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Abstract

Yeast Eco1 (ESCO2 in humans) acetyltransferase converts chromatin-bound cohesins to a

DNA tethering state, thereby establishing sister chromatid cohesion. Eco1 establishes cohe-

sion during DNA replication, after which Eco1 is targeted for degradation by SCF E3 ubiqui-

tin ligase. SCF E3 ligase, and sequential phosphorylations that promote Eco1 ubiquitination

and degradation, remain active throughout the M phase. In this way, Eco1 protein levels are

high during S phase, but remain low throughout the remaining cell cycle. In response to

DNA damage during M phase, however, Eco1 activity increases—providing for a new wave

of cohesion establishment (termed Damage-Induced Cohesion, or DIC) which is critical for

efficient DNA repair. To date, little evidence exists as to the mechanism through which Eco1

activity increases during M phase in response to DNA damage. Possibilities include that

either the kinases or E3 ligase, that target Eco1 for degradation, are inhibited in response to

DNA damage. Our results reveal instead that the degradation machinery remains fully active

during M phase, despite the presence of DNA damage. In testing alternate models through

which Eco1 activity increases in response to DNA damage, the results reveal that DNA dam-

age induces new transcription of ECO1 and at a rate that exceeds the rate of Eco1 turnover,

providing for rapid accumulation of Eco1 protein. We further show that DNA damage induc-

tion of ECO1 transcription is in part regulated by Yap5—a stress-induced transcription fac-

tor. Given the role for mutated ESCO2 (homolog of ECO1) in human birth defects, this study

highlights the complex nature through which mutation of ESCO2, and defects in ESCO2

regulation, may promote developmental abnormalities and contribute to various diseases

including cancer.

Introduction

In order for a cell to divide, the cell division cycle must accomplish two major feats with high

fidelity. First, the genetic material must be accurately replicated during S phase. Second, the

cell must segregate the duplicated genetic material to each daughter cell during M phase. To

identify over time the products of chromosome duplication, the cell tethers together sister

chromatids during S phase. Sister chromatid tethers, or cohesins, are comprised of a group of
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conserved proteins (Smc1, Smc3, Mcd1/Scc1/Rad21) and auxiliary factors (Pds5 and Scc3/

Irr1) that maintain sister identity until anaphase onset [1–4]. Cohesion establishment during S

phase requires an additional essential factor, Eco1/Ctf7 (herein Eco1), that is part of the

GNAT-family of N-acetyltransferases [5–7]. Eco1 acetylates the Smc3 subunit of cohesin,

converting chromatin-bound cohesins to a tether-competent state [7–10]. At the cellular level,

mutations in ECO1 result in aneuploidy, reduced chromatin condensation reactions, and

increased sensitivity to DNA damage [5,11–14]. In humans, mutations in ECO1 orthologs

(termed ESCO1/EFO1 and ESCO2/EFO2) collectively correlate with numerous forms of can-

cer, including melanoma and prostate cancer, and a severe developmental abnormality called

Roberts Syndrome (RBS) [15–20].

Early cell cycle mapping studies revealed that Eco1 function is required only during S phase

and linked Eco1 function to the DNA replication processivity factor PCNA [5]. This link

between Eco1, cohesion establishment, and DNA replication factors is now well established

[3,5,6,8–10,21–31]. The mechanism through which Eco1 function is limited to S phase, how-

ever, was only recently elucidated. At the end of S phase, Eco1 is phosphorylated (S99) by the

cell cycle regulator Cdk1. Eco1S99-P becomes a target for second-site phosphorylation (S98) by

Dbf4-Cdc7 (DDK) kinase complex, a regulator of DNA replication initiation [32–35].

Eco1S98-P, S99-P becomes a target for third-site phosphorylation by the GSK-3 signaling kinase

Mck1, which in turn phosphorylates Eco1 at S94. Eco1S98-P, S99-P, S94-P is then ubiquitinated by

SCF and subsequently degraded following DNA replication [34,36]. Notably, XEco2 (Xeno-

pous) and ESCO2 also are degraded following DNA replication [17,37,38], revealing that limit-

ing Eco1 function to S phase is highly conserved through evolution.

