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Abstract

The advent of high-throughput sequencing technologies has led to an increasing availability of 

large multi-tissue data sets which contain gene expression measurements across different tissues 

and individuals. In this setting, variation in expression levels arises due to contributions specific to 

genes, tissues, individuals, and interactions thereof. Classical clustering methods are ill-suited to 

explore these three-way interactions and struggle to fully extract the insights into transcriptome 

complexity contained in the data. We propose a new statistical method, called MultiCluster, based 

on semi-nonnegative tensor decomposition which permits the investigation of transcriptome 

variation across individuals and tissues simultaneously. We further develop a tensor projection 

procedure which detects covariate-related genes with high power, demonstrating the advantage of 

tensor-based methods in incorporating information across similar tissues. Through simulation and 

application to the GTEx RNA-seq data from 53 human tissues, we show that MultiCluster 
identifies three-way interactions with high accuracy and robustness.
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1. Introduction.

Owing to advances in high-throughput sequencing technology, multi-tissue expression 

studies have provided unprecedented opportunities to investigate transcriptome variation 
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across tissues and individuals (Lonsdale et al. 2013; Melé et al. 2015; Hawrylycz et al. 

2012). A typical multi-tissue experiment collects gene expression profiles (e.g. via RNA-seq 

or microarrays) from different individuals in a number of different tissues, and variation in 

expression levels often results from complex interactions among genes, individuals, and 

tissues (Melé et al. 2015). For example, a group of genes may perform coordinated 

biological functions in certain contexts (e.g. specific tissues or individuals), but behave 

differently in other settings through tissue- and/or individual-dependent gene regulation 

mechanisms.

Clustering has proven useful to reveal latent structure in high-dimensional expression data 

(Tibshirani et al. 1999; Lazzeroni and Owen 2002; Liu et al. 2008). Traditional clustering 

methods (such as K-means, PCA, and t-SNE (Maaten and Hinton 2008)) assume that gene 

expression patterns persist across one of the different contexts (either tissues or individuals), 

or assume that samples are i.i.d. or homogeneous. Direct application of these algorithms to 

multi-tissue expression data requires concatenating all available samples from different 

tissues into a single matrix, precluding potential insights into tissue × individual specificity 

(Bahcall 2015). Alternatively, inferring gene modules separately for each tissue ignores 

commonalities among tissues and may hinder the discovery of differentially-expressed (DE) 

genes that characterize tissues or tissue groups. Likewise, individuals vary by their 

biological attributes (such as race, gender, and age), and ignoring such heterogeneity 

impedes the accurate estimation of gene- and/or tissue-wise correlations. The development 

of a statistical method that integrates multiple modes (defined in Section 3) simultaneously 

is therefore essential for elucidating the complex biological interactions present in multi-

tissue multi-individual gene expression data.

Several methods have been proposed in multi-tissue multi-individual expression studies, but 

they are often unable to fully exploit the three-mode structure of the data. Pierson et al. 

(2015) propose a hierarchical transfer learning algorithm to learn gene networks in which 

they first construct a global tissue hierarchy based on mean expression values and 

subsequently infer gene networks for each tissue conditioned on the tissue hierarchy. Dey, 

Hsiao and Stephens (2017) instead use topic models to cluster samples (i.e. tissues or 

individuals) and identify genes that are distinctively expressed in each cluster. Both 

algorithms take a two-step procedure to uncover expression patterns in tissues and genes. 

Other methods offer one-shot approaches by identifying subsets of correlated genes that are 

exclusive to, for example, female individuals. Gao et al. (2016) adopt the biclustering 

framework and propose decomposing the expression matrix into biclusters of subsets of 

samples and features with latent structure unique to the overlap of particular subsets. 

However, in the case of multi-tissue measurements across individuals, concatenating the data 

sample-wise to create a single expression matrix will not explore the three-way interactions 

among genes, tissues, and individuals. A more recent work (Hore et al. 2016) develops 

sparse decomposition of arrays (SDA) for multi-tissue expression experiments. Because 

their focus is not on clustering tissues or individuals, the proposed i.i.d. prior on individual/

tissue loadings may not be suitable to detect tissue- and individual-wise correlation.

We address the aforementioned challenges by developing a tensor-based method, called 

MultiCluster, to simultaneously cluster genes, tissues, and individuals. As illustrated in 
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Figure 1a, multi-tissue multi-individual gene expression measurements can be organized into 

a three-way array, or order-3 tensor, with gene, tissue, and individual modes. Our goal is to 

identify subsets of genes that are similarly expressed in subsets of tissues and individuals; 

mathematically, this reduces to detecting three-way blocks in the expression tensor (Figure 

1b). We utilize the flexible tensor decomposition framework to directly identify gene 

modules in a tissue × individual specific fashion, which traditional clustering methods would 

struggle to capture.

Our tensor decomposition method can be viewed as a generalization of matrix PCA. 

Compared to matrices, tensors provide greater flexibility to describe data but entail a higher 

computational cost. Indeed, extending familiar matrix concepts such as SVD to tensors is 

not straightforward (De Silva and Lim 2008; Kolda and Bader 2009; Wang et al. 2017), and 

the associated computational complexity has proven to be NP-hard (Hillar and Lim 2013). 

Motivated by recent advances in tensor decomposition (Anandkumar et al. 2014; Wang and 

Song 2017), we develop a robust clustering method to simultaneously infer common and 

distinctive gene expression patterns among tissues and individuals which utilizes triplets of 

sorted loading vectors in a constrained tensor decomposition. This approach handles 

heterogeneity in each mode and learns the clustering patterns across different modes of the 

data in an unsupervised manner analogous to PCA and SVD. In addition, we develop a 

tensor projection procedure which detects covariate-related genes with high power, 

demonstrating the advantage of tensor-based methods in incorporating information across 

similar tissues. When applied to the Genotype-Tissue Expression (GTEx) RNA-seq data, our 

method uncovers different types of gene expression modules, including (i) global, shared 

expression modules; (ii) expression modules specific to certain subsets of tissues; (iii) 

modules with differentially expressed genes across individual-level covariates (e.g., age, sex 

or race); and (iv) expression modules that are specific to both tissues and individuals.

Section 2 discusses the GTEx data set which serves as the motivating example for our 

method. Section 3 covers tensor preliminaries and presents our three-way clustering method 

via the use of semi-nonnegative tensor decomposition. We then describe the fitting 

procedure and develop a tensor projection method for detecting covariate-related genes. 

