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Abstract

Registration and fusion of magnetic resonance imaging (MRI) and transrectal ultrasound (TRUS) 

of the prostate can provide guidance for prostate brachytherapy. However, accurate registration 

remains a challenging task due to the lack of ground truth regarding voxel-level spatial 

correspondence, limited field of view, low contrast-to-noise ratio, and signal-to-noise ratio in 

TRUS. In this study, we proposed a fully automated deep learning approach based on a weakly 

supervised method to address these issues. We employed deep learning techniques to combine 

image segmentation and registration, including affine and nonrigid registration, to perform an 

automated deformable MRI-TRUS registration. To start with, we trained two separate fully 

convolutional neural networks (CNNs) to perform a pixel-wise prediction for MRI and TRUS 

prostate segmentation. Then, to provide the initialization of the registration, a 2D CNN was used 

to register MRI-TRUS prostate images using an affine registration. After that, a 3D UNET-like 

network was applied for nonrigid registration. For both the affine and nonrigid registration, pairs 

of MRI-TRUS labels were concatenated and fed into the neural networks for training. Due to the 

unavailability of ground -truth voxel-level correspondences and the lack of accurate intensity-

based image similarity measures, we propose to use prostate label-derived volume overlaps and 

surface agreements as an optimization objective function for weakly supervised network training. 

Specifically, we proposed a hybrid loss function that integrated a Dice loss, a surface-based loss, 

and a bending energy regularization loss for the nonrigid registration. The Dice and surface-based 

losses were used to encourage the alignment of the prostate label between the MRI and the TRUS. 

The bending energy regularization loss was used to achieve a smooth deformation field. Thirty-six 

sets of patient data were used to test our registration method. The image registration results 

showed that the deformed MR image aligned well with the TRUS image, as judged by 

corresponding cysts and calcifications in the prostate. The quantitative results showed that our 

method produced a mean target registration error (TRE) of 2.53 ± 1.39 mm and a mean Dice loss 
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of 0.91 ± 0.02. The mean surface distance (MSD) and Hausdorff distance (HD) between the 

registered MR prostate shape and TRUS prostate shape were 0.88 and 4.41 mm, respectively. This 

work presents a deep learning-based, weakly supervised network for accurate MRI-TRUS image 

registration. Our proposed method has achieved promising registration performance in terms of 

Dice loss, TRE, MSD, and HD.

Keywords

deformable image registration; weakly supervised method; prostate; MRI-TRUS; deep learning

1. Introduction

High-dose-rate (HDR) brachytherapy has become a popular treatment modality for prostate 

cancer. Conventional transrectal ultrasound (TRUS)-guided prostate HDR brachytherapy 

could benefit significantly if the dominant intraprostatic lesions defined by multiparametric 

magnetic resonance imaging (MRI) can be incorporated into TRUS to guide HDR catheter 

placement.

The biggest challenge of MRI-TRUS registration is that it lacks robust image similarity 

measurement. In other words, a reliable image-intensity-based statistical correlation between 

MRI and TRUS images is not available. Thus, intensity-based models, which are based on 

optimizing image similarity (Brock et al 2017), show inferior performance for MRI-TRUS 

registration (Hu et al 2018b). Due to the lack of an image similarity measurement, it is also 

difficult to derive the driving force solely based on image intensity similarities for a physics-

based model (Broit 1981, Sotiras et al 2013). In addition, supervised deep learning 

techniques are not feasible for MRI-TRUS registration due to the unavailability of ground 

truth deformation. To tackle this issue, research nowadays focuses on three popular 

approaches: knowledge-based models (Ferrant et al 2001, Mohamed et al 2002, van de Ven 

et al 2015, Fleute and Lavallee 1999, Rueckert et al 2003, Ashraf et al 2006), weakly 

supervised or unsupervised deep learning models (de Vos et al 2017, Yang et al 2017, Hu et 
al 2018a, 2018b, Lei et al 2019a), and the combination of those two approaches (Hu et al 
2018).

Regarding the knowledge-based models, Mohamed et al (2002) firstly incorporated 

biomechanical model into SDMs to simulate prostate deformation. The main idea is to firstly 

use finite element analysis (FEA) to generate a series of deformations, which later are used 

to construct a statistical model, bypassing the similarity measure problem. However, one 

major issue in the biomechanical model is the uncertainty of biomechanical parameter 

setting. Hu et al (2011, 2012) attempted to address this issue by randomly sampling the 

biomechanical parameters from physically plausible parametric ranges. Further, Wang et al 
(2016) utilized patient-specific tissue parameters obtained with ultrasound elastography. 