Although sister chromatid tethering is typically restricted to S phase, a special form of cohe-

sion is established during M phase in response to a double strand break (DSB)—an activity

termed damage-induced cohesion (DIC) [12,13,39,40]. Beyond occurring in different cell

cycle phases, cohesion and DIC differ in two important aspects. First, acetylation of Smc3 is

not sufficient to generate cohesion during DIC, as opposed to S phase cohesion [41,42].

Instead, DNA damage induces Mec1, a DNA damage signaling kinase, to phosphorylate Mcd1

at S83 [41]. Phosphorylated Mcd1 recruits Eco1 which in turn acetylates Mcd1 at K84 and

K210, resulting in DIC [42]. Loss of Mcd1 acetylation abolishes DIC and inhibits homologous

recombination (HR)-based DNA repair, linking defects in DIC to mutagenic forms of DNA

repair such as non-homologous end-joining [12,13,39,40,42]. Thus, mutation of ESCO2, or

defects in pathways through which DIC becomes activated in response to DNA damage, likely

play an important role in human development. Second, Eco1 establishes cohesion at both sites

of DNA damage and along undamaged chromosomes in response to DSB. Thus, DIC occurs

independent of DNA repair fork components, in contrast to S phase cohesion which occurs

through recruitment of Eco1 to the DNA replication fork by PCNA [5,12,13,23,31].

Given that Eco1 is degraded during late S, how is DIC established during M phase? Notably,

overexpression of Eco1 in M can drive a second round of cohesion in the absence of DNA

damage [42]. This suggests that DNA damage may stabilize Eco1 protein to promote DIC dur-

ing M phase. Based on elegant biochemical studies that document sequential phosphorylation

leading to Eco1 ubiquitination and degradation, one plausible model of Eco1 stabilization dur-

ing M phase is that Eco1 phosphorylation is inhibited, blocking subsequent ubiquitination and

degradation [34–36,43–45]. A second mode of Eco1 stabilization might include directly reduc-

ing SCF ubiquitination activity and/or proteasome degradation. Here, we test these models.

The results reveal that the degradation machinery is fully operational during DIC, but that ele-

vated rates of Eco1 transcription outpace Eco1 degradation. We further report that this tran-

scription relies in part on Yap5—a transcription factor currently implicated in stress responses

[46–48]. Our results revise current models of Eco1 regulation.
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Materials & methods

Yeast strains

Saccharomyces cerevisiae strains used in this study are listed in Table 1.

General methods

Log phase cultures were maintained at 23˚C and normalized to an OD600 = 0.2–0.4 in all

experiments. G1 and S phase arrests in cell cycle time course experiments were achieved by

incubating cells in YPD supplemented with Alpha Factor and hydroxyurea (HU; 200mM final

concentration) for 3 hours at 23˚C, respectively. Alpha Factor and HU was washed out and the

cells rinsed with YPD followed by incubation in fresh YPD supplemented with nocodazole

(20μg/mL) at 23˚C for the indicated time periods. Assessment of DNA content by flow cytome-

try were performed as previously described [26]. Translation inhibition was achieved by addi-

tion of 100μg/mL cycloheximide (Sigma) at 23˚C for the indicated time points. DNA damage

induction was achieved by addition of 0.1% MMS (Sigma); 333μg/mL Zeocin (Invitrogen) or

200mM HU (Sigma) for the indicated time periods at 23˚C.