Section 4 presents simulation studies that compare our method with a number of 

alternatives. In Section 5 we describe the application of our method to the GTEx multi-tissue 

multi-individual gene expression data set. We conclude in Section 6 with a discussion of our 

findings and avenues for future work.

2. Motivating data set.

We demonstrate the usefulness of MultiCluster using the GTEx v6 gene expression data, 

which consist of RNA-seq samples collected from 544 individuals across 53 human tissues, 

including 13 brain subregions, adipose, heart, artery, skin, and more. These data are 

available from https://www.gtexportal.org/home/datasets. The experiment is described in 

detail in Lonsdale et al. (2013) and further in Melé et al. (2015). After cleaning and 

preprocessing the data as detailed in the Supplement (Wang, Fischer and Song 2018), gene 

expression measurements were organized into a gene × individual × tissue multi-way array 

Y ∈ ℝnG × nI × nT , where nG = 18,481 (genes), nI = 544 (individuals) and nT = 53 (tissues).
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The GTEx data set contains categorical clinical variables such as sex (n = 357 females vs. n 
= 187 males), race (n = 77 African Americans vs. n = 467 European Americans), and age 

(1st and 3rd age quantiles of 47 and 62, respectively). Given its inherent structure and levels 

of individual heterogeneity, this data set naturally lends itself to a tensor framework and 

allows us to systematically investigate multifactorial patterns of transcriptome variation.

3. Models and methods.

We begin by reviewing a few basic facts about tensors (Kolda and Bader 2009). We use 

Y = 〚 Y i1i2…ik 〛 ∈ ℝd1 × d2 × ⋯ × dk to denote a (d1, d2, … , dk)-dimensional real-valued 

tensor, where k corresponds to the number of modes of Y and is called the order. Given our 

intended application to multi-way gene expression data, we describe the method in the 

context of order-3 tensors, though it is also applicable to higher-order tensors. A tensor Y is 

called a rank one tensor if it can be written as an outer product of vectors such that 

Y = x ⊗ y ⊗ z, where x ∈ ℝd1, y ∈ ℝd2, z ∈ ℝd3, and ⊗ denotes the Kronecker product.

The inner product between two tensors Y = 〚 Y ijk 〛 and Y′ = 〚 Y ijk′ 〛 in ℝd1 × d2 × d3

is the sum of the product of their entries given by

Y, Y′ = ∑
i = 1

d1
∑

j = 1

d2
∑

k = 1

d3
YijkYijk′ .

The Frobenius norm of Y is defined as

∥ Y ∥F = Y, Y = ∑
i = 1

d1
∑

j = 1

d2
∑

k = 1

d3
Yijk

2
1/2

.

Following Lim (2005), we define the covariant multilinear matrix multiplication of a tensor 

T ∈ ℝd1 × d2 × d3 by matrix M1 = 〚 mil1
(1) 〛 ∈ ℝd1 × s1, M2 = 〚 mjl2

(1) 〛 ∈ ℝd2 × s2, and 

M3 = 〚 nkl3
(3) 〛 ∈ ℝd3 × s3 as

Y M1, M2, M3 = 〚 ∑
i = 1

d1
∑

j = 1

d2
∑

k = 1

d3
Yijkmil1

(1) mjl2
(2) mkl3

(3) 〛 ,

which results in a tensor in ℝs1 × s2 × s3. When M1 is an identity matrix, we often write 

Y ⋅ , M2, M3  for brevity; similar shorthand rules apply to other modes. Note than when s1 = 

1, Y M1, M2, M3  degenerates to an s2-by-s3 matrix, and when both s1 = s2 = 1, 

Y M1, M2, M3  degenerates to a length-s3 vector. Mildly abusing notation, we use symbols 

such as Y( ⋅ , ⋅ , k) to denote the k-th matrix slice of the tensor in which the first two indices 

may vary and the last index is held fixed for some 1 ≤ k ≤ d3.
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For ease of notation, we allow the basic arithmetic operators (+, −, ≥, etc) to be applied to 

pairs of vectors in an element-wise manner. We use the shorthand [n] to denote the n-set {1, 

… , n} for n ∈ ℕ+.

3.1. Tensor decomposition model.

Figure 2 provides a schematic illustration of the MultiCluster method. In a multi-tissue 

multi-individual gene expression experiment, the data take the form of an order-3 tensor, 

Y = 〚 Y ijk 〛 ∈ ℝnG × nI × nT , where Yijk denotes the expression value (possibly after a 

suitable transformation) of gene i measured in individual j and tissue k, nG is the total 

number of genes, nI is the total number of individuals, and nT is the total number of tissues. 

We propose to model the expression tensor Y as a perturbed rank-R tensor,

Y = ∑
r = 1

R
λrGr ⊗ Ir ⊗ Tr + ℰ, (3.1)

where λr ∈ ℝ+ are singular values; Gr, Ir, and Tr are norm-1 singular vectors in ℝnG, ℝnI, 

and ℝnT , respectively; and ℰ = 〚 Eijk 〛 is a noise tensor with each entry Eijk i.i.d. 

N 0, σe2 . We refer to the loading vectors Gr, Ir, Tr as “eigen-genes”, “eigen-individuals”, and 

“eigen-tissues”, respectively.

The rank-1 component Gr ⊗Ir ⊗ Tr in (3.1) can be interpreted as the basic unit of an 

expression pattern (called an expression module), in which the (i, j, k)-th entry of Gr ⊗Ir 

⊗Tr is the multiplicative product of the corresponding entries in the three modes, i.e., (Gr 

⊗Ir ⊗Tr)(i,j,k) = Gr,iIr,jTr,k. The tissue loadings indicate the “activity” of the expression 

module r for each tissue. To facilitate the biological interpretation, we impose entry-wise 

nonnegativity conditions, Tr ≥ 0, on the tissue loading vectors Tr; the manner of execution 

and motivation for this constraint are discussed in Section 3.2. Note that no sign constraint is 

imposed on individual and gene loadings, so our method is flexible enough to handle mixed-

sign data tensors. We refer to such constraints as “semi-nonnegative” tensor decomposition.

3.2. Estimation via optimization.

We wish to recover the tensor components of interest,

λr, Gr, Ir, Tr : Gr 2 = Ir 2 = Tr 2 = 1, λr > 0, Tr ≥ 0, r ∈ [R] ,

from the observation Y. The negative log-likelihood under the Gaussian model (3.1) is equal 

(ignoring constants) to

Y − ∑
r = 1

R
λrGr ⊗ Ir ⊗ Tr

F

2
, (3.2)
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which will be the cost function in our estimation procedure. Before presenting the algorithm, 

we first state some conditions for the model identifiability. The first complication is the 

indeterminacy due to sign flips and permutation:

• Sign flips: changing the factors from (Gr, Ir, Tr) to (−Gr, −Ir, Tr) does not affect 

the likelihood.

