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Abstract

Curriculum learning methods typically rely on heuristics to estimate the difficulty of training 

examples or the ability of the model. In this work, we propose replacing difficulty heuristics with 

learned difficulty parameters. We also propose Dynamic Data selection for Curriculum Learning 

via Ability Estimation (DDaCLAE), a strategy that probes model ability at each training epoch to 

select the best training examples at that point. We show that models using learned difficulty and/or 

ability outperform heuristic-based curriculum learning models on the GLUE classification tasks.

1 Introduction

Curriculum learning trains a model by using easy examples first and gradually adding more 

difficult examples. It can speed up learning and improve generalization in supervised 

learning models (Bengio et al., 2009; Amiri et al., 2017; Platanios et al., 2019). A major 

drawback of existing curriculum learning techniques is that they rely on heuristics to 

measure the difficulty of data, and either ignore the competency of the model during training 

or rely on heuristics there as well. For example, sentence length is often used as a proxy for 

difficulty in NLP tasks (Bengio et al., 2009; Platanios et al., 2019). Such heuristics can be 

useful but have limitations. First, the heuristic chosen may not actually be a proxy for 

difficulty. Depending on the task, long sequences could signal easier or harder examples, or 

have no signal for difficulty. Second, a model’s notion of difficulty may not align with the 

heuristic imposed by a human developing the model. It may be that examples that appear 

difficult for the human are in fact easy for the model to learn.

Competency was recently introduced as a mechanism to determine when new examples 

should be added to the training data (Platanios et al., 2019). However, in that work 

competency is a monotonically increasing function of a pre-determined initial value. Once 

set, competency is not evaluated during training. Ideally, model competency should be 

measured at each training epoch, so that the training data could be appropriately matched 

with the model at a given point in the training. If a model is improving, then more difficult 

john.lalor@nd.edu.
*Work performed while at UMass Amherst.

HHS Public Access
Author manuscript
Proc Conf Empir Methods Nat Lang Process. Author manuscript; available in PMC 2020 
December 29.

Published in final edited form as:
Proc Conf Empir Methods Nat Lang Process. 2020 November ; 2020: 545–555. 
doi:10.18653/v1/2020.findings-emnlp.48.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



training data can be added at the next epoch. But if performance declines, then those difficult 

examples can be removed, and a smaller, easier training set can be used in the next epoch.

In this study, we propose to estimate both the difficulty of examples and the ability of deep 

learning models as latent variables based on model performance using Item Response 

Theory (IRT), a well-studied methodology in psychometrics for test set construction and 

subject evaluation (Baker and Kim, 2004). IRT models estimate latent parameters such as 

difficulty for examples and a latent ability parameter for individuals (“subjects”). IRT 

models are learned by administering a test to a large number of subjects, collecting and 

grading their responses, and using the subject-response matrix to estimate the latent traits of 

the data. These learned parameters can be used to estimate the ability of future subjects, 

based on their graded responses to the examples. IRT has not seen wide adoption in the 

machine learning community, primarily due to the fact that fitting IRT models requires a 

large amount of human annotated data for each example. However, recent work has shown 

that IRT models can be fit using machine-generated data instead of human-generated data as 

input (Lalor et al., 2019).

Because IRT learns example difficulty and subject ability together, in this work we propose 

replacing heuristics for learned parameters in curriculum learning. First, we experiment with 

replacing a typical difficulty heuristic (sentence length) with learned difficulty parameters. 

Second, we propose Dynamic Data selection for Curriculum Learning via Ability Estimation 

(DDaCLAE), a novel curriculum learning framework that uses the estimated ability of a 

model during the training process to dynamically identify appropriate training data. At each 

training epoch, the latent ability of the model is estimated using output labels generated at 

the current epoch. Once ability is known, only training data that the model has a reasonable 

chance of labeling correctly is included in training. As the model improves, the estimated 

ability will improve, and more training examples will be added.

To the best of our knowledge, this is the first work to learn a model competency during 

training that is directly comparable to the difficulty of the examples. Our study will test the 

following three hypotheses: H1: Using learned latent difficulties instead of difficulty 

heuristics leads to better held-out test set performance for models trained using curriculum 

learning, H2: A dynamic data selection curriculum learning strategy that probes model 

ability during training leads to better held-out test set performance than a static curriculum 

learning strategy that does not take model ability into account, H3: Dynamic curriculum 

learning is more efficient than static curriculum learning, leading to faster convergence. We 

test our hypotheses on the GLUE classification data sets (Wang et al., 2019).