Western blot analysis

Whole cell extracts were made by TCA precipitation as previously described [49]. Proteins

were resolved by SDS PAGE followed by transfer to PVDF membrane using the Trans-Blot

Turbo Transfer System (Bio-Rad). Western blot analysis for Eco1 was performed using

mouse-anti-V5 primary antibody (Invitrogen), Goat-anti-mouse HRP secondary (Bio-Rad)

followed by detection with ECL Prime (GE). To assess Rad53 phosphorylation, samples of

MMS-treated cells were prepared by TCA precipitation in the presence of 1% PPI3 phospha-

tase inhibitor (Sigma). Membranes were probed with anti-Rad53 primary antibody (Santa

Cruz, yC-19 for Fig 2C; Abcam, ab104232 for Fig 2G and S2C Fig) and Donkey-anti-Goat

HRP/Goat-anti-Rabbit HRP secondary antibody. All images were obtained by exposing ECL

treated blots onto X-ray film followed by scanning with an office scanner (EPSON Perfection

V300 Photo). Western blot quantification analysis is shown to represent variation between

biological replicates and was performed using ImageJ by normalizing Eco1 signal to the load-

ing control PGK within respective lanes. Normally distributed peaks were measured using the

entire area of the signal. Quantifications represent one measurement of each sample. Histo-

grams represent quantification of the averaged amount of normalized Eco1 protein within

each drug-treated sample divided by the normalized Eco1 protein level in the untreated

sample.

RNA extraction and quantitative real-time PCR

Cells were pelleted by centrifugation and immediately frozen in liquid nitrogen. RNA extrac-

tion was performed using the RNeasy Mini Kit (Qiagen) per the manufacturer’s instructions.

Cell lysis was performed by bead beating in buffer RLT supplemented with 10μl BME/mL.

Table 1.

Strain Genotype Reference

YBS1334 MATa; ECO1-3v5:HIS3; A364A This study

YMG49 MATa; lys2::KAN; BY4741 Saccharomyces Genome Deletion Project

YMG50 MATa; yap5::KAN; BY4741 Saccharomyces Genome Deletion Project

https://doi.org/10.1371/journal.pone.0242968.t001
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Purification of total RNA was followed by subsequent RNA clean-up using the RNeasy mini

kit (Qiagen) per the manufacturer’s instructions. Quantitative Real-Time (qRT) PCR was per-

formed using the QuantiNova SYBR Green RT-PCR kit (Qiagen) and CT values measured

using the Rotor-gene (Corbett). The CT values for ECO1 and the internal control, the 26S pro-

teasome subunit, RPN2, were averaged. The ΔCT values represent the expression levels of

ECO1 normalized to RPN2 values, an established internal control for qRT-PCR [50]. ΔΔCT

values represent the relative level of gene expression. The fold difference was determined using

the ΔΔCT method (2-ΔΔC
T) as previously described [51]. Briefly, the ΔCT is determined by sub-

tracting the average RPN2 CT from the average ECO1 CT. The standard deviation of the ΔCT is

calculated from the standard deviations of the ECO1 and RPN2 values using the Comparative

Method [52].

Results

Eco1 is degraded following DNA replication

Eco1-dependent establishment of sister chromatid cohesion is typically limited to S phase

[5,6,9,10,24]. This model is supported by cell cycle mapping studies and compelling findings

that Eco1 undergoes highly orchestrated and sequential phosphorylation modifications that

target Eco1 for degradation during late S phase and through M phase [5,34–36]. Challenging

this model, however, are other studies that failed to detect significant changes in Eco1 protein

levels across the cell cycle [6,23]. Thus, it became important to independently assess whether

Eco1 protein levels change across the cell cycle. Briefly, cells harboring Eco1-3V5, as the sole

source of Eco1 protein, were synchronized in early S phase with hydroxyurea (HU), washed

and then incubated for three hours in fresh media supplemented with nocodazole (NZ) to

achieve an M phase arrest (Fig 1A). Cell cycle progression and Eco1 protein levels were moni-

tored by flow cytometry and Western blot, respectively (Fig 1B and 1C). The results show that

Eco1 levels are high during S phase (when cohesion is established) and then drop dramatically

as cells progress into M phase (Fig 1C). To determine if Eco1protein level reduction following