• Permutation: applying permutation to the index set [R] does not affect the 

likelihood.

To deal with the above indeterminacy, we adopt the following convention. The sign of Ir is 

chosen such that maxj ∈ nI Ir, j = maxj ∈ nI Ir, j  for all r ∈ [R]. Because of the 

nonnegativity constraints on Tr, this convention fixes the sign of Ir (and thus Gr). 

Furthermore, component indices are arranged such that λ1 ≥ λ2 ≥ ⋯ ≥ λR. In the degenerate 

case where not all eigenvalues are unique, we break ties by first choosing the module r with 

larger maxj ∈ nI Ir, j.

The second complication comes from the possible non-uniqueness of tensor decomposition 

even after accounting for sign and permutation indeterminacy. Fortunately, we are able to 

utilize sufficient conditions for the uniqueness of tensor decomposition. These conditions 

were initially developed for unconstrained tensor decomposition, but they also apply to our 

semi-nonnegative tensor decomposition.

• (Kruskal 1977) A rank-R semi-nonnegative tensor decomposition is unique if kG 

+kT +kI ≥ 2R+2, where kG is the Kruskal-rank of the gene factor matrix G = [G1, 

… , GR], i.e., the maximum value k such that any k columns are linearly 

independent. The definitions for kT and kI are similar, except that the tissue 

factor matrix T = [T1, … ,TR] is nonnegative in our case.

• (De Lathauwer 2006) Suppose nG > nI > nT (as in the GTEx data). If R ≤ nT and 

R(R − 1) ≤ nG(nG − 1)nI(nI − 1)/2, then the rank-R semi-nonnegative tensor 

decomposition is unique for almost all such tensors except on a set of Lebesgue 

measure zero.

In parameter estimation, we decompose the tensor Y via successive rank-1 approximations 

coupled with deflation. Although successive rank-1 approximations of a tensor do not 

necessarily yield its best rank-R approximation, recent work shows that they provide a 

flexible estimation procedure with well-controlled error in many cases (Allen 2012; Mu, 

Hsu and Goldfarb 2015).

We modify our earlier algorithm (Wang and Song 2017) to solve for λr, Gr, Ir, Tr via the 

following optimization:

minimize
λr, Gr, Ir, Tr

Y − λrGr ⊗ Ir ⊗ Tr F ,

 subject to  Gr 2 = Ir 2 = Tr 2 = 1,    and   Tr ≥ 0,
(3.3)

Wang et al. Page 6

Ann Appl Stat. Author manuscript; available in PMC 2020 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Y denotes either the original or residual tensor after deflation. As the optimization 

(3.3) is separable into each of its factors, we can optimize this in an iterative block-wise 

manner:

Property 1. Let (λr, Gr, I r, T r) be the optimizer of (3.3). Then the following properties hold 

(assuming the denominators are non-zero):

Gr = Y ⋅ , I r, T r / Y ⋅ , I r, T r 2,
I r = Y Gr, ⋅ , T r / Y Gr, ⋅ , T r 2,
T r = Y Gr, I r, ⋅ +/ Y Gr, I r, ⋅ + 2,
λr = Y Gr, I r, T r ,

(3.4)

where a+ := max(a, 0) and we allow this operator to be applied to vectors in an element-wise 
manner.

A proof is provided in Supplement (Wang, Fischer and Song 2018). The above result 

suggests an alternating optimization scheme. The tensor factors Gr, I r and T r are initialized 

using outputs from unconstrained tensor decomposition (Wang and Song 2017). Each factor 

is then updated alternatively while keeping the other two factors fixed. The update step 

requires solving a (either constrained or unconstrained) least-square problem and the optimal 

solution is given explicitly by the right-hand side of equality (3.4). In particular, the entry-

wise nonnegativity of the tissue loading vectors Tr is imposed by setting negative values of 

Tr to 0. As each coordinate update reduces the objective function, which is bounded below 

by 0, convergence of this scheme is assured. After obtaining the r-th component (λr, Gr, Ir, 

Tr), we take the residual tensor as the new input and repeat the algorithm to find the next 

component via the update Y Y − λrGr ⊗ Ir ⊗ Tr. The full algorithm is provided in the 

Supplement (Wang, Fischer and Song 2018).

The requirement of nonnegative tissue loadings effectively introduces zeros in the vector Tr; 

a sparse Tr implies that the module r is active in only a few tissues, whereas a dense Tr
implies that the module r is common to several tissues. Without the nonnegativity constraint, 

it is possible, and in our experience likely, that each Tr contains two tissue groups: one 

corresponding to positively-loaded tissues and one to negatively-loaded tissues. 

Consequently, gene and individual loading patterns become less interpretable due to 

ambiguities in the identity of the tissue group with which they are associated.

Before concluding this section, we briefly comment on two implementation details. First, the 

algorithm assumes that R is given. In practice, the rank R is often unknown and must be 

determined from the data Y. There are many heuristics developed for choosing R in the 

matrix case, and similar ideas can be adopted here. For example, one can plot the sum of 

squared residuals (3.1) as a function of R and identify the elbow point in the curve. Second, 

when some entries Yijk are missing, tensor decomposition is not well-defined. In such a 

case, one could instead use the cost function ∑[i, j, k] ∈ Ω Y ijk − ∑rλrGr, iIr, jTr, k
2, where Ω 
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⊂ [nG] × [nI] × [nT] is the index set for non-missing entries. To implement this, we 

iteratively approximate missing data with fitted values based on current parameter estimates 

and proceed with the algorithm until convergence. This procedure has been commonly used 

in matrix factorization (Lee, Huang and Hu 2010; Lee and Huang 2014), and we adopt it for 

tensor factorization.

3.3. Characterizing expression modules.

For each expression module 1 ≤ r ≤ R, we propose a straightforward procedure to 

characterize the biological significance of the loading vectors Gr, Ir, and Tr. For ease of 

presentation, in what follows we drop the subscript r and simply write G, I , and T.

