the mean and the standard deviation (with or without the range in parentheses), with the knee at full extension, unless 

otherwise noted.

†
The values are given as the mean and the standard deviation or as the mean with the range in parentheses. NR = not reported.

‡
MRI sequences include STIR (short T1 inversion recovery), T2 fat sat (T2 fat saturation), DESS (double echo steady state), and FIESTA (fast 

imaging employing steady state acquisition) sequences.

§
The values are given as the mean and the 95% confidence interval.

#
Some knees were paired.
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TABLE II

ACL Cross-Sectional Area

Study

ACL Cross-
Sectional Area* 

(mm2)
No. of 
Knees

Male:Female 
Ratio (no. of 

patients) Age* (yr) Acquisition Method†

Thein et al.54 (2016), Bowers et 
al.84 (2011)

49.3 ± 13.9 (25.8–
93.4)

30 14:16 24 (16–38) 3T MRI (in vivo)

Lee et al.85 (2016) 47.2 ± 13.4 (22.0–
83.0)

92 72:20 34.7 (20–60) 3T MRI (in vivo)

Fujimaki et al.80 (2016) 39.9 ± 13.7 8 8:0 57.5 ± 8.0 Laser scanner (ex vivo)

Siebold et al.52 (2015) 38.7 ± 7.7 (20.3–
51.5)

20 7:10 (3 not 
available)

78 (62–108) Digital camera and calipers 
(ex vivo)

Śmigielski et al.53 (2015) 39.8 111‡ 45:36 67 (32–74) Digital calipers (ex vivo)

Vermesan et al.86 (2015) 31.7 ± 2.1 12 9:3 — 1.5T MRI (T2) (in vivo)

Cavaignac et al.62 (2014) 30.7 ± 7.0 (21.2–
44.2)

16 4:16 (4 excluded) 84 (77–90) Calipers (ex vivo)

Iriuchishima et al.87 (2014) 46.9 ± 18.3 12 4:8 86.3 ± 8.1 Digital camera (ex vivo)

Grzelak et al.88 (2012) 40.6 (23.8–59.1) 19 19:0 26.6 ± 5.3 1.5T MRI (T1) (in vivo)

Hashemi et al.64 (2005) 52.6 ± 16.3 15 — — Photographic 3D scanner 
(ex vivo)

Whitney et al.91 (2014) 3T MRI (T1, PD) (in vivo)

 Male 47 ± 11 27 27:0 18.0 ± 2.5

 Female 39 ± 11 61 0:61 17.1 ± 2.2

Pujol et al.97 (2013) 76 (64–93) Calculated from 
circumference measured 
by suture (ex vivo)

 Male 33.2 10‡ 5:0 —

 Female 25.5 12‡ 0:6 —

Lipps et al.93 (2013) 53 ± 7 3T MRI (T2) (ex vivo)

 Male 35.5 ± 11.2 10‡ 5:0 —

 Female 31.4 ± 8.7 10‡ 0:5 —

Lipps et al.92 (2012) 3T MRI (PD, T2) (ex vivo)

 Male 39.6 ± 11.7 9 9:0 60.8 ± 17.2

 Female 24.2 ± 8.4 9 0:9 65.7 ± 18.4

Dienst et al.94 (2007) 1.5T MRI (T2) (in vivo)

 Male 68.4 ± 20 10 10:0 26.2 ± 2

 Female 45.2 ± 10 10 0:10 24.4 ± 2

Chandrashekar et al.16 (2005) Photographic 3D scanner 
(ex vivo)

 Male 83.5 ± 24.9 10 10:0 39 (26–50)

 Female 58.3 ± 15.3 10 0:10 37.7 (17–50)

Anderson et al.95 (2001) 1.5T MRI (PD) (in vivo)

 Male 48.9 100‡ 50:0 16.1
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Study

ACL Cross-
Sectional Area* 

(mm2)
No. of 
Knees

Male:Female 
Ratio (no. of 

patients) Age* (yr) Acquisition Method†

 Female 36.1 100‡ 0:50 16.2

Muneta et al.98 (1997) Measurements from 
negative mold (ex vivo)

 Male 46.7 ± 7.7 8 8:0 77 ± 11

 Female 37.0 ± 9.7 8 0:8 72 ± 12

Dargel et al.96 (2009) Digital images (ex vivo)

 Right 50.9 ± 15.5 20 8:12 71 (62–86)

 Left 44.5 ± 11.6 20 8:12 71 (62–86)

Triantafyllidi et al.90 (2013) Digital microscope camera 
(ex vivo)

 Superior midsubstance 35.4 ± 2.5 8 4:4 59 (50–70)

 Inferior midsubstance 39.4 ± 2.2 8 4:4 59 (50–70)

*
The values are given as mean and the standard deviation, with the range in parentheses, when data were available.

†
MRI sequences include the PD (proton density) sequence.