Nonetheless, due to its unavailability in many hospitals and large variability in tissue 

stiffness measurements, the use of ultrasound elastography seems inconvenient and 

impractical for image registrations with respect to clinical practice.

Zeng et al. Page 2

Phys Med Biol. Author manuscript; available in PMC 2020 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Meanwhile, some researchers have been attempting to apply deep learning techniques for 

MRI-TRUS registration. Hu et al proposed a weakly supervised dense correspondence 

learning method with a fully convolutional neural network (FCN) (Hu et al 2018a, 2018b). 

The idea of this method is to use labels to represent anatomical structures (Zhou 2018), and 

then train a registration neural network to register those labels; in the inference stage, the 

MR and TRUS images are input into the trained registration neural network to predict the 

deformation occurring during prostate cancer interventions.

This weakly supervised method avoids the intensity-based similarity measure. In addition, 

their method is fully automated without registration initialization. However, the registration 

accuracy of their results was rather limited. In their work, they used whole image pairs as the 

input. The size of the training samples, which are high dimensional, is small and may be 

insufficient. This relatively small training data size could cause the network to be susceptible 

to overfitting. To alleviate this problem, for training the neural network, they labeled more 

than 4000 pairs of diverse anatomical landmarks from 111 pairs of T2-weighted MR and 3D 

TRUS images (Hu et al 2018a). However, the manual labeling process is time-consuming 

and laborious. Even with so many anatomical landmarks, the registration results (a median 

target registration error of 4.2 mm on a landmark) are far from meeting the clinical 

requirement of 1.9 mm, which is required to correctly grade 95% of the aggressive tumor 

components (van de Ven et al 2013). Another reason for the limited registration accuracy 

may be the labeling uncertainty. Though a large number of manual labels have been obtained 

for training, many of them such as cysts and calcification deposits, were not readily 

identifiable or even unreliably labeled. The inaccurate labels may result in the degradation of 

the performance of the neural network prediction. Furthermore, the training labels 

overlapped with each other, which may lead to the degradation of the performance of the 

registration.

Apart from the above-mentioned methods, recently, Hu et al (2018) combined the 

knowledge-based models with deep learning techniques to perform the MRI-TRUS image 

registration. In this study, FEA was used to produce a series of deformations, and then an 

adversarial convolutional neural network (CNN) was designed to train for image 

registration. The results do not seem very accurate, partly due to the above-mentioned 

limitation in the biomechanical model, the network architecture they employed, and the 

limited dataset.

In addition to the difficulties of designing accurate and efficient methods, the great 

challenges of implementing robust and reliable evaluation metrics exist for MRI-TRUS 

image registration (Brock et al 2017, Paganelli et al 2018). Generally, qualitative and 

quantitative validation can be integrated to evaluate the overall registration process 

(Paganelli et al 2018). For qualitative validation, we can use split screen and checkerboard 

displays, image overlay displays, difference image displays, and contour/structure mapping 

displays (Paganelli et al 2018). For quantitative validation, the following metrics are 

available: target registration error (TRE), mean distance to agreement, the Dice similarity 

coefficient, the Jacobian determinant, consistency, etc. For the details of each definition of 

the metrics, please refer to (Paganelli et al 2018).
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We make the following contributions: (1) We proposed a novel fully automated MRI-TRUS 

image registration method. Specifically, we combined three major networks: one for prostate 

contour segmentation, one for affine registration, and the third one for nonrigid registration, 

into a workflow of MRI-TRUS registration. In the inference stage of segmentation, a pair of 

MRI-TRUS images was required; in the inference stage of affine and nonrigid registration, 

the pair of MRI-TRUS labels obtained from the segmentation step were treated as inputs 

into the registration network to generate a dense displacement field (DDF). The workflow is 

as follows: we firstly utilized two separate FCNs to extract the hierarchical feature maps to 

segment the MRI-TRUS prostate labels. To provide a better global registration initialization, 

we employed a 2D CNN to perform affine registration. A 3D UNET-like network was 

applied afterward to achieve fine local nonrigid registration. (2) We conducted a comparison 

qualitatively and quantitively among our method, Hu’s fullyautomated registration method 

with a composite neural (CN) network (Hu et al 2018a, 2018b), and a point matching (PM) 

method. Additionally, we also compared two variants of our method, one using only pairs of 

MRI-TRUS prostate labels as inputs of registration networks and the other one using only 

pairs of MRI-TRUS images as inputs.