3.3.1. GO enrichment based on gene loadings.—Let G = G1, …, GnG
T  be the 

estimated eigen-gene. Genes with extreme loadings contribute more to this module, and we 

are particularly interested in the overexpressed and underexpressed gene clusters 

Gtop  = i ∈ nG :Gi ≥ ctop   and Gbottom  = i ∈ nG :Gi ≤ cbottom  , respectively, where ctop 

and cbottom are thresholds which control the cluster sizes.

We use a permutation-based procedure (see Supplement (Wang, Fischer and Song 2018)) to 

determine the cut-off values at significance level α = 0.05. To characterize the biological 

significance of the declared gene clusters, we perform gene ontology (GO) enrichment 

analyses among both the overexpressed and underexpressed genes. A standard test for 

enrichment is to conduct a hypergeometric test for each GO, and we employ such a 

procedure to identify GO terms that are overrepresented in the gene clusters Gtop  and 

Gbottom . The Benjamini-Hochberg correction (Benjamini and Hochberg 1995) is applied to 

the set of enrichment p-values to account for multiple hypothesis testing.

3.3.2. Covariate effects on individual loadings.—To identify the sources of 

variation in the individual loadings, we consider the following linear model for the estimated 

eigen-individual I = I 1, …, I nI
T :

I = Xβ + ε, (3.5)

where X represents the nI-by-p covariate matrix including the intercept, β = (β1, … ,βp)T 

represents the column vector of unknown coefficients, and the error vector satisfies E(ε) = 0
and Var(ε) = σ2InI × nI.

If one wishes to test whether covariate ℓ (1 ≤ ℓ ≤ p) affects the expression of the candidate 

gene, the following hypothesis test can be carried out:

ℋ0:βl = 0    vs.   ℋα:βl ≠ 0.

To perform this test we use the standard Wald statistic, which under weak assumptions (i.e., 

the first two moments concerning the means and variance-covariance matrix of ε) 
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asymptotically follows a standard normal distribution, permitting approximate inference in 

large samples. We declare expression modules as “age-, sex-, or race-related” if the eigen-

individual loadings are significantly correlated with age, sex, or race, respectively. Upon 

fitting the model (3.5), we calculate the proportion of variance explained by each covariate 

using ANOVA.

3.3.3. Tensor projection for detecting tissue-specific differentially expressed 

(DE) genes.—Let T = T 1, …, T nT
T  be the estimated eigen-tissue. Recall that the 

nonnegative tissue loading T i indicates the strength of tissue i in this expression module. We 

define Y( ⋅ , ⋅ , T) to be the tensor projection of Y through the eigen-tissue T,

Y( ⋅ , ⋅ , T) = ∑
k = 1

nT
TkY( ⋅ , ⋅ , k) .

Note that Y( ⋅ , ⋅ , T) is an ng-by-nI matrix, with each entry encoding the weighted average of 

gene expression across tissues.

Given a candidate gene to be tested for covariate-association, we propose the following 

linear model:

Y(test gene, ⋅ , T) = Xβ + ε,

where Y(test gene, ⋅ , T) ∈ ℝnI denotes the row in Y( ⋅ , ⋅ , T) corresponding to the test gene, 

Xβ represents the intercept and covariate (such as age, sex, and race) effects of interest, and 

the error vector ε satisfies E(ε) = 0 and Var(ε) = σ2InI × nI. Here we take the tensor projection 

Y(test gene, ⋅ , T) as the response variable and test for the covariate effects. Such an analysis 

differs from (3.5) in that the detected covariate effect corresponds to a single gene rather 

than the overall gene module. By examining the entries of the tissue vector T, we can infer 

which tissues drive the signal of differential expression.

4. Numerical comparison.

We now compare our method with several competing approaches.

4.1. A simple example.

As a basic illustration, we generated an expression tensor consisting of 60 genes, 20 

individuals and 10 tissues. The 20 individuals were partitioned into two groups (“young” vs. 

“elderly”), each of size 10. The genes and tissues were each partitioned into three groups 

(denoted by A, B, C). The mean expression value for each block is described in Table 1. 

Such pattern represents the tissue-specific DE structure across individuals. In particular, the 

Gene Group A are age-downregulated in Tissue Group A but are age-upregulated in Tissue 

Group B. The Gene Group B are age-downregulated in both Tissue Groups B and C but with 

different effect sizes. The Gene Group C are age-downregulated in only Tissue Group C. All 
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other gene-by-tissue combinations have no age effects. Finally, independent N(0, 1) noise 

was added to every entry of the tensor.

This example represents a challenging scenario in which traditional methods may fail. For 

example, if we average the expression over individuals and apply matrix PCA to the 

resulting data, then neither the mode-specific grouping nor the three-way interaction can be 

recovered. In fact, matrix PCA (Figure 3a) reveals little information on the gene/tissue 

clustering. This is because the matricization destroys the three-way structure encoded in the 

higher-order tensor data.

The standard (fixed-effect) meta-analysis also suffers from low power for detecting DE 

genes in this example. To see this, we tested the age effects in each tissue separately and 

combined the test statistics into a pooled estimate using z-score method (Kelley and Kelley 

2012). This approach detected few DE genes in group A and also exhibited limited power in 

groups B and C (Figure 3b). The meta-analysis’ poor performance is due to the tissue-

specificity of DE genes: genes in Gene Group A have opposite age effects in two of the 

tissue groups, so the signals partially cancel out; moreover, genes in Gene Groups B and C 

have age effects in only subsets of tissues, potentially diluting observed DE patterns.

In contrast to matrix PCA, the factors from our tensor decomposition ably capture the true 

clustering patterns (Figure 3c). Furthermore, tensor projection significantly improves 

detection power across all three gene groups (Figure 3b). As the tissue loadings are used as 

the weights in the tensor projection (Section 3.3.3), testing based on eigen-tissues allows us 

to test for age effects in a group-specific fashion. Consider Gene Group A as an example. 

Genes in this group have opposite age effects in Tissue Groups A and Group B. Since the 

first eigen-tissue has nearly-zero loadings in Tissue Group A, it only contains information 

about differential expression in Tissue Group B without including unwanted noise from 

Tissue Group A. This toy example demonstrates the ability of MultiCluster to improve 

detection power by automatically identifying similar tissues and borrowing information 

among them.

4.2. Accuracy of three-way clustering.

We also performed more extensive simulations to evaluate the ability of MultiCluster to 

perform multi-way clustering. Since matrix methods may perform poorly in such cases (see 

Section 4.1), we focus our attention on tensor-based methods. Specifically, we compare 

MultiCluster with: (i) sparse decomposition of arrays (SDA) (Hore et al. 2016) and (ii) 

tensor higher-order singular value decomposition (HOSVD) (Omberg, Golub and Alter 

2007).