HU-arrest was an artifact of stalled replication forks, cells harboring Eco1-3V5 were arrested

in Alpha Factor for three hours, washed and then incubated for three hours in fresh media

supplemented with NZ (S1A Fig). Cell cycle progression and Eco1 protein levels were moni-

tored every hour following Alpha Factor release by flow cytometry and western blot, respec-

tively (S1B and S1C Fig). The results indicate that Eco1 levels are low in G1, peak during DNA

replication (S-phase) and decline in M-phase. These results, and those obtained using HU syn-

chronization, are consistent with cell cycle mapping [5] and biochemical studies [34,36].

DNA damage during m phase induces de novo synthesis of Eco1 protein

Eco1 protein levels are very low during M phase, but increase in response to genotoxic agents

such as HU, 4-NQ (UV mimetic that induces thymidine dimers) or zeocin (DSB inducer)

[34,36]. To independently validate that DNA damage induces an increase in Eco1 protein

levels during M phase, both log phase and NZ-arrested cells were treated with 0.1% methyl

methanesulfonate (MMS—a DNA alkylating agent) for 1 hr (S2A Fig). Cell cycle state and

Eco1 protein levels were monitored by flow cytometry and western blot, respectively (S2B &

S2C Fig). In log phase and NZ-arrested cultures, MMS-induced 1.5- and 2.8-fold increases

in Eco1 protein levels, respectively, compared to cells not exposed to MMS (S2C Fig). The

increase in Eco1 protein levels in both log phase and NZ-arrested cultures coincided with

Rad53 phosphorylation (S2C Fig), confirming induction of the DNA damage checkpoint in

response to MMS.
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Possible mechanisms for increased Eco1 protein include inhibiting either Eco1 phosphory-

lation (making Eco1 refractile to SCF-dependent degradation) or the SCF degradation

machinery [34,36]. If either of these stabilization-based models is correct, then the rise of Eco1

protein levels that occur in response to DNA damage should persist in cells treated with the

translation inhibitor cycloheximide (CHX). To test this prediction, log phase cells were syn-

chronized in early S phase (HU), washed and then released into media supplemented with NZ

(Fig 2A). The resulting pre-anaphase cells were then exposed, for 1hr, to either CHX, MMS or

both MMS and CHX (Fig 2A). Log phase cell synchronizations in S and M phases were moni-

tored by flow cytometry (Fig 2B). Pre-anaphase cells exposed to MMS for 1hr exhibited a two-

fold increase in Eco1 protein levels, compared to cells not exposed to MMS (Fig 2C). Impor-

tantly, Eco1 protein levels were instead dramatically reduced in cells co-incubated with both

MMS and CHX, compared to cells exposed to MMS alone (Fig 2C). Rad53 phosphorylation

was detected in cells treated with MMS alone and also cells co-treated with MMS and CHX

(Fig 2), indicating the efficacy of DNA damage induction in both treatments. These results

challenge the prediction stated above and suggest instead that the degradation machinery is

active and targeting Eco1 during M phase, even in the presence of DNA damage.

Given that Eco1 protein levels fail to increase in M phase cells co-incubated in MMS and

CHX, we were concerned that CHX may deplete Eco1 protein levels before the DNA damage

response inhibits Eco1 degradation. The fact that Eco1 protein levels remained low during

CHX and MMS co-incubation further suggested that the degradation machinery was fully

Fig 1. Eco1 protein levels decline after S phase due to targeted degradation. A) Schematic of experimental

procedure use to synchronize Eco1-3V5 cells. B) DNA content of cells showcasing cell cycle progression and

synchronizations as outlined in (A). C) Detection of Eco1 protein levels (using anti-V5) by Western blot for the time

course in (A). PGK detection is used as a loading control.

