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Abstract

Current closed-loop deep brain stimulation (DBS) devices can generally tackle one disorder. This 

paper presents the design and evaluation of a multi-disease closed-loop DBS device that can sense 

multiple brain biomarkers, detect a disorder, and adaptively deliver electrical stimulation pulses 

based on the disease state. The device consists of: (i) a neural sensor, (ii) a controller involving a 

feature extractor, a disease classifier, and a control strategy, and (iii) neural stimulator. The neural 

sensor records and processes local field potentials and spikes from within the brain using two low-

frequency and high-frequency channels. The feature extractor digitally processes the output of the 

neural sensor, and extracts five potential biomarkers: alpha, beta, slow gamma, high-frequency 

oscillations, and spikes. The disease classifier identifies the type of the neurological disorder 

through an analysis of the biomarkers’ amplitude features. The control strategy considers the 

disease state and supplies the stimulation settings to the neural stimulator. Both the disease 

classifier and control strategy are based on fuzzy algorithms. The neural stimulator generates 

electrical stimulation pulses according to the control commands, and delivers them to the target 

area of the brain. The device can generate current stimulation pulses with specific amplitude, 

frequency, and duration. The fabricated device has the maximum radius of 15 mm. Its total weight 

including the circuit board, battery and battery holder is 5.1 g. The performance of the integrated 

device has been evaluated through six bench and in-vitro experiments. The experimental results 

are presented, analyzed, and discussed. Six bench and in-vitro experiments were conducted using 

sinusoidal, normal pre-recorded, and diseased neural signals representing normal, epilepsy, 

depression and PD conditions. The results obtained through these tests indicate the successful 

neural sensing, classification, control, and neural stimulating performance.
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I. INTRODUCTION

Deep brain stimulation (DBS) is a neurosurgical procedure involving implantation of an 

electrode in the brain, and delivery of electrical stimulation pulses using a neurostimulator 

for the treatment of neurological disorders [1]. DBS can be classified into open-loop and 

closed-loop approaches. In the open-loop DBS, the stimulation is continuously delivered 

independent of the physiological brain condition. The optimization of the stimulation 

parameters in the open-loop DBS is performed manually by a neurologist which is not time- 

and cost-efficient [2]. The programming procedure is dependent on patient’s experience of 

clinical benefits. Accordingly, stimulation-induced adverse effects may occur, and for some 

patients, satisfactory settings may never be achieved [2]. In the closed-loop DBS, on the 

other hand, the stimulation is delivered according to the physiological brain condition. The 

optimization of the stimulation parameters in the closed-loop DBS is performed 

automatically by sensing a biomarker that reflects the disease state.

Most of the current closed-loop DBS devices [1], [3]–[12] use a single biomarker in their 

feedback loop which can cause the following issues: (i) The device can be used to detect and 

treat a neurological disorder characterized by the biomarker. For instance, when a closed-

loop DBS device is designed to control epilepsy, it might be inefficient to treat Parkinson’s 

disease (PD) due to the need for different biomarker detection and control algorithm; (ii) 

Some neurological disorders (e.g. PD) may demonstrate multiple primary (e.g. tremor, 

bradykinesia, rigidity, postural instability, etc.) or secondary (e.g. freezing, micrographia, 

mask-like expression, unwanted accelerations) symptoms [13], where only a subset of them 

is characterized by the biomarker [14], [15]. Thus, the device will not be able to detect the 

remaining symptoms [15]; (iii) The device may not provide sufficient detection accuracy by 

using one biomarker [16], [17]. While the biomarker may represent an abnormal brain state, 

it may be also affected by the patient’s other comorbid physiological or psychological 

conditions [16]. The use of multiple biomarkers enables making a more accurate decision, 

and increase the reliability of the closed-loop DBS device; (iv) The detection accuracy of the 

biomarker by the device may be affected by internal or external noises. Due to conditions 

such as temperature variations, induced electric currents, and functional disruptions [18], 

[19], the biomarker measurement may be affected. Thus, an incorrect decision will be made 

by the controller, and the stimulation parameters will be incorrectly adjusted.

Another shortcoming of the existing closed-loop DBS devices is that they are optimized to 

tackle only one specific disorder. They cannot treat other disorders unless some of their 

internal components are modified. On the other hand, a multi-biomarker multi-disease 

closed-loop DBS device will be able to detect a disease type and its state, and control and 

deliver the stimulation parameters efficiently.

In our earlier publications [20]–[22], we have presented some studies on multi-biomarker 

sensors. Here, we present the design, implementation, and laboratory validation of a 

complete closed-loop DBS device with an improved sensor that can sense multiple brain 

biomarkers, use the biomarkers to detect a brain disorder, and deliver required electrical 

stimulation pulses to the target area of the brain.
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II. METHODS

A. SYSTEM OVERVIEW

The overview of the multi-disease closed-loop DBS device is given in Fig. 1. Also, the 

schematic diagram of the circuits for the device is shown in Fig. 2. The components of the 

device include: (i) neural sensor, (ii) feature extractor, disease classifier, and controller, and 

(iii) neural stimulator. The neural signals are sensed from within the brain and conditioned 

by the neural sensor. Then, the outputs of the neural sensor are digitally processed to extract 

multiple potential biomarkers (alpha, beta, slow gamma (sG), high-frequency oscillations 

(HFO), and spikes). Next, the potential biomarkers are processed to extract amplitude 

features. The disease classifier processes the features by using a fuzzy-classification 

algorithm, and determines the brain’s condition (normal, epilepsy, depression, and PD). 

Depending on the detected condition, the associated controller is activated to determine three 

DBS settings (pulse amplitude, pulse duration, and pulse frequency). Finally, the neural 

stimulator generates stimulation pulses according to the stimulation settings, and delivers the 

stimulation pulses to the target deep brain structures.