Our contributions are as follows: (i) we demonstrate that for curriculum learning, learned 

difficulty outperforms traditional difficulty heuristics, (ii) we introduce a novel curriculum 

learning framework which automatically selects training data based on the estimated ability 

of the model, and (iii) we show that training using DDaCLAE leads to better performance 

than both traditional curriculum learning methods and a fully supervised competitive 

baseline. Our findings support the overall curriculum learning framework, and demonstrate 

that learning difficulty and ability lead to further performance improvements beyond 

common heuristics.1
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2 Methods

2.1 Curriculum Learning

In a traditional curriculum learning framework, training data examples are ordered according 

to some notion of difficulty, and the training set shown to the learner is augmented at a set 

pace with more and more difficult examples over time (Fig. 1a).

Typically, the model’s current performance is not taken into account. Recent work has 

incorporated a notion of competency to curriculum learning (Platanios et al., 2019). In that 

work the authors structure the rate at which training examples are added based on an 

assumption that model competency is modeled by either a linear or root function of the 

training epoch.2 However, there are two issues with such an approach. First, this notion of 

competency is artificially rigid. If a model’s competency improves quickly, data cannot be 

added more quickly because the rate is predetermined. On the other hand, if a model is slow 

to improve, it may struggle because data is being added too quickly. Second, the formulation 

of competency proposed by the authors reduces to a competency-free curriculum learning 

strategy with a tuneable parameter for speed inclusion. Once this parameter is set, there is no 

check of model ability during training to assess competency and update training data. In this 

work our goal is to replace curriculum learning heuristics with difficulty and competency 

parameters learned directly using IRT (Fig. 1b).

2.2 Item Response Theory

IRT methods learn latent parameters of test set examples (called “items” in the IRT 

literature) and latent ability parameters of individual “subjects”. We refer to “items” as 

“examples” and “subjects” as “models” respectively for clarity and consistency with the 

curriculum learning literature.

For a model j and an example i, the probability that j labels i correctly (zij = 1) is a function 

of the latent parameters of j and i. The one-parameter logistic (1PL) model, or Rasch model, 

assumes that the probability of labeling an example correctly is a function of a single latent 

difficulty parameter of the example, bi and a latent ability parameter of the model, θj (Rasch, 

1960; Baker and Kim, 2004):

p(zij = 1 ∣ θj, bi) = 1
1 + e−(θj − bi) (1)

The probability that model j will label item i incorrectly (zij = 0) is:

p(zij = 0 ∣ θj, bi) = 1 − p(zij = 1 ∣ θj, bi) (2)

1Code implementing our experiments and learned difficulty parameters for the GLUE data sets are available at https://jplalor.github.io/
irt.
2The prior work proposed other functions as well, but found that the linear and root functions performed best.
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With a 1PL model, there is an intuitive relationship between difficulty and ability. An 

example’s difficulty value b can be thought of as the point on the ability scale where a model 

has a 50% chance of labeling an example correctly. Put another way, a model has a 50% 

chance of labeling an example correctly when model ability is equal to example difficulty 

(θj = bi, see Fig. 2).

Fitting a 1PL model requires a set of I examples {i0, i1, … , iI}, a set of J models {j0, j1, … , 

jJ}, and the binary graded responses Z = {∀i∈I∀j∈J : zij} of the models to each of the 

examples. The likelihood of a data set of response patterns Z given the parameters Θ and B 
is:

p(Z ∣ Θ, B) = ∏
j = 1

J
∏
i = 1

I
p(Zij = zij ∣ θj, bi) (3)

where zij = 1 if individual j answers item i correctly and zij = 0 if they do not.

2.3 IRT with Artificial Crowds

A major bottleneck of using IRT methods on machine learning data sets is the fact that each 

human subject would have to label all of (or most of) the examples in order to have enough 

response patterns to estimate the latent parameters. Having humans annotate all of the 

examples in a large data set is impractical, but recent work has shown that the human 

subjects can be replaced with an ensemble of machine learning models (Lalor et al., 2019). 

The response patterns from this “artificial crowd” can be used to estimate latent parameters 

by fitting IRT models using variational inference (VI-IRT) (Natesan et al., 2016; Lalor et al., 

2019).