The remaining content is organized into four sections as follows: section 2 introduces our 

proposed method; section 3 presents the experimental results; section 4 provides a 

discussion, followed by a conclusion in section 5.

2. Methods

Our method combines three major networks into the workflow of MRI-TRUS registration. 

These networks are described as follows: first, we utilized two separate whole-volume-based 

3D FCNs to perform prostate segmentation on MRI and TRUS images; second, we applied a 

2D CNN to train an affine registration network using the segmented MRI and US prostate 

labels; third, we employed a 3D UNET-like network to train a nonrigid registration network 

using the same MRI-TRUS labels. All the above-mentioned networks are trained separately.

2.1. FCN for segmentation

FCNshave demonstrated promising performances in medical image automated segmentation. 

Dense pixel-wise prediction enables the FCN to have end-to-end predictions from the whole 

image in a single forward pass. We separately trained two FCNs for MRI and TRUS 

segmentation. Manual prostate labels of MRI and TRUS images were used as the learning 

targets for the two FCNs. A 3D supervision mechanism was integrated into the FCN’s 

hidden layers to facilitate informative features extraction. We combined a binary cross-

entropy loss and a batch-based Dice loss into a hybrid loss function for deeply supervised 

training. The implementation details of the FCN have been presented in our previous studies 

(Wang et al 2019, Lei et al 2019b). Once trained, the FCNs were able to rapidly segment the 

prostate from whole volume MRI and TRUS images of a new patient.

2.2. Affine registration

Magnetic resonance (MR) and TRUS labels were designated as moving and fixed labels, 

respectively, since we aim to use the warped preoperative MRI, which matches the intra-
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operative TRUS, as image guidance during the procedure. According to research (van de 

Ven et al 2015, Wang et al 2016), it is very helpful to set a good rigid or affine registration as 

an accurate initialization prior to subsequent nonrigid registration. Therefore, we designed a 

2D CNN which takes 3D image as inputs to predict 12 affine transformation parameters to 

warp the original MR images and labels, as an initialization step of nonrigid registration. 

The automatic affine registration aimed to optimize the Dice similarity coefficient. The Dice 

similarity coefficientrepresents the overlap between the binary fixed and warped labels. Its 

definition is given as follows:

CDice (A, B) =
2∑i = 1

I ai ⋅ bi

∑i = 1
I ai + ∑i = 1

I bi
, (1)

where the a and b denote the binary value (0 or 1) for a voxel in a moving label and fixed 

label, respectively, and I is the total number of voxels over the label.

The architecture is shown in figure 1. The MRI and TRUS images are concatenated as ‘two-

channel’ images as inputs. The tensor shape of the input is [4, 120, 108, 100], where 4 is the 

batch size, 120 and 108 are the number of voxels in the x- and y-directions, respectively, and 

100 is the number of voxels in the z-direction, representing the number of channels. The 

number of filters used for the five convolutional layers was 128, 256, 512, 1024, and 12 

respectively. These convolutional layers are followed by a flatten layer and a fully connected 

layer. The first four convolutional layers are followed by a batch normalization and a 

rectified linear unit as the activation. All the convolutional filters with a size of 3 × 3 and a 

stride of 2. The number of units for the fully connected layer is 12, which equals that of the 

3D affine transformation parameters.

2.3. 3D UNET-like network for nonrigid registration

We compared two frameworks for nonrigid registration. One framework is to use only MRI-

TRUS images as network inputs, similar to that of (Hu et al 2018b), and the other framework 

is to use pairs of MRI-TRUS labels as the input, as shown in figure 2. The nonrigid 

registration network architecture (Hu et al 2018b) is illustrated in figure 3. The MRI-TRUS 

labels are concatenated and input into a network similar to a U-NET, which has four down-

sampling blocks followed by four up-sampling blocks. Compared to U-NET, this nonrigid 

neural network is more densely connected. In addition, it has two more types of summation-

based residual shortcuts: one type is the standard residual network shortcutting two 

sequential convolution layers in each block; the other is the trilinear additive up-sampling 

layers, which shortcut the deconvolution layers in adjacent up-sampling blocks and are 

added onto the deconvolution layers (Wojna et al 2019).