The neural sensor can record five physiological frequency bands including alpha (8-13 Hz), 

beta (13-30 Hz), slow gamma (30-45 Hz), high-frequency oscillations (200-400 Hz), and 

spikes (400-1000 Hz). The device attenuates the frequency components among 45-200 Hz 

due to the interference with DBS pulse-frequency, avoiding the deterioration of the 

measured neural signal to much extent. In addition, the frequency components below 7 Hz 

or over 1000 Hz are also filtered in the current device. Attenuation of DC and very low 

frequency components is to lessen the sensitivity of the device to motion (usually below 5 

Hz) or other low-frequency artefacts. Moreover, frequency components over 1000 Hz are 

filtered to reduce the total power consumption of the device. Extending the neural sensor 

operating bandwidth to higher frequencies will force the device to have a higher sampling 

frequency (according to the Nyquist rate) and therefore, providing a faster real-time 

processing (which mean higher power consumption).

The specifications of the developed device are listed in Table 1. It is battery-operated, 

working with voltages within the range of 2.7 V to 3.5 V. A 3V CR2032 coin battery 

(capacity: 240 mAh) was chosen to meet the voltage requirements of the device. The device 

can operate in four different modes (Initialization, Standby, Communication, and 

Stimulation), each consuming different power levels from the operated battery. Upon the 

battery insertion, the device enters the Initialization mode in which the port pins, I2C bus, 

and the analog to digital converter (ADC) are configured. Upon completion of the 

Initialization mode, the device enters the Standby mode in which the ADC, neural sensor 

and stimulator are disabled and both the outputs of the Hall sensor are iteratively checked 

until a magnet pole is detected. If South Pole is detected, the device enters the Stimulation 

mode and runs the closed-loop DBS feature extraction, classification and control algorithms 

on the input neural signals to deliver the stimulation pulses according to the detected 

potential biomarkers and disease state. If North Pole is observed, the device enters the 

Communication mode in which the neural signals are transferred to a computer for 

visualization and off-line signal processing. The current consumption of the device in the 
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Initialization, Standby, and Communication modes is about 3.5 mA. The current 

consumption increases to around 13 mA in the Stimulation mode. Consequently, the 

minimum battery lifetime would be approximately 18 hours for a CR2032 coin battery.

1) NEURAL SENSOR: The neural sensor has been developed using discrete components 

to achieve higher flexibility in modifying the design, lower production expenses, and shorter 

manufacturing time, compared with application specific integrated circuits (ASICs) [23]. It 

collects and conditions neural signals in three stages: pre-amplification, filtration, and 

programmable post-amplification. In addition, it includes a ground stabilization circuit for 

single-supply operation.

The neural sensor inputs are captured from the contact-electrodes 1 and 2 (CE1 and CE2) as 

shown in Fig. 2 (A). The user can select between differential or single-ended recording 

configurations via an input-mode connector (IM-CON). The neural sensor includes two 

parallel low-frequency (Ch1) and high-frequency channels (Ch2). The AD8232 signal 

conditioning chip (Analog Devices, Inc.) has been employed in the first stage of both 

channels (Fig. 2 (B)). The pre-amplification gain of the recording circuit is set to 100 V/V 

via the internal instrumentation amplifier of the AD8232. In addition, a high-pass filter 

(HPF) with the cut-off frequency of 7 Hz for Ch1 (200 Hz for Ch2) has been also 

implemented using the AD8232. The internal independent operational amplifier of the 

AD8232 is used to implement a unity-gain Sallen-Key low-pass filter (LPF) with the cut-off 

frequency of 45 Hz for Ch1 (1 kHz for Ch2). A right-leg drive (RLD) amplifier has been 

used to improve the common-mode rejection by maintaining the midscale voltage through 

bias resistors (R1 and R2 in Ch1, and R6 and R7 in Ch2). The common-mode line rejection 

of 50 Hz and its harmonies are filtered via the C1 capacitor which implements an integrator 

in Ch1 (C5 in Ch2). The next signal conditioning stage after pre-amplification and filtration 

is the programmable post-amplification (Fig. 2 (C)). The gain of the programmable post-

amplification circuit is controlled via a two-channel micro-power digital potentiometer (DP) 

chip (MAX5479 from Maxim Integrated, Inc.) in combination with a micro-power 

operational amplifier chip (TSZ122 from STMicroelectronics, Inc.). The post-amplification 

gain is programmable from 1-1000 V/V. The DP chip is programmed via the microcontroller 

using an I2C interface involving the serial clock (SCL) and serial data (SDA) lines, each 

connected to the supply voltage (VCC) through a pull-up 4.7 kΩ resistor.

The microcontroller used in this device is the ATxmega32E5 (from Microchip Technology, 

Inc.) which is a high performance, low power, 8-bit microcontroller. It offers 32 KB of flash, 

1 KB of EEPROM, and 4 KB of internal SRAM. It is programmed using P-PADS included 

on the device (Fig. 2 (F)).

Finally, the neural sensor outputs (Ch1-Out and Ch2-Out) are directed to the microcontroller 

for digitization. The digitized signals can be either sent out through the serial data 

communication port (CON2) for off-line signal processing, or processed on-line for closed-

loop operation.

To operate the neural sensor by a single-supply voltage, a virtual ground (at 1.25 V) is 

created between the 3 V supply voltage and the analog ground (AGND) lines (Fig. 2 (D)). 
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The signals present at the output of the instrumentation amplifier, filters, and programmable 

amplifier are referenced to this voltage. This reference voltage level of 1.25 V is set through 

a separate micro-power MAX6023 voltage reference chip (Maxim Integrated, Inc).

Two parallel capacitors (Fig. 2 (E)) are used as bypass between the VCC and AGND lines to 

minimize the noise on the power supply traces. The capacitor network includes a 100 nF 

ceramic capacitor (C13) in parallel with a 470 μF tantalum polarized capacitor (C12). The 

C13 capacitor is intended for decoupling the power supplies. The C14 capacitor is necessary 

to maintain the circuit stability. In addition, to keep the possible digital noise out of the 

analog circuit, the analog (AGND) and digital (DGND) grounds are separated via a low ohm 

R17 resistor (Fig. 2 (E)).