Both MultiCluster and SDA are built upon the Canonical Polyadic decomposition 

(Hitchcock 1927), which decomposes a tensor into a sum of rank-1 tensors. Conversely, 

HOSVD is based on the Tucker decomposition (Tucker 1966), which factorizes a tensor into 

a core tensor multiplied by orthogonal matrices in each mode.

We simulated noisy expression tensors Y = 〚 Y ijk 〛 ∈ ℝ500 × 50 × 10 with three-way 

blocks from models which are detailed in the next paragraph. In each tensor, we created five 
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gene clusters, four individual clusters, and three tissue clusters. Block means {μlmn} were 

generated according to the following two block models (as well as sparse versions):

i. Additive-mean model: μlmn = μl
g + μmi + μnt , where μl

g, μmi , and μnt  represent the 

marginal means for gene cluster l, tissue cluster m, and individual cluster n, 

respectively.

ii. Multiplicative-mean model: μlmn = μl
gμmi μnt , where the notation remains the same.

The marginal means (μl
g, μmi  and μnt ) were drawn independently from a N(1, 1) distribution. 

Let Ytrue  denote the noiseless tensor with three-way block means generated from each of 

the above schemes, i.e., Ytrue (i, j, k) = μlmn when i is in block l, j in block m, and k in block 

n. For both the additive- and multiplicative-mean models, we also considered a sparse 

setting in which expression matrices Ytrue (i, ⋅ , ⋅ ) were zeroed out for 90% of genes i = 1, 

… ,500. The observed expression data were then simulated as Y = Ytrue  + ℰ, where 

ℰ ∈ ℝ500 × 50 × 10 is a random Gaussian tensor with i.i.d. N(0, σ2) entries. We assessed the 

recovery accuracy of each algorithm using the relative error, defined as

RelErr = min
R ≤ 10

‖Yest, R − Ytrue‖F
2

‖Ytrue‖F
2 ,

where Yest, R denotes the rank-R approximation obtained from tensor decomposition.

The simulation models we consider here span a range of scenarios. The additive-mean 

model can be viewed as an extension of the plaid model for biclustering (Lazzeroni and 

Owen 2002) to three-way clustering while the multiplicative-mean model is a special case of 

the tensor decomposition model (3.1). The sparse setting represents a realistic scenario in 

RNA-seq studies in which a high number of genes are lowly expressed across individuals 

and tissues. As we designed these simulations to potentially violate the modeling 

assumptions in (3.1), they are well suited to evaluate the robustness of each method.

As seen in Figure 4, MultiCluster is able to recover the block structure well in all scenarios, 

demonstrating its robustness to model misspecification. In particular, the recovery error of 

MultiCluster grows noticeably more slowly than that of SDA in the non-sparsity settings 

(Figure 4a and Figure 4b). One possible explanation is that SDA is designed to cluster genes 

rather than tissues and individuals, so the i.i.d. prior imposed on tissues/individuals may not 

be optimized to detect local blocks, especially when the blocks are small. Another 

possibility is the algorithmic stability of MultiCluster relative to SDA; the latter usually 

requires multiple restarts in order to reduce spurious components (Hore et al. 2016). We also 

found that, even in the sparse settings, MultiCluster compares favorably with the other two 

methods (Figure 4c and Figure 4d). Note that these three methods adopt different 

regularization schemes: tissue nonnegativity for MultiCluster, gene sparsity for SDA, and 

orthogonality for HOSVD. Our results suggest the flexibility of MultiCluster to handle a 

range of models.
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4.3. Power to detect differentially-expressed genes.

To study how our tensor projection procedure affects the detection of covariate-associated 

gene expression, we simulated age-related genes. This required modifying the earlier 

additive model to

Y ijk = μl
g + μ[i:n]Age(j) + μnt + εijk,    where εijk

 i.i.dN(0, 1), (4.1)

where Yijk denotes the expression level of gene i, individual j, and tissue k; μl
g and μnt  denote 

the same parameters as before (the marginal means for gene cluster l = l(i) and tissue cluster 

n = n(k)); and

μ[i:n]
i.i.d. Unif[α, β],  if gene i is age‐related in the tissue cluster n , 

0, otherwise.

We again simulated 50 tensors Y ∈ ℝ500 × 50 × 1. In each tensor, we planted five gene 

clusters plus three tissue clusters and further assigned 100 genes to be age-related. We 

considered two parameter settings: 1) α = 0, β = 0.06, i.e., age effects are in the same 

direction, and 2) α = −0.06, β = 0.06, i.e., age effects are in the opposite direction. 

Individual ages were drawn i.i.d. from Unif[40, 70]. The final expression data were 

generated based on model (4.1).

We decomposed each simulated tensor into R = 3 and 10 components and applied our 

tensor-projection procedure to test for age-relatedness. We declared a gene age-related if its 

p-value was less than the nominal significance level in at least one of the R eigen-tissues. To 

compare to single-tissue tests, we performed standard linear regressions in each tissue 

separately and declared a gene age-related if its p-value was less than the nominal level in at 

least one of the 10 tissues. We also performed a fixed-effect meta-analyses by aggregating 

the age effects across single-tissue tests using z-score method. Neither SDA (Hore et al. 

2016) nor HOSVD (Omberg, Golub and Alter 2007) allow association tests on single-gene 

bases, so we did not consider them here.

Figure 5 shows the receiver operating characteristic (ROC) curves for each method. We 

found that the testing procedure based on tensor projection had higher detection power than 

single-tissue analyses, demonstrating the advantage gained when tensor-based methods 

incorporate information from similar tissues. Notably, the power appears stable when the 

decomposition rank R increases from 3 (the number of latent tissue groups) to 10 (the 

number of total tissues). We note that the power of a meta-analysis relies on genes being 

age-related in several tissues with effects primarily in the same direction (Figure 5a). 

Violations of these assumptions may well arise in practical applications and result in 

substantial losses in power (Figure 5b). In contrast, our tensor approach teases apart tissue-

specific expression patterns by using eigen-tissues to synthesize information from 

sufficiently similar tissues. Subsequent examination of the entries of eigen-tissues allows 

one to determine in which tissues DE patterns are present, something that requires additional 

steps in meta-analyses.
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4.4. Run time.