The Dice loss was employed as part of label similarity cost function. The Dice loss could 

encourage the network to have a high volume overlap between the warped MR prostate label 

and the fixed TRUS prostate label. However, a high volume overlap does not necessarily 

translate into good surface matching. Therefore, we have proposed including surface PM as 

an additional loss function to encourage prostate shape matching. The surface-based loss 

function is defined as the distance between the specific prostate surface points on the 
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registered MRI and the corresponding surface points on the TRUS in certain directions. This 

cost function can be given as follows:

Csurface(A, B) = 1
L ∑

i = 1

L
d Pi

A, Pi
B , (2)

where Pi
A and Pi

B indicate the surface point in the i-direction in image A or B, and L is the 

total number of directions, d(·) is the L2 norm Euclidean distance. In our work, we consider 

40 different directions (the projection on the x-y plane is shown in figure 4). Using (θ, φ) to 

denote the inclination and azimuth, respectively, the θ and φ of these lines can be given as 

follows:

θ ∈ 45°, − 45°
φ = n ∗ 18°, n ∈ 1, …, 20 . (3)

Radial projection was used to find the corresponding prostate surface points in these 

directions. We have observed that 40 surface control points are adequate given the smooth 

prostate deformation. More surface points can provide very marginal benefits (see 

supplementary material at stacks.iop.org/PMB/65/135002/mmedia). Therefore, we 

empirically chose 40 surface points.

Since image registration is an ill-posed problem, regularization is necessary (Sotiras et al 
2013). In our work, we added bending energy as a regularization term in the loss function, to 

smooth the deformation field and penalize non-regular Jacobian values for the 

transformations (Christensen and Johnson 2001). The formula of the bending energy is given 

as follows:

Csmootℎ = 1
V ∫

0

X∫
0

Y ∫
0

Z
∂2T
∂x2

2
+ ∂2T

∂y2

2
+ ∂2T

∂z2

2

+2 ∂2T
∂x∂y

2
+ 2 ∂2T

∂x∂z
2

+ 2 ∂2T
∂y∂z

2 dxdydz, (4)

where T is the transformation, V is penalty of non-regular Jacobian values, and C represents 

the cost. We used finite central difference to approximate the second order partial derivatives 

terms in equation (4).

Given the Dice loss, surface-based loss, and the bending energy loss, we can write the total 

cost function as

Ctotal = − CDice + Csurface + λCsmootℎ, (5)

where λ is the smooth regularization weight.
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2.4. Dataset

Experiments were conducted on a dataset of 36 pairs of T2-weighted MR and TRUS images 

collected from 36 prostate cancer patients who have been treated with HDR brachytherapy. 

TRUS data were acquired with a Hitachi HI VISION with a voxel size of 0.12 × 0.12 × 2.0 

mm3. The T2-weighted MR images were obtained using a Siemens Avanto 1.5 T scanner 

(Spin-echo sequence with a repetition time/echo time of: 1200 ms/123 ms, flip angle 150°, 

voxel size 1 × 1 × 1 cm3 with each slice of 256 × 256 pixels, and pixel bandwidth 651 Hz), 

and then resampled to the same sizes and resolutions as those of the TRUS images. Both the 

original MR and TRUS images were reconstructed into a 3D volume and resampled to 0.5 × 

0.5 × 0.5 mm3 isotropic voxels by a third order spline interpolation. The manual prostate 

labels of the TRUS and MRI, represented by binary masks, were contoured by one and three 

radiologists, respectively, using VelocityAI 3.2.1 (Varian Medical Systems, Palo Alto, CA). 

In addition, the TRUS and MR labels were resampled to 0.5 × 0.5 × 0.5 mm3.

Our proposed methods were implemented in TensorFlow with a 3D image augmentation 

layer from an open-source code in NiftyNet (Gibson et al 2018). The augmentation 

generated 300 times more training datasets. Each network was trained with a 12 GB 

NVIDIA Quadro TITAN Linux general-purpose graphic process unit.

2.5. Experiments

We used leave-one-out cross-validation for the registration network. Regarding the training 

of the network, we utilized the Adam optimizer with a learning rate of 10−5. In addition, a 

trilinear resampled module was implemented, and a slip boundary condition was applied on 

the boundary of the grid. The initial values for all network parameters, except those in the 

final displacement prediction layers, were assigned using an Xavier initializer (Glorot and 

Bengio 2010). All the applicable hyper-parameters were kept same between our proposed 

method and the to-be-compared ones, unless otherwise stated.