VI-IRT approximates the joint posterior distribution π(Θ, B∣Z) by the variational 

distribution:

q(Θ, B) = ∏
j = 1

J
πjθ(θj) ∏

i = 1

I
πib(bi) (4)

where πjθ() and πib() denote Gaussian densities for different parameters. Parameter means and 

variances are determined by minimizing the KL-Divergence between q(Θ, B) and π(Θ, B∣Z).

In selecting priors for VI-IRT we follow the results of prior work where hierarchical priors 

were used (Natesan et al., 2016; Lalor et al., 2019). The hierarchical model assumes that 

ability and difficulty means are sampled from a vague Gaussian prior, and ability and 

difficulty variances are sampled from an inverse Gamma distribution:

θj ∣ mθ, uθ ∼ N(mθ, uθ
−1)

bi ∣ mb, ub ∼ N(mb, ub
−1)

mθ, mb ∼ N(0, 106)
uθ, ub ∼ Γ(1, 1)
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Estimating Model Ability—Estimating the ability of a model at a point in time is done 

with a “scoring” function. When example difficulties are known, model ability is estimated 

by maximizing the likelihood of the data given the response patterns and the example 

difficulties to obtain the ability estimate. All that is required is a single forward pass of the 

model on the data, as is typically done with a test or validation set.

Zj = ∀y ∈ Y I[yi = yi] (5)

θ j = arg max
θj

∏
i = 1

I
p(zij = yij ∣ θj) (6)

2.4 Dynamic Data selection for Curriculum Learning via Ability Estimation

We propose DDaCLAE, where training examples are selected dynamically at each training 

epoch based on the estimated ability of the model at that epoch. With DDaCLAE, model 

ability can be estimated according to a well-studied psychometric framework as opposed to 

heuristics. The estimated ability of the model at a given epoch e, θe, is on the same scale as 

the difficulty parameters of the data, so there is a principled approach for selecting data at 

any given training epoch.

Algorithm 1 describes the training procedure. The first step of DDaCLAE is to estimate the 

ability of the model using the scoring function (§2.3, Alg. 1 line 2). To do this we use the 

full training set, but crucially, only to get response data, not to update parameters (i.e., no 

backward pass). We do not use a held out development set for estimating ability because we 

do not want the development set to influence training. In our experiments the development 

set is only used for early stopping. Model outputs are obtained for the training set, and 

graded as correct or incorrect as compared to the gold standard label (Alg. 1 line 8). This 

response pattern is then used to estimate model ability at the current epoch (θe, Alg. 1 line 

9).

Once ability is estimated, data selection is done by comparing estimated ability to the 

examples’ difficulty parameters. Each example in the training examples has an estimated 

difficulty parameter (bx). If the difficulty of an example is less than or equal to the estimated 

ability, then the example is included in training for this epoch. Examples where the difficulty 

is greater than estimated ability are not included (Alg. 1 line4). Finally, the model is trained 

with the training data subset (Alg. 1 line 5).

With DDaCLAE, the training data size does not have to be monotonically increasing. 

DDaCLAE adds or removes training data based not on a fixed step schedule but rather by 

probing the model at each epoch and using the estimated ability to match data to the model 

(Figure 1). This way if a model has a high estimated ability early in training, then more data 

can be added to the training set more quickly, and learning isn’t artificially slowed down due 

to the curriculum schedule. If a model’s performance suffers when adding data too quickly, 
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then this will be reflected in lower ability estimates, which leads to less data selected in the 

next epoch.

Algorithm 1 DDaCLAE

Input:Data (X,Y), model ϕ, difficulties D, num_epochs
Output:Learned model ϕ

1: for e in num_epochs do
2: Y = ϕ(X)
3: θe = score(Y , Y , D)

4: Xe, Ye = {(x, y) :bx ≤ θe}
5: train(ϕ, Xe, Ye)
6: end for
7: procedure SCORE(Y , Y , D)
8: Z = ∀y ∈ Y I[yi = yi]

9: θe = arg maxθ p(Z ∣ θ, b)

10: return θe
11: end procedure

3 Data and Experiments

3.1 Data

For our experiments we consider the GLUE English-language classification tasks (Wang et 

al., 2019): MNLI (Williams et al., 2018), QQP,3 QNLI (Rajpurkar et al., 2016; Wang et al., 

2019), SST-2 (Socher et al., 2013), MRPC (Dolan and Brockett, 2005), and RTE (Bentivogli 

et al., 2009). Data set summary statistics are provided at Table 1. We exclude the WNLI data 

set.4

Because test set labels for our tasks are only available via the GLUE evaluation server, we 

use the held-out development sets to measure performance. For training, we do a 90%-10% 

split of the training data, and use the 10% split as our held out development set for early 

stopping. We can then use the full development set as our test set to evaluate performance 

without making multiple submissions to the GLUE server.