To compare the computational performance of each algorithm, we simulated a large order-3 

tensor of 18,000 genes × 500 individuals × 40 tissues as these dimensions mimic those of the 

processed GTEx RNA-seq data set. We then recorded the run times for each method when 

decomposing the tensor into 10 components. We found that MultiCluster is computationally 

competitive with HOSVD while being more computationally efficient than SDA. In 

particular, it took ≈ 1.6 hours for HOSVD, ≈ 1.7 hours for MultiCluster, and ≈ 20.1 hours 

for SDA to complete the task.

5. Analysis of GTEx RNA-seq data.

The GTEx V6 gene expression data consist of RNA-seq samples collected from 544 human 

individuals spanning 53 tissues. Prior to analysis, we performed a standard data processing 

procedure described in depth in the Supplement (Wang, Fischer and Song 2018). Briefly, 

these steps included correction for sequencing depth, removal of lowly expressed genes, log 

transformation of the data, correction for nuisance variation arising due to technical effects, 

removal of sex-specific tissues, and imputation of missing data. We focus here on two tissue 

collections, one consisting of 44 somatic tissues and the other consisting of 13 brain tissues. 

Results for other tissue groups can be found in the Supplement (Wang, Fischer and Song 

2018).

5.1. Analysis of 44 somatic tissues.

To interrogate the dominant features in the human transcriptome, we performed a global 

clustering analysis to identify gene × tissue × individual expression modules in 44 somatic 

tissues by applying MultiCluster to the GTEx tensor after excluding Y chromosome genes 

and sex-specific tissues. Supplemental Table S1 summarizes the top expression modules.

5.1.1. Component I: shared, global expression.—Tissues with positive loadings in 

a given eigen-tissue are said to be active in the associated module. As expected, the first 

eigen-tissue and eigen-individual are essentially flat (Supplemental Table S1), so this 

expression module captures baseline global expression common to all samples. The top 

genes in the corresponding eigen-gene (Supplemental Table S1) are mainly mitochondrial 

genes (15/20 top genes), comporting with their high transcription rates and the large number 

of mitochondria within most cells (Melé et al. 2015). In addition, we detected several non-

mitochondrial genes, most of which are related to essential protein synthesis functions and 

eukaryotic cell activities (Supplemental Table S1). For example, ACTB encodes highly 

conserved proteins and is known to be involved in various types of cell motility (Fishilevich 

et al. 2016). Two other nuclear genes, EEF1A1 and EEF2, encode eukaryotic translation 

elongation factors, and their isoforms are widely expressed in the brain, placenta, liver, 

kidney, pancreas, heart, and skeletal muscle (Fishilevich et al. 2016).

5.1.2. Component II: brain tissues.—The second eigen-tissue clearly separates brain 

tissues from non-brain tissues, with the pituitary gland being the only non-brain tissue in the 

cluster (Figure 6a). We note that while not explicitly labeled as a brain tissue, the pituitary 

gland protrudes from the base of the brain. The sharp decline in tissue loadings (Figure 6a) 
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highlights the distinctive expression pattern in the brain. We found that, in the eigen-

individual (Figure 6c and Figure 6e), age explains more variation (24.4%, p < 2 × 10−16) 

than sex (0.3%, p = 0.12) or race (4.3%, p = 2.3 × 10−8). The eigen-gene (Figure 6b) 

produces a gene clustering that is biologically coherent with aging signals in the brain (Yang 

et al. 2015), and we observed an enrichment of genes associated with the glutamate receptor 

signaling pathway (p = 1.2 × 10−20), chemical synaptic transmission (p = 1.8×10−16), 

excitatory postsynaptic potential (p = 2.4×10−16), and memory (p = 1.2 × 10−11) (Figure 6d). 

Among the 899 genes in this cluster, we identified 675 age-related genes using tensor-

projection (with significance threshold α = 10−3/899 ≈ 10−7 via Bonferroni correction), 556 

of which exhibit decreased expression with age. The association of brain disease and 

neurological disorders with age is well-documented, and our findings support that aging 

affects brain tissues in a manner not shared by other tissues. We present further evidence of 

multi-way clustering in the brain in Section 5.2.

5.1.3. Component III: tissues involved in immune response.—The third 

component captures an expression module heavily loaded on tissues with roles in the 

immune system. The eigen-tissue is led by two blood tissues (whole blood and EBV-

transformed lymphocytes), the spleen, and the liver (Supplemental Table S1). These tissues 

mediate the direct immune response (whole blood and lymphocytes), production and storage 

of antibodies (spleen), and filtering of antigens (spleen and liver). Correspondingly, the 

eigen-gene loads heavily on immunity-related genes (e.g. IGHM, FCRL5, IGJ, MS4A1) 

(Supplemental Table S1). The eigen-individual does not correlate with any covariate as 

strikingly as the brain does with age, but we do find a significant correlation with race 

(explaining 4.5% variation among individuals, p = 5.8 × 10−7; Supplemental Table S1). The 

top genes in the eigen-gene are functionally related to the B cell receptor signaling pathway 

(p = 3.0×10−15), humoral immune response mediated by circulating immunoglobulin (p = 

7.5×10−13), phagocytosis recognition (p = 5.3×10−10), and plasma membrane invagination 

(p = 2.1 × 10−9) (Supplemental Table S1).

5.1.4. Other expression modules identified in the global analysis.—Like 

modules II and III, each of the remaining expression modules is active in only a subset of 

tissues, indicating the presence of tissue specificity (Supplemental Table S1). These detected 

modules are specific to artery (tibial, aorta, coronary), skin (exposed and non-exposed), cell 

lines (EBV-transformed lymphocytes and transformed fibroblasts), liver, muscle (skeletal 

and cardiac), and cerebellar regions (Supplemental Table S1). Of note is the strong signal of 

gender-related differential expression in the cerebellum. As seen in Supplemental Table S1, 

the enriched gene ontologies are consistent with the functions of the associated tissues. For 

example, the artery-specific module is enriched with collagen catabolic/metabolic genes, the 

skin-specific module is enriched with keratin-related genes, the two cell lines are enriched 

with genes responsible for cell division (e.g. chromosome segregation, meiosis, sister 

chromatid segregation). Conversely, most eigen-individuals have limited descriptive power 

compared to eigen-genes and eigen-tissues (Supplemental Table S1). This was expected 

because variation in gene expression is usually lower among individuals than among tissues 

(Melé et al. 2015). Consequently, we turned our attention to smaller tensors of similar 

tissues to fully showcase MultiCluster’s three-way clustering capabilities.
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5.2. Brain transcriptome data.