We performed quantitative and qualitative evaluation of image registration accuracy. For 

quantitative evaluation, we employed the following metrics: target registration error (TRE), 

Dice loss, mean surface distance (MSD), and Hausdorff distance (HD) (Huttenlocher et al 
1993, Litjens et al 2014). The target registration error (TRE) is defined as root-mean-square 

distance over all paris of landmarks in the MRI-TRUS images for each patient. Such 

landmarks include anatomical structures such as urethra, calcifications and cysts, etc In this 

study, an experienced radiologist carefully selected reliable landmarks on MR and TRUS 

images for TRE calculation. The MSD measures the average surface distance between two 

surfaces, and HD is defined as the greatest of all the distances from a point on one surface to 

the closest point on another surface. In contrast, the qualitative evaluation was mainly based 

on the visualization of contour overlays and image fusion. For example, in fusion images, a 

set of landmarks were denoted on registered MRI and US images, and a well alignment of 

the landmarks counterparts indicates good inner prostate registration.
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3. Results

3.1. Registration performance

In this subsection, we will compare the quantitative results and qualitative results with our 

datasets from our method using MRI-TRUS labels as inputs for affine and nonrigid 

registration (SR-L), our method using MRI-TRUS images as inputs for affine and nonrigid 

registration (SR-I), Hu’s fully automated method with a CN network (Hu et al 2018a, 

2018b), and the point matching (PM) method.

3.1.1. Quantitative results—Our segmentation neural networks generated Dice losses 

of 0.88 ± 0.05 and 0.92 ± 0.03 for the MRI and for TRUS segmentation, respectively (Wang 

et al 2019, Lei et al 2019b). On the training dataset, using SR, the total loss, Dice similarity 

loss, surface loss, and regularization loss converged at around 100 epochs with approximate 

values of 0.165, 0.08, 0.08, and 0.005, respectively. On the validation dataset, these loss 

functions converged at around 100 epochs with values of 0.196, 0.09, 0.100, and 0.006, 

respectively. Table 1 compares the registration results in terms of MSD and HD 

(Huttenlocher et al 1993, Litjens et al 2014), obtained with the CN, PM, SR-I, and SR-L 

methods. The MSD and HD from our proposed SR-L method are 0.88 and 4.41 mm, 

respectively, and these values obtained with SR-I method are 1.05 and 4.86 mm, 

respectively. On the other hand, the MSD and HD generated by the CN network are 2.31 and 

8.38 mm; whereas these values obtained with PM are 0.37 and 3.41 mm. We also present the 

results after only affine registration: the MRD and HD are 1.14 and 5.49 mm, respectively. 

In addition, we applied paired Wilcoxon signed-rank tests to compare the leave-one-out 

cross-validation results between affine/CN/PM/SR-I and SR-L, as given by the fourth sub-

column for each metric in table 1. The results show that both the resulting p-values of the 

pairs of SR-CN, and SR-PM are smaller than the significant level. Consequently, our 

proposed SR-L method is significantly better than the affine/CN/SR-I method, but not as 

good as PM in terms of a surface-based metric.

Table 2 presents the results in terms of Dice and TRE. SR-L achieves a mean Dice of 0.91 ± 

0.02, compared to that of 0.89 ± 0.03 from SR-I, 0.76 ± 0.06 from the CN network, and 0.96 

± 0.02 from PM. In addition, SR-L obtained a mean TRE of 2.53 ± 1.39 mm, compared to 

that of 2.85 ± 1.72 mm from SR-I, 6.04 ± 3.14 mm from the CN network, and 4.46 ± 2.09 

mm obtained with PM. Also, the median values and the first- and third quartiles are also 

listed. For example, SR-L generates a median Dice of 0.90 with the interquartile range 

(IQR) being 0.03, and a median TRE of 2.38 mm with the IQR being 1.41 mm. More 

detailed results are given in table 2 and figure 5. Again, paired Wilcoxon signed-rank tests 

have been done and show that both the p-values in terms of and the TRE of the pairs SR-L 

and CN network, and SR-L and PM are smaller than the significant level. As a result, we can 

conclude that in terms of both surface-based and volume-based metrics, our proposed 

method is significantly better than the CN network method, but not comparable to PM; 

whereas regarding TRE, our proposed method is significantly better than both the CN 

network and PM methods. The minimal possible TRE is dependent on the image voxel sizes.

We performed additional experiments to test the effectiveness of our surface loss terms. 

Without the surface loss term, the mean MSD, HD, Dice, and TRE were 1.10, 4.90, 0.89, 
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and 2.86 mm, respectively. The slightly worse metrics results without surface loss show the 

efficacy of the surface loss.