https://doi.org/10.1371/journal.pone.0242968.g001
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Fig 2. DNA damage induces synthesis of new Eco1 protein. A) Schematic of experimental procedure used to

synchronize Eco1-3V5 cells and induce DNA damage during M phase. B) DNA content of Eco1-V5 cells showcasing

cell cycle progression and synchronizations. C) Representative western blots (anti-V5) and quantification of Eco1

protein levels, normalized to PGK. Rad53 phosphorylation is provided as a positive control for the induction of DNA

damage during M phase. For Eco1 quantifications, N = 3 for all samples at the 3.5hr timepoint. Error bars indicate
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active, despite the presence of DNA damage. To test both of these models, we increased Eco1

protein (MMS) prior to CHX. Log phase cells were synchronized in early S phase (HU),

washed, and released into fresh medium containing NZ to arrest cells in preanaphase (Fig 2D).

Cell cycle progression was monitored using flow cytometry (Fig 2E). The resulting M phase

cells were divided into three cultures, each of which contain NZ to maintain the pre-anaphase

state (Fig 2D). The first culture was untreated for the remainder of the experiment—1 hour.

The remaining two cultures were exposed to either CHX for 1 hour or MMS for 30 minutes

(the latter to obtain elevated Eco1 protein levels) before subsequent addition of CHX for the

remaining 30 minutes (Fig 2D). Replicates in which Eco1 protein levels at the 2.5hr time point

were less than the 3.5hr time points, despite MMS addition, were excluded from further analy-

ses. As expected, Eco1 protein levels increased 2.5 fold following 1 hour treatment of MMS

(Fig 2F). Even a 30 minute exposure to MMS was sufficient to increase Eco1 protein levels 1.5

fold, compared to untreated samples. Subsequent addition of CHX to MMS-treated cells, how-

ever, resulted in a dramatic decrease in Eco1 protein levels (Fig 2F).

Eco1 protein levels remain stable in cells treated with CHX after pre-treatment with HU

and Zeocin [34]. This observation raised the possibility that our results could be attributed to a

drug-specific effect of MMS treatment. To address this possibility, we incubated log phase cells

in NZ, HU + NZ or Zeocin + NZ for three hours followed by subsequent treatment with CHX

for one hour (Fig 2G). Cell cycle state and Eco1 protein levels were monitored by flow cytome-

try and western blot, respectively (Fig 2H & 2I). Exposure to HU and Zeocin resulted in 2.4-

and 1.8-fold increases in Eco1 protein levels, relative to cells treated with NZ alone (Fig 2I).

Importantly, subsequent treatment with CHX for one hour significantly reduced Eco1 protein

levels that were upregulated in response to either HU and Zeocin. Eco1 protein levels

remained higher in HU-treated cultures compared to Zeocin-treated cultures (Fig 2I). Rad53

phosphorylation was detected in HU- and Zeocin-treated cells, indicating successful induction

of the DNA damage response. In summary, these results reveal that 1) Eco1-targeting and deg-

radation machinery is regulated not by the presence of DNA damage but by replication origin

firing and 2) that DNA damage causes Eco1 levels to increase (possibly through a transcrip-

tion-based mechanism) in a manner that significantly outpaces the rate of Eco1 turnover.

DNA damage induces Eco1 transcription

Given that CHX negates the MMS-dependent increase in Eco1 protein levels, it became

important to directly test whether the rate of either ECO1 transcription or translation increases

standard error of the mean. Statistical analysis was performed using a One-tail Student’s T-test. p = 0.037 for the 3.5hr

samples, compared to 3.5hr+MMS samples. Statistical differences are based on p<0.1. D) Schematic of experimental

procedure used to synchronize Eco1-3V5 cells and induce damage during M phase, by pre-treating cells with MMS,

followed by CHX treatment. E) DNA content of Eco1-V5 cells showcasing cell cycle progression and synchronizations.

F) Eco1-V5 detection, by Western blot (anti-V5) and quantification for the time course shown in (D). For Eco1-V5

quantification, N = 3 for all samples at the 3.5hr timepoint. Error bars indicate standard error of the mean. Statistical

analysis was performed using a One-tail Student’s T-test. p = 0.099 for the 3.5hr, compared to 3.5hr+MMS samples.