3.2 Generating Response Patterns

To learn the difficulty parameters of the data we require a data set of response patterns. 

Gathering enough labels for each example to fit an IRT model would be prohibitively 

expensive for human annotators. In addition, the annotation quality may be suspect due to 

the humans labeling tens of thousands of examples. Therefore we used artificial crowds to 

generate our response patterns. Prior work has shown that this is an effective way to generate 

3https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
4See https://gluebenchmark.com/faq note 12.
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a set of response patterns for fitting IRT models to machine learning data (Lalor et al., 

2019).

Briefly, for each data set an ensemble of neural network models are trained with different 

subsets of the training data. Training data is subsampled and corrupted via label flipping so 

that performance across models in the ensemble is varied. Each trained model then labels all 

of the examples (train/validation/test), which are graded against the gold-standard label. The 

output response patterns are used to fit an IRT model for the data (§2.2).

3.3 Experiments

To demonstrate the effectiveness of DDaCLAE we compare against a fully supervised 

baseline as well as a competence-based method (CB) that uses a fixed, monotonically-

increasing schedule to add examples during training (Platanios et al., 2019). All experiments 

described were run five times. Average performance and 95% CI are reported below.

For each task, we trained two standard model architecture for a set number of epochs: 

BERTbase and LSTM. We use the BERTbase model (Devlin et al., 2018) as implemented by 

HuggingFace.5 Each model was trained for 10 epochs, with a learning rate of 2e-5 and a 

batch size of 8. Dropout for all fine-tuning layers was set to 0.1. We used gradient norm 

clipping at 1 to avoid exploding gradients.

The LSTM model consists of a 300D LSTM sequence-embedding layer (Hochreiter and 

Schmidhuber, 1997) (one or two LSTMs for single- and two-sentence tasks, respectively). 

The sentence encodings are then concatenated and passed through three tanh layers. Finally, 

the output is passed to a softmax classifier layer to output class probabilities. The models 

were implemented in DyNet (Neubig et al., 2017). Models were trained with SGD for 100 

epochs with a learning rate of 0.1, and dev set accuracy was used for early stopping.

Training data available to the model at each epoch varied according to the curriculum 

applied:

1. Fully Supervised: At each epoch, the model has access to the full training set

2. CB-Linear: The proportion of training examples to include at time t is

clinear(t) ≜ min(1, t
1 − c0

T + c0)

3. CB-Root: The proportion of training examples to include at time t is

csqrt(t) ≜ min(1, t
1 − c0

2

T + c0
2)

4. DDaCLAE: At each epoch, model ability is estimated (θe, see §2.4) and all 

examples where bx ≤ θe are included

5https://github.com/huggingface/pytorch-transformers
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For the competence-based methods, t is the current time-step in training, T is the point 

where the model is fully competent, c0 is the initial competency. We set c0 = 0.01 as per the 

original paper and set T to be equal to numepocℎs
2  (Platanios et al., 2019). The competence-

based models reach “competency” halfway through training and train with the full training 

set for the second half.

To determine the effectiveness of difficulty as estimated by IRT methods, we experiment 

with two versions of the competency-based models in our NLP tasks: (1) dlength: using 

sentence length as a heuristic for difficulty, as in the prior work (Platanios et al., 2019). For 

sentence-pair tasks such as MNLI we use the length of the first sentence for dlength. (2) dirt: 

difficulty as estimated by fitting an IRT model using the artificial crowd (§2.2). dlength is one 

of two common heuristics used for difficulty in prior work. Word rarity, where the negative 

log likelihood of the sentence is computed, has also been proposed as a heuristic (Platanios 

et al., 2019). Recent empirical evaluations have shown that word rarity and sentence length 

perform similarly as heuristics, and we therefore use sentence length as our heuristic for 

comparison (Platanios et al., 2019).

It is worth noting here that neither CB-Linear nor CB-Root actually measure competency of 

the model at any point. Instead it is assumed that the model becomes more and more 

competent over time, whereas with DDaCLAE model competency is probed at each training 

epoch and training data is selected based on this competency.