3.1.2. Qualitative results—Figures 6 and 7 present a qualitative visual assessment of 

the results on the test dataset. Each row represents a patient case. In figure 6, from the left to 

the right column, we show the transverse slice in the original MR image, registered MR 

images from the CN network, PM, SR-I, SR-L methods, and the TRUS image. The dotted 

lines indicate the corresponding prostate gland contour. In addition, figure 7 demonstrates 

their corresponding fusion registered MRI-TRUS images from the affine, CN network, PM, 

SR-I, and SR-L methods. The yellow arrow points to some identified landmarks in the test 

dataset. 108 landmarks were manually selected for validation. The warped MR prostate 

labels obtained by PM are most similar to the labels on the TRUS images, whereas the 

warped labels obtained with the CN networkhave the least resemblance with the TRUS 

labels. In addition, figures 6 and 7 show that not only does the CN network generate warped 

labels that highly disagree with the fixed labels, but the CN network also produces blurred 

warped MR images. This registration performance implies a physically implausible 

deformation caused by the CN network. Apart from the unsatisfied registered results from 

the CN network presented in this work, results reported by Hu et al (2018a, 2018b) seem 

also non-realistic. In contrast to PM and the CN network, our proposed SR methods can 

generate realistic warped MR images with relatively good alignment between MRI-TRUS 

labels. In addition, the well-aligned landmark indicates the efficacy of our proposed method.

Furthermore, figure 8 demonstrates the results of other validation metrics that are based on 

DDF. From the top to bottom rows, we plotted the warped intensity MRI, Jacobian 

determinants, and the magnitudes of DDF, obtained with the CN network (first column), PM 

(second column), SR-I (third column), and SR-L (fourth column), respectively. No negative 

Jacobian determinants were found in SR (the minimum is 0.04 across all patient cases), 

supporting that the DDF by SR is physically plausible. On the contrary, zero Jacobian 

determinants appeared in the CN network, implying that physically implausible deformation 

may exist.

4. Discussion

In this paper, we proposed a new MRI-TRUS image registration framework, following a 

step-by-step procedure including segmentation, affine registration, and nonrigid registration. 

Specifically, the framework consists of three major networks: one for prostate contour 

segmentation, one for affine registration, and the third one for nonrigid registration, and 

these networks were built into a pipeline to automate the workflow of MRI-TRUS 

registration. In the inference stage, pairs of MRI-TRUS images are required without the need 

for manual contour segmentation or manual initialization. Experiments on 36 patients 

indicate that our proposed method has promising registration performance in terms of 

registration accuracy.

For comparison purposes, in table 3, we summarized and compared our results in terms of 

and the TRE with the published results obtained with some other previously proposed 

methods (Hu et al 2012, 2018, 2018b, Khallaghi et al 2015, Sun et al 2015, van de Ven et al 
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2015, De Silva et al 2017) which avoided using intensity-based registration. We skip the 

results obtained with intensity-based methods due to their poor performance in registering 

MR and TRUS images. For example, Hu et al (2018b) reported that all nine intensity-based 

methods that they tested produced median TREs larger than 24 mm and median Dice lower 

than 0.77. Thus, table 3 only presents previously proposed methods based on biomechanical 

models, statistical deformation models, and deep learning models without intensity-based 

loss functions.

For methods based on biomechanical models or statistical deformation models (Hu et al 
2012, Khallaghi et al 2015, Sun et al 2015, van de Ven et al 2015, De Silva et al 2017), 

which are not fully automated, an expected-TRE range of 1.4–2.8 mm was reported, and the 

experiments were conducted on 8–29 cases. The expected TRE from these methods seem 

small and satisfactory. Nonetheless, these methods usually rely on manual or customized 

optimization initialization. For instance, to the best of the authors’ knowledge, based on the 

biomechanical model, Wang et al (2016) reported the lowest expected TRE. However, their 

method relies on the rigid surface registration and requires prostate surface segmentation. In 

addition to the dependence on the initialization, biomechanical models have their clinical 

limitations due to the requirement of patient-specific biomechanical simulation data, which 

are not readily available for practical clinical application. As a result, these methods may 

suffer from inconvenience or infeasibility for practical clinic application.