Although our global analysis successfully uncovers distinctive expression patterns in the 

GTEx data, it may miss finer-scale structure within similar tissues or within similar 

individuals because of the high degree of inter-tissue heterogeneity. In order to reveal the 

crucial individual × tissue specificity, we considered 13 brain tissues and applied 

MultiCluster to the resulting tensor, revealing substantial individual-level variation most 

notably associated with age.

5.2.1. Comparison with other tensor methods.—Figure 7 shows the top six 

expression components for the brain tensor identified by MultiCluster. To assess the 

goodness-of-fit, we plotted the sum of squared residuals (see equation (3.2)) as a function of 

rank R (Supplemental Figure S1). Visual inspection suggested R = 6 in our case. We also 

applied HOSVD and SDA to the brain tensor; the results are summarized in Supplemental 

Figures S2 and S3. Both MultiCluster and HOSVD successfully clustered the 13 tissues into 

functionally similar groups, while SDA failed in tissue clustering. Furthermore, MultiCluster 
enjoyed better interpretability as it yielded sparse tissue factors. In particular, we found that 

most expression modules are spatially restricted to specific brain regions, such as the two 

cerebellum tissues (component 2), three cortex tissues (component 4), and three basal 

ganglia tissues (component 5).

5.2.2. Spatially-restricted expression in the brain.—Table 2 summarizes the 

biological interpretation for the expression modules detected in the brain tensor. Consistent 

with the tissue clustering, the gene clusters capture distinctly-expressed genes that are over- 

or underexpressed in each brain region. Genes overexpressed in the cerebellum region are 

strongly enriched for dorsal spinal cord regulation (p = 9.8 × 10−7) whereas the 

underexpressed genes are most strongly enriched for forebrain development (p = 3.4×10−8); 

the opposite enrichment pattern is observed for basal ganglia region. The enriched GOs are 

consistent with the spatial locations of the cerebellum (located in the hindbrain) and basal 

ganglia (situated at the base of the forebrain). In addition, we noticed an abundance of 

overexpressed HOX genes in the spinal cord (cervical C-1) compared to other brain regions 

(Supplemental Figure S4a). The HOX gene family (HOXA–HOXD) is a group of related 

genes that control the body plan and orientation of an embryo. The non-uniform expression 

of HOX genes across brain regions may suggest the particularly important role of the spinal 

cord during early embryogenesis.

5.2.3. Sex/age-related expression in the brain.—Many expression modules in the 

brain also exhibited considerable individual-specificity. We identified two sex-related and 

three age-related expression modules among the top tensor components (bold in Table 2). 

The second gene module was found to be both cerebellum-specific and sex-related. By 

ranking genes based on their p-values for sex effect in the direction of eigen-tissue, we 

found that the top sex-related signal in this module is the X-Y gene pair PCDH11X/Y. In 

fact, the combined expression of PCDH11X/Y was significantly lower in the cerebellum 

(paired t-test p-value < 2×10−16) and in females (p = 8.0×10−11), with expression levels also 

decreasing with age (p = 3 × 10−3). Notably, PCDH11X was the first reported gender-linked 

susceptibility gene for late-onset Alzheimer’s disease (Carrasquillo et al. 2009), and it may 
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also be implicated in developmental dyslexia (Veerappa et al. 2013). However, its Y-

chromosome paralog, PCDH11Y, is believed to be regulated differently. Previous studies 

(Priddle and Crow 2013) have shown that this difference is due at least in part to retinoic 

acid, which stimulates the activity of PCDH11Y but suppresses PCDH11X and perhaps 

explains the sex-specificity we observed for this gene pair in most brain tissues.

Significant age effects are widely present in the identified expression modules (Table 2). In 

particular, age explains over 15% of individual-level variation in module 4 (cortex) and 

module 6 (hypothalamus and hippocampus). Notably, the hippocampus is associated with 

memory, in particular longterm memory, and is vulnerable to Alzheimer’s disease (Lam et 

al. 2017). In module 4, GPR26 is found to be the top age-related gene. For comparison with 

our results we used linear regression, confirming the significant decrease of GPR26 
expression with age in all three cortex tissues (cortex, p = 1.9 × 10−18; frontal cortex, p = 8.8 

× 10−12, anterior cingulate cortex, p = 1.9 × 10−7) but not in the substantia nigra (p = 0.17) 

or cerebellum (p = 0.64). It is worth noting that both the substantia nigra and cerebellum 

have zero loadings in the 4th eigen-tissue, so our tensor-based approach automatically 

detects the tissue-specificity of this aging pattern. In line with our findings, a recent study 

shows that GPR26 plays an important role in the degradation of intranuclear inclusions in 

several age-related neurodegenerative diseases (Mori et al. 2016).

6. Discussion.

We presented a new multi-way clustering method, MultiCluster, and demonstrated its utility 

in identifying three-way gene expression patterns in multi-tissue multi-individual 

experiments. We were able to uncover three-way specificities with clear statistical and 

biological significance in both simulations and the GTEx data set, and we showed that our 

method effectively identifies tissues which drive expression modules. In particular, it is able 

to do so even when gene × covariate interactions are not common across tissues, and 

clustering into modules provides information about joint expression patterns that may not be 

identified by meta-analyses without additional steps. Moreover, we provided evidence that 

the distinctions among human tissue gene expression profiles are usually driven by small 

sets of functionally coherent genes and that many age-, race- or gender-related genes exhibit 

tissue-specificity even within functionally similar tissues.

We also implemented a tensor projection procedure to test for differential expression of 

genes that are correlated with biological attributes (age, sex, or race) and found that we 

generically achieve improved power relative to single-tissue tests. Additionally, higher 

power is attained relative to meta-analyses when genes are differentially expressed in 

opposing directions in different tissues, allowing for finer resolution when seeking relevant 

genes. The tensor projection approach can be naturally extended to (trans)eQTL analyses by 

testing the projected expression of each gene against genetic variants across the genome. 

Alternatively, one can test each individual loading vector against genetic variants to identify 

eQTLs (Hore et al. 2016). Existing multi-tissue eQTL analyses usually proceed by 

identifying eQTLs in each tissue separately before combining single-tissue results via meta 

analysis (Battle et al. 2017). However, the large numbers of genes, tissues, and genetic 

variants potentially incur a substantial penalty for multiple testing and there is also the risk 
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of under-powered tests due to limited sample sizes. Hence applying MultiCluster to perform 

eQTL discovery in large multi-tissue expression studies is an avenue worth pursuing.