Estimating Ability—For DDaCLAE, there is a potentially significant cost associated with 

estimating θe. Estimating θe requires an additional forward pass through the training data set 

to gather the labels for scoring as well as MLE estimation (2.3). For large data sets this can 

effectively double the number of forward passes during training. To alleviate the extra cost, 

we sample from the training set before our first epoch, and use this down-sampled subset as 

our ability estimation set. As most examples have difficulty values between −3 and 3, the 

full training set isn’t necessary for estimating θe. For our experiments we sampled 1000 

examples for ability estimation, significantly reducing the cost. Identifying the optimal 

number of examples needed to estimate ability is left for future work.

4 Results

4.1 Analysis of Difficulty Heuristic

To explore the discrepancy between common difficulty heuristics and a learned difficulty 

parameter, we calculated the Spearman rank-order correlation between difficulty using the 

sentence-length heuristic, dlength, and difficulty as estimated by IRT, dirt (Table 4). In most 

cases, correlation is around 0, indicating no (or minimal) correlation between the two values. 

In fact for some tasks the correlation is negative (e.g., −0.19 for MRPC). For SST-2, there is 

a moderate positive correlation, indicating that some short examples are easier for the task of 

sentiment analysis. However, the lack of (or negative) correlation in other tasks indicates that 

sentence length, a common heuristic for difficulty in curriculum learning work, is not 

aligned with the more theoretically-grounded difficulty estimates of IRT.
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4.2 Replacing Difficulty Heuristics (H1)

By replacing difficulty heuristics with learned difficulty parameters in a static curriculum 

learning framework, we see that performance is improved for all GLUE classification tasks, 

with both BERT and LSTM models (Tables 2 and 3). Using learned difficulty parameters 

outperforms both the fully supervised baseline and the equivalent curriculum learning 

strategy with difficulty heuristics (e.g., comparing CB Root (dirt) with CB Root (dlength)).

This result confirms our first hypothesis (H1) and demonstrates that learning difficulty 

parameters for data leads to more effective curriculum learning models. The models are able 

to leverage a theoretically-based difficulty metric instead of a heuristic such as sentence 

length.

4.3 Dynamic Curriculum Learning (H2)

For the BERTbase model, DDaCLAE outperforms the fully supervised baseline as well as all 

other curriculum learning methods on 2 of the 6 tasks (QNLI and SST-2, Table 2). However, 

we find that DDaCLAE does not lead to further performance improvements on the other 

tasks for BERTbase.

DDaCLAE does give the best performance for 5 of the 6 GLUE tasks (all except QQP) 

when used to train the LSTM model (Table 3). This could be due to the fact that training the 

BERTbase models is a fine-tuning procedure against the already pre-trained models. 

Therefore there is not much room for performance improvement switching from a static to a 

dynamic curriculum learning model. On the other hand, the LSTM models are all randomly 

initialized, and therefore require a full training procedure. In scenarios like this, DDaCLAE 

is an effective procedure to improve performance. With DDaCLAE, the model is trained 

using data that is most appropriate for its current ability. Examples that are too hard are not 

included too early.

One potential issue with DDaCLAE is the chance of a high variance model, due to the 

additional step of estimating model ability during training. However we find that variance in 

terms of output performance is quite low for both BERTbase and LSTM models trained with 

DDaCLAE.

4.4 Training Efficiency (H3)

In addition to test-set performance, we analyzed the efficiency of the curriculum learning 

training methods. For each experiment, we calculated the average number of training epochs 

required to reach the point of early stopping (based on held out dev set accuracy). For 

BERTbase, fully supervised training is almost always the most efficient (Table 5). This 

should not be surprising, as the model is already pre-trained, and fine-tuning only requires a 

small number of passes over the task data.

For training the LSTM model, efficiency results are more mixed (Table 6). In most cases the 

fully-supervised training is again most efficient, however DDaCLAE does not incur 

significant efficiency costs. For QQP and RTE, DDaCLAE is the most efficient training 

paradigm. For MNLI, QNLI, and SST-2, DDaCLAE efficiency is within the 95% CI of the 
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baseline results. Recall that for the LSTM model DDaCLAE is the most effective in terms of 

test set accuracy as well, so we can say that the improved test set performance does not 

come at the cost of training time efficiency.