Statistical differences are based on p<0.1. G) Schematic of experimental procedure used to synchronize Eco1-3V5 cells

and induce DNA damage. H) DNA content of Eco1-3V5 cells showcasing cell cycle state and synchronizations. I)

Representative western blots and quantification of Eco1 protein levels, normalized to PGK. Rad53 phosphorylation is

provided as a positive control for the induction of DNA damage. For Eco1 quantifications, N = 2 for HU and Zeocin

samples. N = 3 for NZ + CHX, HU + CHX and Zeocin + CHX samples. Errors bars indicate standard error of the

mean. For induction of Eco1 in response to DNA damage, statistical analysis was performed using a One-tail Student’s

T-test. p = 0.028 and 0.087 for induction of Eco1 in response to HU and Zeocin compared to untreated (NZ),

respectively. Statistical differences are based on p<0.1. For changes in Eco1 protein level in response to DNA damage

and CHX treatment, statistical analysis was performed using a Two-tail Student’s T-test. p = 0.045 and 0.143 for HU

+ CHX and Zeocin + CHX compared to untreated (CHX). Statistical differences are based on p<0.1. p = 0.066 for HU

+ CHX compared to Zeocin + CHX. Statistical differences are based on p<0.1.

https://doi.org/10.1371/journal.pone.0242968.g002
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in response to DNA damage. Mid-log phase cells were exposed for 1 hour to either genotoxic

agents (MMS, Zeocin, or HU) alone or in combination with CHX (Fig 3A). Eco1 protein and

mRNA levels were then quantified by Western blot and qRT-PCR, respectively. In the absence

of CHX, individual treatments to either MMS, Zeocin or HU produced an approx. 2-fold

increase in Eco1 protein; a response which trends toward statistical significance (Fig 3B). The

addition of CHX, however, abolished induction of Eco1 protein levels in response to each of

the DNA damaging agents (Fig 3B). We then tested whether the increase in Eco1 protein

corresponded to increased mRNA levels. Results from qRT-PCR revealed a trend indicating

increases in ECO1mRNA under all conditions of genotoxic stress, although these results were

not statistically significant (Fig 3C; S1 Table). Thus, DNA damage increases ECO1 expression

to promote high fidelity DNA repair.

Fig 3. DNA damage induces Eco1 transcription. A) Schematic of experimental procedure. B) Representative western

blot and quantification of Eco1-V5 cells for the experiment described in (A). For Eco1-V5 quantification, N = 2 for

MMS-, Zeocin- and HU-treated samples. Error bars indicated standard error of the mean. Statistical analysis was

performed using a One-tail Student’s T-test. p = 0.117, 0.116, 0.099 for the untreated compared to MMS-, Zeocin- and

HU-treated samples, respectively. Statistical differences are based on p<0.1. C) qRT-PCR data from the experiment in

(A). Eco1 expression levels are shown for cells treated with MMS (N = 3), Zeocin (N = 3), or HU (N = 2). Error bars

indicate standard error of the mean. Statistical analysis was performed using a One-tail Student’s T-test. p = 0.052,

0.273, 0.313 for cells treated with either MMS, Zeocin or HU, respectively, compared to untreated. Statistical

differences are based on p<0.1. D) Schematic of experimental procedure used to synchronize Eco1-3V5 cells and

perform damage induction in M phase with MMS. E) DNA content of Eco1-V5 cells showcasing cell cycle progression

and synchronizations for strategy shown in (D). F) Representative western blot and quantification of Eco1-V5 for the

time course in (D). For Eco1-V5 protein level quantifications, N = 2 for all samples at the 3.5hr timepoint. Error bars

indicate standard error of the mean. Statistical analysis was performed using a One-tail Student’s T-test. p = 0.016 for

the 3.5hr, compared to 3.5hr+MMS samples. Statistical differences are based on p<0.1. G) qRT-PCR data from the

experiment shown in (D). Eco1 expression levels of cells treated with MMS only. Error bars indicate standard error of

the mean. Statistical analysis was performed using a One-tail Student’s T-test. p = 0.241 for the untreated, compared to