‡
Some knees were paired.

JBJS Rev. Author manuscript; available in PMC 2020 December 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cone et al. Page 27

TABLE III

ACL Insertion Site Cross-Sectional Area

Cross-Sectional Area* (mm2)

Study
Femoral 

Insertion Site
Tibial Insertion 

Site
No. of 
Knees

Male:Female 
Ratio (no. of 

patients) Age* (yr)
Acquisition 

Method†

Tampere et al.122 (2017) 194.5 ± 38.3 159.2 ± 31.3 8 4:4 81.5 (66–97) CT (ex vivo)

Lee et al.85 (2016) 60.3 ± 12.5 
(34–98)

96.8 ± 22.1 (57–
150)

92 72:20 34.7 (20–60) 3T MRI (in vivo)

Fujimaki et al.80 (2016) 122.1 ± 30.2 175.8 ± 64.3 8 8:0 57.5 ± 8.0 Laser scanner (ex 
vivo)

Iriuchishima et al.113 

(2015)
69.8 ± 25 133.8 ± 31.3 26 10:16 Median, 84.5 

(68–98)
Digital camera (ex 
vivo)

Iriuchishima et al.114 

(2015), Iriuchishima et 
al.87 (2014)

72.3 ± 24.4 134.1 ± 32.4 24 9:15 Median, 84 
(68–98)

Digital camera (ex 
vivo)

Pujol et al.97 (2013) 96.8 (80–121) 117.9 (90–130) 22‡ 5:6 76 (64–93) Manual measurement 
(ex vivo)

Swami et al.120 (2013) NA (71–87) NA (95–113) 37 15:22 15.8 ± 0.2 1.5T MRI (PD, T2) 
(in vivo)

Iriuchishima et al.117 

(2013)
84.0 ± 25.3 144.7 ± 35.9 18 7:11 Median, 83 

(68–97)
Digital camera (ex 
vivo)

Iriuchishima et al.118 

(2013)
85.4 ± 26.3 145.4 ± 39.8 14 5:9 79.3 ± 8.2 Digital camera (ex 

vivo)

Suruga et al.111 (2017) 125 ± 47 — 23 7:16 Median, 83 
(69–96)

Digital photograph 
(ex vivo)

Iriuchishima et al.116 

(2016)
102 (72–199) — 14 6:8 Median, 82.5 

(69–96)
Digital camera (ex 
vivo)

Iwahashi et al.121 (2010) 128.3 ± 10.5 
(113.6–137.5)

— 8* 3:1 77 (66–87) Calipers (ex vivo)

Ferretti et al.123 (2007) 196.8 ± 23.1 
(158.1–230.4)

— 16‡ 4:4 75 (57–94) Laser scanner (ex 
vivo)

Tashiro et al.126 (2018) — 182.7 ± 41.1 50 33:17 21.4 ± 6.8 3T MRI (DESS) (in 
vivo)

Siebold et al.52 (2015) — 110.9 ± 14.7 
(80.1–133.1)

20 7:10 (3 NA) 78 (62–108) Calipers (ex vivo)

Guenther et al.125 (2017) Intraoperative and 
1.5T MRI (T2, PD) 
(in vivo)

 Intraoperative — 123.8 ± 21.5 
(61.3–172.8)

117 68:49 24.4 ± 9.1

 MRI- user 1 — 132.8 ± 15.7 
(75.1–188.5)

117 68:49 24.4 ± 9.1

 MRI- user 2 — 136.7 ± 15.4 
(71.7–184.5)

117 68:49 24.4 ± 9.1

Muneta et al.98 (1997) Measurements from 
negative molds (ex 
vivo)

 Male 99.6 ± 25.0 155.0 ± 32.2 8 8:0 77 ± 11

 Female 86.9 ± 42.2 131.7 ± 28.1 8 0:8 72 ± 12
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Cross-Sectional Area* (mm2)

Study
Femoral 

Insertion Site
Tibial Insertion 

Site
No. of 
Knees

Male:Female 
Ratio (no. of 

patients) Age* (yr)
Acquisition 

Method†

Siebold et al.38 (2008), 
Siebold et al.39 (2008)

82 (61–100) Digital camera (ex 
vivo)

 Male 98 ± 22 130 ± 45 17‡ 9:0

 Female 76 ± 13 106 ± 29 33‡ 0:18

Dargel et al.96 (2009) Digital camera (ex 
vivo)

 Right 122.3 ± 27.2 140.3 ± 20.1 20 8:12 71 (62–86)

 Left 119.5 ± 29.8 137.4 ± 28.0 20 8:12 71 (62–86)

*
The values are given as mean and the standard deviation, with the range in parentheses, when data were available, unless otherwise noted. NA = 

not available.

†
MRI sequences included PD (proton density) and DESS (double echo steady state) sequences.

‡
Some knees were paired.
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