The user can activate/deactivate the neural sensor through the embedded shutdown terminal 

of the AD8232 chip which is connected to the microcontroller. This feature helps switch 

easily between the active (recording) and shutdown (no recording) modes in the neural 

sensor, even when the supply is still on, thus offering considerable power savings. Apart 

from reducing the power consumption, it enhances the flexibility and ease of use in portable 

applications. To digitally control the SDN pin, a BU52078GWZ chip (ROHM 

Semiconductor, Inc.) is employed (Fig. 2 (F)). It is a dual-output micro-power omnipolar 

detection Hall sensor which contains a polarity monitor circuit. The first output which reacts 

to the South Pole is employed to activate/shutdown the neural sensor through the SDN pin. 

The second output of the Hall IC is employed to activate/deactivate the serial data 

communication function. The serial communication is off by default, and can be activated 

whenever the user decides to monitor/store the neural signals, and for additional off-line 

signal processing.

2) FEATURE EXTRACTOR, DISEASE CLASSIFIER AND CONTROLLER: The 

neural sensor outputs are directed to the microcontroller to extract potential biomarkers, 

classify diseases, and control the stimulation pulses according to the detected disease and 

brain state.

The ATxmega32E5 microcontroller executes the code for the feature extractor, disease 

classifier and controller. Fig. 3 (A) shows feature extraction steps that are performed on the 

neural sensor outputs. The feature extraction starts with sampling and digitization of the 

analog outputs of the neural sensor. The microcontroller samples and digitizes Ch1-Out and 

Ch2-Out through its internal 12-bit ADC. Both Ch1-Out and Ch2-Out signals are 

continuously sampled one after another at an overall sampling frequency of 4000 S/s (2000 

S/s per each channel). For this purpose, an internal timer is triggered to generate an interrupt 

after every 250 μs (sampling rate 4000 Hz). An external reference voltage of 2.5 V, produced 

by a REF3025 chip (Fig. 2 (F)), is used as an external reference input for the ADC. The 

REF3025 is a precision, low-power, low-dropout voltage, reference chip (Texas Instruments, 

Inc.), which offers excellent accuracy while operating at a quiescent typical current of 42 

μA. The reason for using a voltage reference chip is that the internal reference options were 

around 1-1.87 V which were inadequate for our application. Also, the VCC reference option 

is sensitive to the variation of the power source voltage.
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The second step (see Fig. 3 (A)) is to extract clinically investigated potential biomarkers. 

The digitized Ch1-Out and Ch2-Out contain several frequency bands, and activities within 

those bands are used as potential biomarkers for symptoms of several neurological disorders 

[24]–[40] (see Table 2). Three potential biomarkers can be extracted from the digitized Ch1-

Out, which include alpha (8-14 Hz), beta (~13–30 Hz), and sG (30-45 Hz). In addition, two 

potential biomarkers can be extracted from Ch2-Out, including HFOs (200-400 Hz), and 

spikes (>500 Hz). In the current study, we have focused on alleviating the epilepsy (could be 

characterized by HFO biomarker), depression (could be characterized by alpha biomarker), 

and PD (could be characterized by both alpha and HFO biomarkers) diseases. The alpha and 

HFO biomarkers are extracted through second order bandpass Butterworth digital filters. 

The filtration process is done in an iterative manner to facilitate real-time signal processing. 

The implemented iterative second order Butterworth filter for potential alpha biomarker is:

I (4) = Cℎ1 − Out(t) G
I (0) = I (1), I (1) = I (2), I (2) = I (3), I (3) = I (4)
O (4) = (I (0) + I (4)) − 2 ∗ I (2) + k0 × O (0) + k1 × O (1) + k2 × O (2) + k3 × O (3)
O (0) = O (1), O (1) = O (2), O (2) = O (3), O (3) = O (4)
Fα (t) = O (4)

(1)

where Ch1-Out(t) is the input signal at time t, G is the gain coefficient, I(4) is the current 

value of the processed input, I(0) to I(3) are the previous values of the processed input 

(initialized by zero), O(4) is the current value of the processed output, O(0) to O(3) are the 

previous values of the processed output (initialized by zero), Fα (t) is the digital filter output 

for alpha at time t, and k0 to k3 are the filter coefficients which are set based on filter 

frequency range for alpha biomarker. The implemented iterative second order Butterworth 

filter for the HFO biomarker uses Ch2-Out(t) as input with filter coefficients set to the 

frequency range of HFO biomarker.

Next, a three-step envelop detection algorithm is used to extract the alpha and HFO 

amplitude features. The implemented envelop detection algorithm includes: (i) rectification, 

(ii) peak-detection, and (iii) smoothing steps. The first step of envelop detection is to rectify 

the extracted biomarker signal. For this purpose, the absolute value of Fα (t) and FHFO (t) are 

taken by removing the negative values (converting them to zero) and keeping the positive 

values. In the second step, the rectified signals (Rα (t) and RHFO (t)) are dynamically 

scanned in a 3-sample window in real-time, and the local maximums are determined. Each 

value in the window, if not a local peak, is replaced by the previous maximum. This 

algorithm generates a staircase pre-envelope signal (PE(t)). Finally, the last envelop 

detection step includes a moving average-filter (for smoothing purpose) applied to pre-

envelop (PEα (t)) output as:
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Mα (t) = k × PEα(t) + (1 − k) × Mα(t − t0) (2)

where PEα (t) is the pre-envelop alpha which is used as the input to the moving average 

filter at time t, Mα (t) is the moving average filter output at time t, Mα (t-t0) is the previous 

output of the moving average filter (initialized by zero), and k is the moving average filter 

coefficient. The implemented moving average filter for HFO biomarker (MHFO (t)) is similar 

to Eq. 2 with different filter coefficients. The moving average filter is necessary to eliminate 

the produced staircase ripples (as shown in Fig. 3 (B)) and obtain a less sharp and steady 

amplitude for the alpha and HFO biomarkers. A sample graph presenting the three-step 

envelope detection process is shown in Fig. 3 (B).