As for the PM method, although it generates better results in terms of surface-based metrics 

such as Dice, MSD, and HD than those by our method, it does not mean that PM enables a 

good match inside the prostate, which can be indicated by the TRE. The PM method has the 

following drawbacks: (1) it takes only the surface points into account without considering 

inner prostate matching; as a result, it is likely to have non-smooth deformations inside the 

prostate gland for moving images, as shown in figure 6. (2) Since the PM method applies 

strong local shape alignment, it may be oversensitive to erroneous prostate segmentation. On 

the contrary, our method can yield much better results than PM regarding the TRE, implying 

superior registration to PM. This indicates that the bending energy in our network is better 

than the interpolation used in PM.

In contrast to the above-mentioned non-fully automated methods, recently, Hu et al proposed 

a fully automated deep learning-based method with a CN network. This method does not 

require any initialization or pre- or intra-procedural segmentation. With our dataset, the CN 

network generated a relatively large expected TRE of 6.0 mm. This is probably due to the 

incompetence of their network architecture for the extraction of hierarchical feature from the 

3D contexts. This method does not have any segmentation prior to the registration. However, 

during the registration, their network tries to minimize a cost function based on the 

constructed segmentation that is determined by the generated DDF and the ‘ground-truth’ 

segmentation. In this way, in the inference stage, without the ground-truth segmentation, the 

relation between the inputs and cost function is too weak to allow backpropagation. In other 

words, this network may suffer from the ill-posedness issue, which impedes its ability to 

extract hierarchical features for generating accurate DDF.
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Compared to methods in other works, our novel method is fully automated, accurate, and 

has sound feasibility for practical clinical applications. The benefits of our method are as 

follows. Firstly, by integrating the deep learning image segmentation technique with the 

FCN into our registration workflow, we were able to extract hierarchical features to 

explicitly obtain the prostate labels in the MRI-TRUS, which is one of the key steps for 

successful registration. Secondly, to provide better registration initialization for nonrigid 

registration, we trained a separate CNN for affine registration. We argue that these two 

benefits enable our method higher registration accuracy than that of another fully automated 

method (Hu et al 2018a, 2018b). The improved registration accuracy indicates a step 

forward toward the clinical requirement. Thirdly, similar to that work (Hu et al 2018a, 

2018b), to overcome the lack-of-similarity ground-truth issue, we used the weakly 

supervised method that leverages labels to represent the anatomical structures, along with 

bending energy regularization. Our method yielded smoother deformation within the contour 

than that by PM. Fourth, our work does not rely on FEA for model training, thereby 

avoiding the measurement of patient-specific tissue elastic parameters.

Nevertheless, there are several limitations to our proposed methods. Firstly, although the 

intensity-based similarity measure is bypassed, the TRE was relatively large since the 

network was not fully knowledgeable about the inner prostate deformation pattern. 

Obtaining reliable multimodal image mapping relations on the voxel level will help improve 

the multimodal image registration accuracy. This may be done by the biomechanical model 

or the feature-based image registration method. Secondly, we used Dice loss and a surface-

based loss to maximize the similarity between the MRI and TRUS labels. On addition to 

that, the registration model may benefit a lot by including the physically correspondence loss 

into the loss function. Thirdly, we used bending energy as the regularization to achieve a 

topologically smooth deformation field. Again, it may help for the prediction of physically 

plausible deformation by incorporating biomechanical regularization terms into the cost 

function, apart from bending energy regularization. Finally, we have a limited dataset. A 

limited dataset may cause neural networks to suffer from overfitting. To reduce overfitting, 

we implemented data augmentation. With data augmentation, the mean Dice after nonrigid 

registration we obtained for the testing dataset is 0.91, compared to that of 0.87 without data 

augmentation. However, data augmentation based on the existing dataset could only mitigate 

the problem. To reduce overfitting and increase the network’s generalizability, we plan to 

collect more datasets in our future work to help improve the performance for application in 

clinic practice.

5. Conclusion

This work presents a novel fully automated and accurate network with a weakly supervised 

method for MRI-TRUS image registration. The MRI-TRUS registration problem is difficult 

due to the considerably distinctive modalities of the two matching images, which in turn lead 

to little useful image features of prostates for the registration process. Our approaches are 

capable of solving this difficult problem by using a weakly supervised method to bypass the 

intensity similarity measurements, and by using deep learning to learn the complex image 

features for consistent prostate segmentation. What is more, we make the first attempt at 

integrating the automatic deep learning-based segmentation method into the registration 
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procedure. By doing this, we not only enable a fully automated registration procedure, but 

also obtain accurate registration results. In addition, our proposed registration method can 

potentially be extended to other intervention procedures of soft tissue organs such as liver 

and breast. Future research aims to study the combination of our deep learning-based model 

with the biomechanical model or the feature-based image registration method to improve the 

registration accuracy and to make it available for a wider range of applications.
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Figure 1. 
CNN for affine registration.
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Figure 2. 
Nonrigid registration using labels as inputs into the networks.
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Figure 3. 
Illustration of the nonrigid neural network.
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Figure 4. 
Prostate surface point (yellow square) projection at the X-Y plane at multiple directions on 

the (a) MRI and (b) TRUS images. Red dots indicate centroids of the prostate; green dashed 

lines denote line directions.
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Figure 5. 
Boxplots of the leave-one-out registration results obtained with affine registration, the SR-I, 