4.5 Distribution of Difficulty

Figure 3 shows percentage plots of estimated difficulty for two of the GLUE classification 

tasks, QNLI and MRPC. As the plots show, the distribution in difficulty varies between the 

tasks. For MRPC, there are more difficult examples, percentage-wise, than in the QNLI data 

set. This reflects the current state of the GLUE leaderboard, where the top-performing model 

accuracies are 97.8% and 92.6% on QNLI and MRPC, respectively.6 This is also reflected in 

our results, where model performance is higher for QNLI than MRPC (Table 2). Knowing 

the distribution of difficulty in a data set is useful information for model development and 

evaluation strategies. In the case of curriculum learning we leverage this learned difficulty to 

train our models.

4.6 Additional Training Time Considerations

Estimating model ability every training epoch with DDaCLAE can potentially increase 

training time significantly. If at each training epoch there is a need to run a full MLE 

optimization, the cost in terms of time could significantly outweigh performance 

improvements. To mitigate this we randomly sample examples for ability estimation.

Comparing training with DDaCLAE to training a fully-supervised baseline, the average 

impact on training time ranges from an additional few minutes for smaller data sets (e.g., 

MRPC) to an additional few hours for the larger data sets (e.g., MNLI). This impact grows 

with the data set size because when estimating ability, all of the training examples are used 

to generate a response pattern, then a subset of 1000 are selected for estimating ability. 

Future implementations can sample the training data before gathering response patterns, or 

pre-select a subset with varying difficulty parameters and to use as a static “probe set” to 

estimate ability at each epoch.

5 Related work

Curriculum learning is a well-studied area of machine learning (Bengio et al., 2009). The 

primary focus has been on developing new heuristics to identify easy and difficult examples 

in order to build a curriculum. Originally, curriculum learning methods were evaluated on 

toy data sets with heuristic measures of difficulty (Bengio et al., 2009). For example, on a 

shapes data set, shapes with more sides were considered difficult. Similarly, longer sentences 

were considered difficult. Word rarity has also been proposed as a heuristic for difficulty, 

with similar results to sentence length (Platanios et al., 2019). Recent work on automating 

curriculum learning strategies use multi-arm bandits to minimize regret with respect to 

curriculum selection (Graves et al., 2017). In that work the authors again rely on proxies for 

progress (loss-driven and complexity-driven). Loss-driven proxies are inherently model-

specific, in that the difficulty of an example is determined by a specific model’s performance 

6Scores as of the time of this submission.
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on the example. Using a global difficulty such as one learned using IRT methods allows for 

an interpretable difficulty metric that applies across models. The complexity-driven proxies 

proposed are specific to neural networks, while DDaCLAEis a generic algorithm for 

dynamic curriculum learning.

Spaced repetition strategies (SR) can be effective for improving model performance (Amiri 

et al., 2017; Amiri, 2019). Instead of using a traditional curriculum learning setup, spaced 

repetition bins examples based on estimated difficulty, and shows bins to the model at 

differing intervals so that harder examples are seen more frequently than easier ones. This 

method has been shown to be effective for human learning, and results demonstrate 

effectiveness on NLP tasks as well. Similarly to traditional curriculum learning, SR uses 

heuristics for difficulty and rigid schedulers to determine when examples should be re-

introduced to the learner.

Self-paced learning (SPL) is another related strategy for example ordering during training 

(Kumar et al., 2010). In our work the difficulty values of examples are global and static, 

where for SPL examples do not have set difficulty values; instead, groups of examples are 

considered in sets. In addition, model competency is not considered in SPL, it is assumed 

that competency improves as more difficult examples are added.

There has been recent work investigating the theory behind curriculum learning (Weinshall 

et al., 2018; Hacohen and Weinshall, 2019), particularly around trying to define an ideal 

curriculum. The authors explicitly identify the two key aspects of curriculum learning, 

namely “sorting by difficulty” and “pacing.” Curriculum learning theoretically leads to a 

steeper optimization landscape (i.e., faster learning) while keeping the same global 

minimum of the task without curriculum learning. In that work there is still a reliance on 

“pacing functions” as opposed to an actual assessment of model ability at a point in time. 

This work may open interesting new areas of theoretical study linking difficulty and ability 

in curriculum learning.