The disease type is then determined using a fuzzy logic classifier. Fuzzy logic [41] is one of 

the techniques used to tackle classification problems. The main feature of the fuzzy logic 

classification method is its capability to deal with uncertainty and vagueness, as well as 

supporting the use of overlapping class definitions [42]. In addition, fuzzy rules can be 

easily interpreted and examined by humans [43]. Fuzzy logic involves fuzzification, rules 

assessments, and defuzzification stages. This technique has been widely used in medical-

based diagnosis and classification of different diseases [42], [44]–[47].

In this work, a four-class fuzzy classifier distinguishes among normal, epilepsy, depression, 

and PD conditions. The structure of the fuzzy logic classifier which consists of two input 

variables, four membership functions, four rules, and one output variable is shown in Fig. 4 

(A–E). The input fuzzy variables are calculated based on the equations given in Fig. 4 (A). 

In these equations, eα (t) and eHFO (t) are the alpha and HFO errors at time t, which are 

calculated based on comparison of the moving average filter outputs (Mα (t) and MHFO (t)) 

with two thresholds (Tα and THFO) as seen in Fig. 4 (A). The thresholds are constant, 

distinguishing between potential normal and abnormal biomarker situations.

Each input variable in the fuzzy classifier is represented by two fuzzy sets of trapezoidal-

shaped normal (N) and abnormal (AN) membership functions with the structure presented in 

Fig. 4 (B). The degree of belonging of the input variables to all the fuzzy membership 

functions is calculated at time t, and then the four fuzzy if-then rules (listed in Fig. 4 (C)) are 

assessed and the weight of each rule (wri) is determined. The single output variable is the 

class type which is represented with four triangular-shaped fuzzy sets as presented in Fig. 4 

(D). The four class fuzzy sets are Class 1 (Normal), Class 2 (Epilepsy), Class 3 

(Depression), and Class 4 (PD). The final stage of the fuzzy classifier is the defuzzification 

stage (Fig. 4 (E)) to transform the fuzzy results to a single crisp output, and determine what 

class the data belongs to. Here, we have implemented a weighted average defuzzification 

method used for fuzzy sets with symmetrical output membership functions. The advantage 

of this method is less computation compared to other approaches such as the center of 

gravity defuzzification method. In the weighted average defuzzification method, each 

membership function is weighted by its maximum membership value. The defuzzification is 

performed according to the stated equation in Fig. 4 (E) to obtain an index number between 

0 to c5 (the output set parameters). In this example, c1-c5 are 1-5 integers.
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Upon the classification, the fuzzy controller detects the disease state (mild, moderate, 

severe) based on two thresholds (one separating mild from moderate and another for 

separating moderate from severe disease states) and then supplies suitable stimulation 

settings to the neural stimulator. The device contains four controllers per each detected class 

as shown in Fig. 5. At each time, only the controller associated with the classified disease is 

active to calculate and send the stimulation parameters to the neural stimulator.

Controller 1 is a simple on-off controller which is activated when Class 1 (Normal) is 

detected. In this case, the stimulation settings for frequency, duration and amplitude of the 

stimulation pulse are all set to zero to turn off the neural stimulator. This controller, due to 

its simplicity, has been implemented with a simple on-off control algorithm.

Controllers 2-4 are fuzzy controllers which are activated when the associated class (disease) 

is detected in the fuzzy classifier. Fuzzy logic is a recognized technique for the control of 

any arising problems. The advantage of fuzzy logic controller is its aptitude to deal with 

nonlinearities and uncertainties. Controllers 2-4, each supply different stimulation settings to 

the neural stimulator for frequency, duration and amplitude of the stimulation pulse. These 

specifications have been listed in Fig. 5. The amplitude of the stimulation pulse is 

dynamically adjusted in each fuzzy controller based on the detection of the disease state 

(mild, moderate, severe), while the frequency and durations are fixed under each controller. 

The structure of the fuzzy logic controllers 2-4 are presented in Fig. 6–8, respectively.

Controllers 2 and 3 consist of two input variables, and Controller 4 consists of four input 

variables. The fuzzy input variables for Controller 2-4 are defined based on the equations 

presented in Fig. 6–8 (A). Each input variable is represented by two fuzzy sets of 

trapezoidal-shaped membership functions (Fig. 6–8 (B)). Upon computation of the degree of 

membership to each fuzzy set, three fuzzy rules (Fig. 6–8 (C)) are assessed and each rule’s 

weight (wri) is calculated. The percentage of the DBS pulse amplitude (%PA) as the output 

variable (Fig. 6–8 (D)) is presented with three triangular-shaped fuzzy sets of Low (Lo), 

Medium (Mid), and High (Hi) profiles. The final stage is the defuzzification to transform the 

fuzzy results into a single crisp output. The weighted average defuzzification method (Fig. 

6–8 (E)) has been implemented to obtain %PA index number ranging from 0 to 100. The 

%PA is then used to adjust the amplitude of the stimulation pulse on three levels of 50 μA 

(index ≤ 30), 100 μA (30 < index < 70), and 200 μA (index ≥ 70). To avoid the induced 

paresthesia [48] which may occur as a results of a sudden jump on amplitude variations, the 

stimulation pulse amplitude is ramped up and down when changing from one amplitude 

level to another one.

3) NEURAL STIMULATOR: The neural stimulator circuit (Fig. 2 (F)) consists of the 

ATxmega32E5 microcontroller, an adjustable current source (LM334, Texas Instruments, 

Inc.), a silicon N-channel MOSFET (RUM002N02T2L, ROHM Semiconductor, Inc.), a 

digital potentiometer (DP) (MAX5477, Maxim Integrated, Inc.) and a capacitor (C9).