SR-L, CN network, and PM methods. (a) Dice similarity coefficient in [0, 1], (b) TRE in 

mm.

Zeng et al. Page 19

Phys Med Biol. Author manuscript; available in PMC 2020 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Example of the registered results from six cases (each row represents the results from one 

case). From the left to the right column in the figure, we show the transverse slice in original 

MR image, warped MR images from the affine, CN network (WMR-CN), PM (WMR-PM), 

SR-I (WMR-SR-I), and SR-L (WMR-SR-L) methods, and the TRUS image. The dotted 

lines indicate the corresponding prostate gland contour, and the red arrows point out the 

pairs of landmarks on the MRI-TRUS images.
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Figure 7. 
Fusion of registered MRI-TRUS images from the affine, CN network, PM, SR-I, and SR-L 

methods. The arrows denote the landmarks which are well aligned post registration.
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Figure 8. 
Inspection of the warped MRI (first row), Jacobian determinants (second row), and DDF’s 

magnitudes (third row) from the CN network (first column), PM (second column), SR-I 

(third column), and SR-L (fourth column).
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Table 1.

The MSD and HD values for the CN network, PM, and our segmentation-registration methods (SR-I and SR-

L).

MSD (mm) HD (mm)

Mean Std Median IQR p-values Mean Std Median IQR p-values

Affine 1.14 0.38 1.05 0.40 <0.001 5.49 1.70 5.42 1.81 <0.001

CN 2.31 0.64 2.28 0.93 <0.001 8.38 1.94 7.97 2.74 <0.001

PM 0.37 0.12 0.33 0.16 <0.001 3.41 1.54 3.20 2.31 <0.001

SR-I 1.05 0.29 1.03 0.33 <0.001 4.86 1.49 4.66 1.30 0.050

SR-L 0.88 0.20 0.84 0.27 — 4.41 1.05 4.21 1.48 —
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Table 2.

The measured Dice and TRE values for affine registrationthe CN) network, PM, and our segmentation-

registration methods (SR-I and SR-L).

DICE TRE (mm)

Mean Std Median IQR p-values Mean Std Median IQR p-values

Affine 0.88 0.04 0.89 0.05 <0.001 2.93 1.20 2.61 1.34 0.05

CN network 0.76 0.06 0.76 0.04 <0.001 6.04 3.14 6.02 5.14 <0.01

PM 0.96 0.02 0.96 0.03 <0.001 4.46 2.09 3.86 3.07 <0.01

SR-I 0.89 0.03 0.90 0.05 <0.001 2.85 1.72 2.43 1.81 0.330

SR-L 0.91 0.02 0.90 0.03 — 2.53 1.39 2.38 1.41 —
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Table 3.

Summary of MRI-TRUS registration results.

Registration method DICE TRE (mm) No. of cases Initialization method

Hu et al (2012) n/a 2.4 (median) 8 Manual landmarks

Khallaghi et al (2015) n/a 2.4 (mean) 19 Gland centroid

van de Ven et al (2015) n/a 2.8 (median) 10 Rigid surface registration

Sun et al (2015) 0.86 (median) 1.8 (median) 20 Manual landmarks

Wang et al (2016) n/a 1.4 (mean) 18 Rigid surface registration

De Silva et al (2017) n/a 2.3 (mean) 29 Learned motion model

Hu et al (2018a) 0.88 (median) 4.2 (median) 76 n/a

Hu et al (2018b) 0.82 (median) 6.3 (median) 76 n/a

Composite network 0.76 (median) 6.0 (median)
36

a n/a

PM method 0.96 (median) 3.9 (median)
36

a Affine surface registration

Our method—image inputs 0.89 (mean) 2.9 (mean)
36

a n/a

Our method—labels inputs 0.91 (mean) 2.5 (mean)
36

a n/a

a
Testing with our dataset.
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