One benefit of MultiCluster and tensor projection, as well as tensor-based methods in 

general, over existing tissue comparison methods (GTEx Consortium 2015) is the 

substantially reduced number of comparisons which must be considered (Hore et al. 2016). 

For instance, if one wanted to analyze every possible tissue pairing in a set of n tissues, 

roughly n2 analyses would have to be performed and the results would need to be 

synthesized via a metaanalysis. Such an analysis could be even more prohibitive if one 

wanted to examine the 2n possible tissue-specific configurations (GTEx Consortium 2015). 

In contrast, MultiCluster constructs clusters across each mode of the data and associates the 

resulting variation with biological contexts via eigen-genes, -tissues, and -individuals. Each 

of these resulting components can then serve as the basis for testing, removing the need for 

many marginal tests. Though prior knowledge of tissue function can greatly reduce the 

number of pairwise comparisons, doing so constrains potential insights to the set of 

hypothesized tissue modules. For instance, components III and IV of our global tensor 

decomposition consist of diverse tissues which may not have been grouped together a priori.

One assumption made by our algorithm is that expression matrices for different tissues are 

of the same dimension. In the present work, we do not directly model the missing data 

mechanisms but instead iteratively impute them based on the fitted value. This allows the 

implementation to exploit standard fast array operation routines. Another possible approach 

which avoids the need for imputation is to make use of the connection between tensor 

decomposition and joint matrix factorization (Lock et al. 2013; Hore et al. 2016). For 

example, one could model the nG − by − nIt expression matrix Mt, where t indexes the tissue, 

as Mt ≈ AΛtBt with some identifiability conditions. This model is a relaxation of tensor 

decomposition because it allows different tissues to have different column (individual) 

spaces Bt while sharing the same row (gene) space A. The diagonal matrix Λt captures the 

tissue-sharing and specificity as before. Another potential approach is to implement tensor 

imputation and decomposition simultaneously via a low-rank approximation, an idea which 

has roots in the matrix literature (Candès and Recht 2009).

Statistical inference based on tensor decomposition can be further extended. Measures of 

uncertainty, such as confidence intervals for tissue-, gene-, or individual-loadings, would be 

useful. Standard resampling techniques such as bootstrapping may help in this regard, and 

we have employed this approach to select gene cluster sizes. Further details on our bootstrap 

analysis can be found in Section 1.6 of the Supplement (Wang, Fischer and Song 2018).

Although we have presented MultiCluster in the context of multi-tissue multi-individual 

gene expression data, the general framework applies to more general multi-way data sets. 

One possible extension is the integrative analysis of omics data, in which multiple types of 

omics measurements (such as gene expression, DNA methylation, microRNA) are collected 

in the same set of individuals (Lock et al. 2013). In such cases, tensor decomposition may be 

applied to a stack of data or correlation matrices, depending on the specific goals of the 

project. Other applications include multi-tissue gene expression studies under different 

experimental conditions in which one may be interested in identifying 4-way expression 

Wang et al. Page 17

Ann Appl Stat. Author manuscript; available in PMC 2020 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



modules arising from the interactions among individuals, genes, tissues, and conditions. The 

tensor framework can also be applied to time-course multi-tissue gene expression. In this 

instance one may treat time as the 4th mode and extend the tensor projection approach to 

identify the time trajectories of three-way expression modules. Finally, in certain 

experimental designs, our method could be used to model batch effects while preserving 

biological information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Three-way clustering problem. (a) Input tensor of gene expression. (b) Shuffled, de-noised 

output tensor containing local blocks. Both (a) and (b) are color images of a data tensor 

Y = 〚 Y ijk]], with each entry colored according to the value of Yijk.
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Fig 2. 
Schematic diagram of MultiCluster method. (a) Multi-tissue multi-individual gene 

expression data. (b) Input expression tensor after normalization and imputation. (c) Our 

method decomposes the expression tensor into a set of rank-1 tensors, Gr ⊗Ir ⊗Tr, where 

Gr, Ir, and Tr are, respectively, gene, individual, and tissue singular vectors. (d) Each three-

way cluster is represented by the three sorted singular vectors. (e) We utilize metadata, such 

as gene ontology (GO) annotation, tissue labels, and individual-level covariates, to identify 

the sources of variation in each loading vector.
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Fig 3. 
Performance comparison for the illustrative example. (a) First two gene/tissue factors in the 

matrix PCA. (b) Power comparison for detecting age effects in three gene groups. (c) First 

two gene/tissue factors in the tensor decomposition.
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Fig 4. 
Recovery accuracy of different tensor-based methods. MultiCluster achieves the lowest error 

rates.
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Fig 5. 
ROC curves for detecting age-related genes. The ROC curves were obtained under various 

nominal significance levels using 50 simulations.
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Fig 6. 
Expression module II: brain tissues. (a) Barplot of the sorted tissue loading vector. (b) 

Barplot of the sorted gene loading vector, where the dotted line represents the threshold for 

the top genes. (c) Barplot of the sorted individual loading vector. (d) Enriched GO 

annotations among the top 899 genes identified from the gene loading vector. Enrichment p-

values are obtained from hypergeometric tests with BH correction. (e) Boxplot of individual 

loadings against age.
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Fig 7. 
Top expression modules in the brain tensor. The top expression modules are ranked by their 

singular values. For each module, we plot the barplots for the sorted tissue loadings, gene 

loadings, and individual loadings, respectively.
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Table 1

Mean expression value of the illustrative tensor.

Tissue Group A Tissue Group B Tissue Group C

Gene╲Individual Young Elderly Young Elderly Young Elderly

Gene Group A 1 −1 −1 1 0 0

Gene Group B 0 0 0.5 −0.5 0.1 −0.1

Gene Group C 0 0 0 0 0.5 −0.5
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Table 2

Top expression modules in the brain tensor. Number in bold indicates p < 10−3.

Module

Eigen-tissue Eigen-gene Eigen-individual

enriched region enriched GO
% variance explained

age sex race

1 all neuronal synaptic plasticity 1.5 7.8 2.2

2 cerebellum dorsal spinal cord development 0.0 8.0 0.2

3 spinal cord embryonic skeletal system morphogenesis 9.3 0.9 5.2

4 cortex fear response, behavior defense response 17 0.6 1.4

5 basal ganglia forebrain generation of neurons 3.4 0.8 2.2

6 hypothalamus and hippocampus neuropeptide signaling pathway 32 2.2 2.2
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