The neural stimulator can generate biphasic passive-charge-balanced current stimulation 

pulses with programmable amplitudes, frequency, and duration. The amplitude of the 

stimulation pulse is digitally programmable from 7μA to 1735 μA, in 256 steps through the 
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MAX5477 DP. The microcontroller drives the gate voltage of the RUM002N02T2L to 

control the operation of the adjustable current source (LM334). The LM334 is an adjustable 

current source with an excellent current regulation from 1 μA to 10 mA. The current 

amplitude (Iv) is set via the variable resistor (Rv) between the low and wiper terminals of the 

MAX5477 DP:

Iv = (1.059 × V R) ÷ Rv (3)

where VR is the voltage across Rv. For normal room temperature of 20-25 °C, VR is about 

63 mV. The MAX5477 DP has a selectable resistance range of 39 Ω to 9.96 kΩ (256 linear 

steps, each step is 39 Ω), and thus the Iv can be programmed to deliver currents from about 7 

μA to around 1700 μA.

The frequency and duration of the stimulation pulses are also programmable in any user-

desired value through the program. The adaptive stimulation pulses (Stim-Out in Fig. 2 (F)) 

are delivered to the brain through the CE4 electrode pad. The neural stimulator circuit 

employs the passive charge balancing method to reduce some adverse effects such as tissue 

injury.

The proposed closed-loop DBS device is battery operated that can have its full functionality 

using a 2.7-3.5 V power source. A CR2032 coin battery (3V) is used to supply power to the 

device.

B. DEVICE FABRICATION

Fig. 9 shows the fabricated DBS device. It has been manufactured on a two-layer PCB with 

all the components on the top layer. The PCB has a semi-round shape (internal radius: 11 

mm), hidden under the CR2032 battery holder (Fig. 9 (A–C)) with a weight of 1.3 g without 

battery and battery holder (Fig. 9 (D)). The total weight of the device including everything is 

around 5.1 g (Fig. 9 (E)) which can facilitate back-mountable laboratory experiments in 

large or small animals.

Fig. 9 (F) demonstrates the user interface parts on the device. Two 4-way connectors are 

included on both sides of the PCB, one for recording/stimulation electrode (CON1), and the 

other for serial communication (CON2). Moreover, two LEDs are included on each side of 

the device to show the classified disease. In addition, the user can switch between the single-

ended and differential recordings using the input-mode connector (IM-Con). If the IM-Con 

is open, neuronal recordings are conducted differentially. Otherwise, a small jumper 

connector should be used to connect the IM-Con pins for single-ended recordings.

III. RESULTS

A. EXPERIMENT 1

Experiment 1 includes a bench evaluation of the device using four sets of sinusoidal signals 

representing Class 1 to 4 (four disease conditions). The purpose of this experiment was to 

evaluate the device for delivering appropriate stimulation pulses associated with each class. 

Two sinusoidal signals were combined to create four different disease signals. Each disease 
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signal was delivered to the input of the neural sensor via the AO-0 output of the myDAQ 

device (National Instrument Inc., USA). Table 3 shows the specifications of the four disease 

signals. Signal 1 represents the normal condition when both the potential alpha and HFO 

biomarkers have normal amplitudes. Signal 2 represents the epilepsy disease when the 

potential HFO biomarker has abnormal amplitude. Signal 3 represents the depression 

disease when the potential alpha biomarker has abnormal amplitude. Signal 4 represents the 

PD condition when both the potential alpha and HFO biomarkers have abnormal amplitudes.

The results captured from the output of the neural stimulator over a 10 kΩ load resistor are 

shown in Fig. 10. Signal 1 contains normal alpha and HFO components, and therefore the 

stimulation response (Fig. 10 (A)) is off. Signal 2 contains normal alpha and abnormal HFO 

components, and therefore the stimulation response includes pulses with frequency of 130 

Hz, duration of 450 μs, and amplitude of 200 μA (2V/10 kΩ) (Fig. 10 (B)). Signal 3 contains 

abnormal alpha and normal HFO components, and therefore the stimulation response 

includes pulses with frequency of 180 Hz, duration of 90 μs, and amplitude of 200 μA (Fig. 

10 (C)). Signal 4 contains abnormal alpha and abnormal HFO components, and therefore the 

stimulation response includes pulses with frequency of 150 Hz, duration of 270 μs and 

amplitude of 200 μA (Fig. 10 (D)).

B. EXPERIMENT 2

Experiment 2 includes a bench evaluation of the device with a normal pre-recorded neural 

signal captured from a mouse hippocampus by researchers in Laval University, Canada. It 

includes a range of frequencies up to 6 kHz, and a maximum pick-to pick amplitude of 400 

μV. This signal was sent to the device via the arbitrary waveform generator (ARB) of the 

myDAQ device. The output of the neural stimulator over a 10 kΩ load resistor in response to 

the normal pre-recorded neural signal was measured. The neural stimulator was turned off 

by detection of the normal alpha and HFO ranges by the fuzzy Controller 1 algorithm and 

generated zero volt potentials at output.

C. EXPERIMENT 3

Experiment 3 includes a bench evaluation of the device with a pre-recorded neural signal 

modified to potentially represent the epilepsy condition. For this purpose, the normal pre-

recorded neural signal was first converted from the time domain into the frequency domain. 

Then, the amplitude of the HFO biomarker in the frequency range of 200-400 Hz was 

randomly amplified (up to two-fold) to potentially represent the seizures of epilepsy in mild, 

moderate and severe states. Next, the modified signal was transferred back to the time-

domain and used as input to the device.

Fig. 11 (A) shows the result obtained from the output of the neural stimulator over a 10 kΩ 
load resistor. The graph shows 1 s of the stimulation pulses with 130 Hz frequency, 450 μs 

duration, and three amplitude levels produced by Fuzzy Controller 2. The 50 μA amplitude 

level is produced when the mild seizure is detected. The 100 μA amplitude level is produced 

when the moderate seizure is detected. The 200 μA amplitude level is produced when the 

severe seizure is detected. The amplitude of the stimulation pulses is ramped up and down 

between two consecutive amplitude levels to prevent the occurrence of paresthesia in the 
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brain. The ramping is achieved through continuous programming of the MAX5477 DP with 

consecutive resistor values until the required current level is achieved.