Theoretical results (Hacohen and Weinshall, 2019) have also demonstrated a key distinction 

between curriculum learning and similar methods such as self-paced learning (Kumar et al., 

2010), hard example mining (Shrivastava et al., 2016), and boosting (Freund and Schapire, 

1997): namely that the former considers difficulty with respect to the final hypothesis space 

(i.e., a model trained on the full data set) while the later methods consider ranking examples 

according to how difficult the current model determines them to be. DDaCLAE bridges a 

gap between these methods by probing model ability at the current point in training and 

using this ability to identify appropriate training examples in terms of global difficulty.

In addition, a key component of most prior work in curriculum learning is the notion of 

balance. When defining a curriculum, it is often the case that proportions are maintained 

between classes. That is, difficulty itself is not the only factor when building the curriculum. 

Instead, the easiest examples for each class are added so that the model is proportionally 

exposed to the data consistent with the full training set. DDaCLAE does not consider class 

labels when selecting examples for training. It is important to note here that labels are used 

when learning difficulties, estimating ability, and actually updating parameters during 
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training. They are not used to balance the curriculum. In this way DDaCLAE is more closely 

aligned with a pure curriculum learning strategy that considers only the easiness/hardness of 

an example during training. This is an added benefit to DDaCLAE as there is no need for 

class label accounting during training.

6 Conclusion

This work validates and supports the existing literature on curriculum learning. Our results 

confirm that curriculum learning methods for supervised learning can lead to faster 

convergence or better local minima, as measured by test set performance (Bengio et al., 

2009). We have shown that by replacing a heuristic for difficulty with a theoretically-based, 

learned difficulty value for training examples, static curriculum learning strategies can be 

improved. We have also proposed DDaCLAE, the first curriculum learning method to 

dynamically probe a model during training to estimate model ability at a point in time. 

Knowing the model’s ability allows for data to be selected for training that is appropriate for 

the model and is not rigidly tied to a heuristic schedule. DDaCLAE trains more effective 

models in most cases that we considered, particularly for randomly initialized LSTM 

models.

Based on our experiments, we report mixed results on our stated hypotheses. Replacing 

heuristics with learned difficulty values leads to improved performance when training 

models with curriculum learning, supporting H1. DDaCLAE does outperform other training 

setups when used to train LSTM models. Results are mixed when used to fine-tune the 

BERTbase model. Therefore H2 is partially supported. We see similarly mixed results when 

evaluating efficiency. With BERTbase fine-tuning, fully supervised fine-tuning is usually the 

most efficient, as the number of fine-tuning epochs needed is already very low. For LSTM, 

DDaCLAE is more efficient than the other curriculum learning strategies, and is the most 

efficient overall for two of the six tasks. H3 is partially supported by these results.

Even though it is dynamic, DDaCLAE employs a simple schedule: only include examples 

where bx ≤ θe. However, being able to estimate ability on the fly with DDaCLAE opens up 

an exciting new research direction: what is the best way to build a curriculum, knowing 

example difficulty and model ability (e.g., the 85% rule of Wilson et al., 2019)?

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(1a) Traditional curriculum learning, where examples are added at each epoch according to a 

static monotonically-increasing schedule (te = f(e)). (1b) DDaCLAE estimates ability at each 

epoch (θe) to dynamically select appropriate training data (te = f(θe)).

Lalor and Yu Page 15

Proc Conf Empir Methods Nat Lang Process. Author manuscript; available in PMC 2020 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Plot of p(zij = 1∣θj, bi) as a function of θ for an example with difficulty b = 0. Models with 

ability θ ≥ 0 (right of dashed line) have greater than 50% chance of labeling the example 

correctly.
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Figure 3: 
Percentage plot of difficulty values in QNLI and MRPC data sets. Please note that x-axes are 

intentionally scaled to reflect the range for a given data set, and are not consistent between 

plots. Additional plots for other tasks included in the supplemental material.
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Table 1:

Statistics for our experiments. Note that these values differ from the GLUE server data (see §3.1).

Data set Train Dev Test

MNLI 353k 39k 9.8k

MRPC 3.3k 366 409

QNLI 94k 10k 5.5k

QQP 327k 36k 40k

RTE 2.2k 249 278

SST-2 61k 6.7k 873
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Table 4:

Spearman rank-order correlations between length difficulty heuristic and IRT-estimated difficulty.

SST-2 MRPC QNLI QQP RTE MNLI

ρ 0.21 −0.19 0.01 −0.09 −0.02 0.03
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