3.5hr+MMS samples. Statistical differences are based on p<0.1.

https://doi.org/10.1371/journal.pone.0242968.g003
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DIC is an M-phase response to DNA damage, prompting us to test whether DNA damage-

induced ECO1 expression occurs specifically during M phase? To address this question, we

modified the above experiment to arrest cells in preanaphase following release from an S phase

synchronized culture (Fig 3D). The resulting pre-anaphase cells were divided into three cul-

tures, the first untreated for 60 minutes. The second was incubated in medium containing

MMS for 60 minutes, while the third was incubated in MMS for 30 minutes followed by co-

incubation with MMS and CHX for an additional 30 minutes (Fig 3E). Western blot analyses

of whole cell lysates reveal that Eco1 protein levels clearly rise during M phase in response to

MMS (Fig 3F), but this increase is completely abolished by subsequent addition of CHX (Fig

3F). Importantly, qRT-PCR analysis revealed trends for increased ECO1mRNA levels in M-

phase cells exposed to MMS, although these results were not statistically significant (Fig 3G; S2

Table). Taken together, these findings reveal that DNA damage induces ECO1 transcription,

even during M phase, at a level that exceeds that of Eco1 degradation.

DNA damage-induced transcription of Eco1 is Yap5-dependent

Yap5 is an iron-sensitive and stress response transcription factor implicated in Eco1 regulation

[48]. We hypothesized that the induction of ECO1 transcription, in response to DNA damage,

might occur through a Yap5-dependent mechanism. To test this hypothesis, we exploited a

DNA damage induction experiment previously performed by Morgan and colleagues [34] (Fig

4A). Briefly, log phaseWT and yap5 cells were treated with either NZ or NZ and HU for 3hrs

at 23˚C in order to compare ECO1mRNA levels within one cell cycle between the two strains

(Fig 4A). We also monitored changes in RNR3 expression as a positive control [53]. As

expected, RNR3mRNA levels increased dramatically in response to HU (S3 Table). ECO1
mRNA levels also rose in response to HU (Fig 4B; S4 Table), consistent with our prior results.

Importantly, ECO1mRNA levels were significantly repressed in yap5mutant cells, despite the

presence of HU (Fig 4B; S4 Table). Taken together, these results suggest that Yap5 is necessary

and sufficient for induction of ECO1 transcription in response to DNA damage.

Discussion

Mutations that occur through either endogenous or exogenous genotoxic agents contribute to

both aging and diseases such as cancer. Cohesin is critical for DSB repair in a process that

requires the acetyltransferase Eco1 [12,13,39,40,42]. The first major finding of the current

study is elucidation of the mechanism through which Eco1 becomes reactivated during M

phase and in response to DNA damage (Fig 5). Previous work revealed the central mechanism

through which Eco1 activity is limited to S phase: sequential phosphorylations (Cdk1, DDK

and Mck1 kinase) that promote ubiquitination (SCF E3 ligase) and subsequent degradation

(proteasome) [34,36]. These findings formally raised the possibility that Eco1 reactivation

during M might occur either by blocking Eco1 phosphorylation or degradation. Instead, our

results reveal that DNA damage results in a significant increase in Eco1 protein levels despite

continued Eco1 degradation. This increase is solely due to new synthesis, providing a tran-

scriptional view of Eco1-dependent DNA repair (Fig 5).