D. EXPERIMENT 4

Experiment 4 includes a bench evaluation of the device with a pre-recorded neural signal 

modified to potentially represent the depression condition. For this purpose, the normal 

neural signal was first converted to the frequency domain. Then, the amplitude of the alpha 

biomarker in the frequency range of 8-13 Hz was randomly amplified (up to two-fold) to 

potentially represent the depression disease in mild, moderate, and severe states. Then, the 

depression neural signal was transferred to the time-domain and used as input to the device.

Fig. 11 (B) demonstrates the result obtained from the output of the neural stimulator over a 

10 kΩ load resistor. The graph shows 1 s of stimulation pulses with 180 Hz frequency, 90 μs 

duration, and three amplitude levels produced by Fuzzy Controller 3. The 50 μA amplitude 

level is produced when mild depression is detected. The 100 μA amplitude level is produced 

when moderate depression is detected. The 200 μA amplitude level is produced when severe 

depression is detected. The amplitude of the stimulation pulses is ramped up and down 

between two consecutive amplitude levels to prevent the occurrence of paresthesia in the 

brain.

E. EXPERIMENT 5

Experiment 5 includes a bench evaluation of the device with a pre-recorded neural signal 

modified to potentially represent the PD condition. For this purpose, the normal pre-

recorded neural signal was first converted from the time domain into the frequency domain. 

Then, the amplitudes of the alpha and HFO biomarkers in the frequency range of 8-13 Hz 

and 200-400 Hz were randomly amplified (up to two-fold) to potentially represent the PD 

states of mild, moderate, and severe. Subsequently, the PD neural signal was transferred to 

the time-domain and used as input of the device.

Fig. 11 (C) shows the result obtained from the output of the neural stimulator over a 10 kΩ 
load resistor. The graph shows 1 s of the stimulation pulses with 150 Hz frequency, 270 μs 

duration, and three amplitudes produced by Fuzzy Controller 4. The 50 μA amplitude level 

is produced when mild PD state is detected. The 100 μA amplitude level is produced when 

moderate PD state is detected. The 200 μA amplitude level is produced when severe PD state 

is detected. Similarly, the amplitude of the stimulation pulses is ramped when changing 

between levels to prevent the occurrence of paresthesia in the brain. Therefore, there is no 

sudden change in the stimulation amplitude.

F. EXPERIMENT 6

Experiment 6 includes in-vitro evaluations of the device in saline solution which emulates 

the neuronal medium [49]. The saline solution contains 0.9% NaCl per litter of distilled 

water. The setup used for the in-vitro saline-based experiment is presented in Fig. 12. The 

pre-recorded normal and diseased modified neural signals were delivered to the saline 

solution one at a time using the ARB of the myDAQ device (via analog output AO-0). The 

signal delivered to the solution (NS on Fig. 12 (A–C)) emulates the neural source in the 
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brain. In the current setup, a three-contact symmetric copper electrode (Fig. 12 (C)) was 

manufactured to represent the DBS lead. In this electrode, the middle contact has equal 

distances from the two side contacts. This signal propagates in the saline solution, and 

differentially recorded by the neural sensor through the recording contacts (R1 and R2 in 

Fig. 12 (A) and (C)). The recording is done in the presence of the stimulation pulses that is 

delivered via the stimulation contact (S in Fig. 12 (A) and (C)). The stimulation interference 

is cancelled through the electrode configuration approach [48], in which the stimulation 

electrode contact is symmetrically placed between the two recording electrodes. Using this 

approach, the stimulation interference acts as a common-mode signal which is then 

cancelled in the instrumentation amplifier. The output of the device is monitored through an 

oscilloscope connected to the stimulation contact.

The stimulation pulses in response to the normal, epilepsy, depression, and PD signals are 

presented in Fig. 12 (D–G), respectively. The results show that the device acurately detects 

the disease and accordingly set the correct stimulation parameters. In addition, the device 

can recognize the disease state and change the stimulation amplitude level based on the 

disease severity state (mild, moderate, and severe).

IV. DISCUSSION

In comparison with other devices [7]–[17], the current closed-loop DBS device uses multiple 

biomarkers in its feedback loop to adjust the stimulation parameters. The use of multiple 

biomarkers in a closed-loop DBS device is advantageous for the following reasons: (i) a 

single device can be used for multiple neurological disorders. This is quite helpful in 

research-based studies involving animal subjects with different diseases. The existing 

closed-loop DBS devices are optimized to tackle only one specific disorder and they cannot 

treat other disorders unless some of their internal components are modified. Therefore, the 

current device with the capability of recording multiple biomarkers enables treating multiple 

diseases across multiple murine subjects without any technical modifications. Also, a single 

device can be used to treat multiple symptoms within a single disease. Each symptom might 

be characterized with a different biomarker; accordingly, the capability of recording multiple 

biomarkers facilities control of multiple symptoms. Moreover, the use of multiple 

biomarkers enables optimum adjustment of stimulation parameters increasing the reliability 

of the closed-loop DBS.

The overall device benefits from a weight of 5.1 g, a semi-round shape with maximum 

external radius of 15 mm, and a battery lifetime of 18 hours. These specifications make the 

current closed-loop DBS device appropriate for back-mountable laboratory experiments 

with small animals. The PCB of the device is dual-layer with all the electrical components 

positioned on the top layer. Therefore, there is still room for further miniaturizing the device. 

The device utilises discrete components, however, the ASIC design approach would provide 

compact size and reduce power consumption. However, the ASIC-based development 

approach is expensive and time consuming. It is more appropriate for human-based 

applications rather than animal-based experiments in which lower development costs and 

faster design processes are the main priorities.
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The neural sensor can record five physiological frequency bands that could contain potential 

biomarkers for several diseases. It is worth mentioning that the literature evidence for 

different biomarkers in different diseases comes from few groups worldwide in very small 

patient cohorts. Except for Parkinson’s disease, where a clear association of the beta 

biomarker has been confirmed, other biomarkers have been demonstrated in few cohorts. In 

this paper, we have tested different aspects of neural activity that could be associated with 

different neuro/psychiatric diseases.

The device can record five potential biomarkers including alpha (8-13 Hz), beta (13-30 Hz), 

slow gamma (30-45 Hz), high-frequency oscillations (200-400 Hz), and spikes (400-1000 

Hz). Increasing the bandwidth of the first channel to more than 45 Hz and the second 

channel to less than 200 Hz is not suggested due to the deterioration of the measured neural 

signal interfering with the frequency of DBS pulses. However, the neural sensor bandwidth 

could be further extended from the low and high ends (adding delta (0.5-4Hz), and theta (4-8 

Hz) and fast spike (> 1000 Hz). The reasons for not including these bands in the current 

device are due to the issues such as: (i) the device would be more sensitive to low-frequency 

artefacts (such as motion artefact (< 5 Hz)), and (ii) the need for having a more complex 

biomarker feature extraction and also a higher sampling frequency and therefore faster real-

time processing which may result in higher power consumptions. However, it should be 

noticed that exclusion of other important frequency bands such as delta (0.5-3 Hz) and theta 

(3-8 Hz) potential biomarkers may lead to incapability of the device in treatment of some 

other neurological disorders. Thus, leaving these frequency bands unused could be a 

limitation of the current device, which can be taken into consideration for future 

developments.

Several closed-loop DBS devices use a simple on-off control algorithm [12], [48], [50]–[54], 

and are not able to automatically and adaptively adjust the stimulation parameters. Other 

devices use traditional control approaches such as proportional-integral (PI) control [8], 

[55], proportional-integral-derivative (PID) control [56], [57], autoregressive model [58], 

and iterative learning control [51]. However, some of these control approaches are based on 

an ideal mathematical model, and have not been examined with actual closed-loop DBS 

devices.

This device takes advantage of a fuzzy classifier and four controllers which can distinguish 

between four conditions (normal, epilepsy, depression, and PD), and three disease states 

(mild, moderate, and severe) through potential alpha and HFO biomarkers. The performance 

of the device was evaluated through six bench and in-vitro experiments. The device 

successfully classified the input disease signals into proper classes in both bench and in-vitro 
experiments. In addition, it correctly optimized the stimulation parameters for each 

condition. The current levels were controlled for different disease states. Going from one 

current level to another was implemented through a ramping algorithm with an average 

ramping time of 65 ms between two consecutive current levels. The signal amplitudes in in-
vitro results (Fig. 12 (E–G)) contain some variations compared to the bench results (Fig. 11 

(A–C)), which are due to the following reasons. The first reason could be the stimulation 

interference. In the bench evaluations, no stimulation interference was present. However, in 

the in-vitro saline experiments, the neural signal is recorded in presence of the stimulation 
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pulses inducing noise on the neural sensor. The majority of the stimulation-related noise is 

rejected through the differential recording configuration. However, there may be still small 

residual stimulation components in the measured neural signal due to the possible minor 

difference in distance between the contacts of the electrode that was manually manufactured. 

The second reason could be that the stimulation pulses delivered into the saline solution are 

affected by the neural signal NS that is continuously injected to the solution. Since the 

amplitude of the stimulation pulses is much larger than the neural signals, the variations of 

the stimulation pulses appear to be small. However, despite the existence of these minor 

variations, the three amplitude current levels of 50 μA, 100 μA, and 200 μA, as well as the 

ramping intervals can be easily distinguished in Fig. 12 (E–G).

Different stimulation parameters have been reported in the literature for treatment of 

epilepsy [59], depression [60], and PD [61] conditions. In this device, the stimulation doses 

were chosen based on the reported values. However, the selected value for each stimulation 

parameter may not be the optimum setting for some patients. One future development could 

be the implementation of a pre-treatment period to identify the optimum frequency and 

duration values. The device would vary the frequency and duration values and then monitor 

their effect on the neural signals and the biomarkers’ amplitudes to select the best 

parameters. This will enable customization of the device for each patient through 

determination and use of patient-specific stimulation parameters.

The current device considers three parameters for each disease to distinguish between 

normal, mild, moderate, and severe disease states. They have been chosen by the application 

of normal and diseased neural signals to the device. The selection of the three parameters 

can be conducted manually by measuring the neural signals in different disease states and 

then assessing the biomarkers’ amplitude features, or can be conducted through artificial 

intelligent algorithms (such as neural network, or genetic algorithm) [62], [63].

The current implemented fuzzy control is based on the events occurring at the level of the 

neural activity. For example, the stimulation pulses are delivered after the seizure activity is 

detected. Implementation of prediction algorithms for event-based diseases such as epilepsy 

is also suggested. The stimulation pulses, if delivered before the seizure occurrence, may at 

least suppress the seizure intensity if could not totally prevent the seizure [64].

Future work should also focus on using all the five potential biomarkers to detect and treat 

an expanded list of neurological conditions. This, however, requires a better characterization 

of the neurological disorders and their respective potential biomarkers. The computational 

capability of the on-board microcontroller in conducting feature extraction, classification, 

and control was satisfactory. However, the computational burden of the calculations for the 

future device would be higher. To support such calculations, the following solutions can be 

considered: (i) a more advanced microcontroller can be utilized, (ii) a wireless transceiver 

can be used to relay the raw data to a fast off-board processor which would process the data 

and send commends back to the device for more efficient operation.
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V. CONCLUSION