How is Eco1 transcription regulated? Early work mapped Eco1 function specifically to S

phase and that ECO1 transcription peaks during S phase [5,54], but a mechanism for ECO1
induction in response to DNA damage during M phase remained unknown. A second major

finding of the current work is that Yap5 is critical for ECO1 upregulation in response to DNA

damage. Our findings extend the role of Yap5, a transcription factor that induces ECO1 tran-

scription in response to elevated iron levels [48], to include a DNA damage response. Both

DNA damage and iron can generate reactive oxygen species (ROS). In turn, ROS triggers an
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Fig 4. DNA damage induces Yap5-dependent transcription of ECO1. A) Schematic of experimental procedure used

to synchronize wildtype and yap5mutant cells and induce DNA damage (HU). B) qRT-PCR data from the experiment

strategy shown in (A) (N = 3). Error bars indicate standard error of the mean. p = 0.043 for the untreated, compared to

HU-treated samples in the WT strain (One-tail Student’s T-test). p = 0.085 for the untreated vs. HU-treated samples in

the yap5 strain (Two-tail Student’s T-test). p = 0.005 for WT vs. yap5 (Two-tail Student’s T-test). Statistical differences

are based on p<0.1 for all tests.

https://doi.org/10.1371/journal.pone.0242968.g004

Fig 5. Summary model of Eco1 regulation in response to DNA damage. In unperturbed cells, ECO1 expression is

upregulated at the G1/S transition, enabling sister chromatid cohesion establishment during S phase. Exit from S phase

results in Eco1 phosphorylation/ubiquitination and subsequent degradation—which persists through mitosis. In

response to DNA damage during M phase, however, Yap5 induces new expression of ECO1 at a rate that exceeds the

rate of Eco1 degradation.

https://doi.org/10.1371/journal.pone.0242968.g005
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oxidative stress response that protects against macromolecular damage. This high-lights cross-

talk between the DNA repair and oxidative stress responses in which Yap5 likely plays a role

[55–67]. Other transcription factors in the YAP family, most notably Yap1, have been impli-

cated in both the yeast oxidative stress and DNA damage response pathways [60,63,65,68–72].

Intriguingly, Yap1 and Yap5 bind to the same consensus sequence in DNA and are proposed

to overlap functionally [47]. Therefore, control of ECO1 transcription might represent a uni-

fied and conserved pathway that evolved to promote redundancy in protecting the genome

from a host of genotoxic agents.

The upregulation of ECO1, in response to DNA damage, has implications to human dis-

eases and development. Roberts syndrome is currently modeled as a mitotic failure syndrome

[73–77], although emerging evidence supports instead a major role in transcription dysregula-

tion [78–80]. It is important to note in addition that both human and yeast models of RBS

exhibit genotoxic sensitivity. We posit that defects in appropriate DNA damage responses, that

include a failure to upregulate ESCO2, may constitute a critical but as yet unrecognized role in

developmental defects [81–83]. The findings presented here demonstrate the complexity of

cellular responses to DNA damage and provide tools for future endeavors that may further

link Eco1 function and expression in disease and development.

Supporting information

S1 Fig. Eco1 protein levels are low in G1 phase, peak during S phase and decline in M

phase due to targeted degradation. A) Schematic of experimental procedure used to synchro-

nize Eco1-3V5 cells. B) DNA content of cells showcasing cell cycle progression and synchroni-

zations as outlined in (A). C) Detection of Eco1 protein levels (using anti-V5) by Western blot

for the time course in (A). PGK detection is used as a loading control.

(TIF)

S2 Fig. MMS-induced DNA damage induces Eco1 upregulation in log phase and M phase-

arrested cells. A) Schematic of experimental procedure used to synchronize Eco1-3V5 cells

and induce DNA damage. B) DNA content of Eco1-3V5 cells showcasing cell cycle progres-

sion and synchronizations. C) Representative western blots and quantification of Eco1 protein

levels, normalized to PGK. Rad53 phosphorylation is provided as a positive control for the

induction of DNA damage. N = 2 for Eco1 quantifications. Errors bars indicate standard error

of the mean.

(TIF)

S1 Table. Raw qRT-PCR data for Fig 3C.
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