This study presented the design, fabrication, and evaluation of a multi-biomarker multi-

disease closed-loop DBS device. The device is capable of measuring neural signals, 

detecting the disease type and state, and automatically and adaptively adjusting the 

stimulation parameters. The device is miniature (maximum radius: 15 mm), lightweight (5.1 

g including battery), tetherless, and self-contained. Its performance was evaluated through 

six bench and in-vitro experiments using sinusoidal, normal pre-recorded, and diseased 

neural signals for normal, epilepsy, depression and PD conditions. The results obtained 

through these tests indicate the successful neural sensing, classification, control, and neural 

stimulating performance. The in-vivo evaluation of this closed-loop DBS approach is a 

major next step for determining the utility of the device. The in-vivo tests could then be 

conducted on at least four groups of animal models consisting of normal (control), epilepsy, 

depression, and PD phenotypes. Conducting in-vivo experiments will be essential for further 

proving the functionality of the device, and confirming its safety and durability.
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Fig. 1. 
Overview of the multi-disease closed-loop DBS device. HF: high-frequency, LF: low-

frequency, PA: pulse amplitude, PD: pulse duration, and PF: pulse frequency.
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Fig. 2. 
Schematic diagram of the closed-loop DBS device. (A) The neural sensor electrode 

connection mechanism. (B) The neural sensor pre-amplifier, low-pass and high-pass filters 

for Ch1 and Ch2. (C) The neural sensor programmable amplifier for Ch1 and Ch2. (D) The 

neural sensor voltage reference generator. (E) The closed-loop DBS by-pass noise-reduction 

capacitors. (F) The closed-loop DBS digital circuit involving in the neural sensor, feature 

extractor, controller, and neural stimulator.
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Fig. 3. 
(A) The feature extraction steps carried out on the Ch1 and Ch2 analog outputs for 

extraction of biomarkers. In the current study, alpha and HFO signals are processed, Linking 

to epilepsy, depression and PD disorders. However, the neural sensor outputs also contain 

three other potential biomarkers (beta, sG, and spikes) that can be also included in the 

feature extraction process for alleviation of other neurological disorders. (B) The graph 

presenting the envelope detection process. Here, F(t) demonstrates the extracted biomarker, 

and R(t) is the rectified version (R(t)=|F(t)|). PE(t) is the staircase signal produced by the 

pre-envelop detection process, and M(t) is the smoothed version of PE(t) as the final 

envelope output, representing the extracted amplitude feature.
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Fig. 4. 
The structure of the fuzzy classifier used to distinguish between normal, epilepsy, 

depression, and PD conditions. (A) Fuzzy input variables. (B) Membership functions. (C) 

Fuzzy if-then rules. (D) Fuzzy output variable. (E) Defuzzification.
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Fig. 5. 
Diagram showing the activation of a controller after the fuzzy classification. F: Stimulation 

Pulse Frequency, D: Stimulation Pulse Duration, A: Stimulation Pulse Amplitude.
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Fig. 6. 
The structure of fuzzy logic control approach for Controller 2 which operates on Class 2 

data. T1s is the threshold for distinguishing between mild (Mi) and moderate (Mo) epilepsy 

seizure states. T2s is the threshold for distinguishing between severe (Se) and Mo epilepsy 

seizure states.

Parastarfeizabadi et al. Page 24

IEEE Access. Author manuscript; available in PMC 2020 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
The structure of fuzzy logic control approach for Controller 3 which operates on Class 3 

data. T1d is the threshold for distinguishing between mild (Mi) and moderate (Mo) 

depression states. T2d is the threshold value for distinguishing between Mo and severe (Se) 

depression states.
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Fig. 8. 
The structure of fuzzy logic control approach for Controller 4 which operates on Class 4 

data. T1HFOp and T1αp are the thresholds for distinguishing between mild (Mi) and 

moderate (Mo) PD states. T2HFOp and T2αp are the thresholds for distinguishing between 

Mo and severe (Se) PD states.
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Fig. 9. 
The fabricated closed-loop DBS device. (A-B) Device measurements. (C) Complete device. 

(D) Weight of the device without the battery and battery holder. (E) Total weight of the 

complete device. (F) The user interface components.
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Fig. 10. 
(A) Output of the neural stimulator for Signal 1 that represents normal condition. (B) Output 

of the neural stimulator for Signal 2 that represents epilepsy disease. (C) Output of the 

neural stimulator for Signal 3 that represents depression disease. (D) Output of the neural 

stimulator for Signal 4 that represents PD. The red graphs give one period of the stimulation 

pulse showing the pulse duration.
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Fig. 11. 
The bench experimental results (A) Stimulation pulses for the epilepsy neural signal 

produced by Controller 2. (B) Stimulation pulses for the depression neural signal produced 

by Controller 3. (C) Stimulation pulses for the PD neural signal produced by Controller 4.
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Fig. 12. 
The in-vitro experiment setup and results. (A) The diagram presenting the in-vitro setup. (B) 

The test setup in real environment. (C) Cross section of the saline bath and close view of the 

recording and stimulation copper electrodes. (D) The stimulation output obtained from 

normal pre-recorded neural signal. (E) The stimulation output obtained from epilepsy neural 

signal. (F) The stimulation output obtained from depression neural signal. (G) The 

stimulation output obtained from PD signal.
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TABLE I

TECHNICAL SPECIFICATIONS OF THE DEVICE.

Neural Sensor

Recording Channels 2

Gain programmability Yes

Gain Range 50 – 100 dB

Signal Band-width 7 – 45 Hz and 200 – 1000 Hz

Recording Method User selectable, single-ended or differential

Sampling Frequency 4 kHz (2 kHz per channel)

ADC Resolution 12 bit

Design Method Discrete components

Feature extractor, classifier and controller

Microprocessor Chip ATxMega32e5

Number of Extracted Biomarkers 5 (alpha, beta, sG, HFO, and spikes)

Features Smoothed biomarker amplitude

Classification Method Fuzzy algorithm

Classifier Inputs 4

Classifier Outputs 4

Control Method Fuzzy algorithm

Number of Controllers 4 (one per class)

Controllable States Normal, epilepsy, depression, PD

Neural Stimulator

Stimulation Channels 1

Stimulation Type Constant-current-controlled

Stimulation Pattern Biphasic passive-charge-balanced

Controllable Parameters Pulse amplitude, frequency and duration

DAC Resolution 12 bit

Overall Features

Device Operating Power Supply 3 V

Battery Type, and Capacity Li-ion, 240 mAh

Power Consumption 39 mW

Operation Time 18 h

Shape and Dimension Semi-round, 11 mm internal radius, 15 mm external radius

Weight 5.1 g (including battery and battery holder)
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