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Abstract

Background.—The acute respiratory distress syndrome (ARDS) is a lung inflammatory process 

mainly caused by sepsis. Most previous studies that identified genetic risks for ARDS were 

focused on biological candidates. We aimed to identify novel genetic variants associated with 

ARDS susceptibility and to provide complementary functional evidence.

Methods.—We conducted a case-control genome-wide association study (GWAS) in 1,935 

European subjects, using sepsis-associated ARDS patients as cases and sepsis patients without 

ARDS as controls. The discovery stage included 672 patients admitted into a network of Spanish 

intensive care units. The replication stage comprised 1,345 individuals from two independent 
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datasets involving the MESSI cohort study (U.S.A.) and the VISEP/MAXSEP trials of the SepNet 

study (Germany). We used RNAseq-based gene expression data from lung biopsies, in silico 
analyses, and luciferase reporter assays to assess functionality.

Findings.—We identified a novel genome-wide significant association with sepsis-associated 

ARDS susceptibility (rs9508032, odds ratio [OR]=0·61 [95% CI=0·41-0·91], p-value=5·18×10−8) 

located within the Fms Related Tyrosine Kinase 1 (FLT1) gene encoding the vascular endothelial 

growth factor (VEGF) receptor 1 (VEGFR-1). The region containing the sentinel variant and its 

best proxies acted as a silencer for FLT1 promoter, and alleles with protective effects in ARDS 

further reduced promoter activity (p=4·66×10−3). A literature mining of all previously described 

ARDS genes validated the association of VEGFA (p=4·69×10−5; OR=0·55 [95%CI = 0·41-0·73]).

Interpretation.—A common variant within FLT1 gene is associated with sepsis-associated 

ARDS. Our findings support the central role of VEGF signaling pathway in ARDS pathogenesis 

and provides a potential therapeutic target.

Introduction

Acute respiratory distress syndrome (ARDS) is a serious complication of sepsis of 

pulmonary or non-pulmonary origin.1 This syndrome is defined as an acute inflammatory 

process of the lung caused by injury to the alveolar-capillary barrier, resulting in increased 

alveolar-capillary permeability and protein-rich pulmonary edema. This leads to severe 

hypoxemia (assessed by PaO2/FiO2 ratio), bilateral pulmonary infiltrates, and decreased 

lung compliance.

The annual incidence of ARDS ranges from five to 80 cases per 100,000 individuals,2,3 with 

an overall hospital mortality of approximately 40%.4 In fact, ARDS is a cause of morbidity 

and mortality in adult intensive care units (ICUs) worldwide. Survivors often develop 

physical and cognitive impairments, including neuropsychiatric disorders, that diminish their 

quality of life.5,6 At present, there are no available methods to treat or rapidly rehabilitate the 

lungs of affected patients. Effective therapeutic options remain elusive, likely due to the 

heterogeneity of the syndrome. Currently, the only available interventions that impact patient 

survival involve specific strategies for mechanical ventilation (MV) and patient position to 

minimize ventilator-induced lung injury.7,8

Given the limited therapeutic options, there is a strong interest in identifying genetic factors 

that modify ARDS risks and which may serve as potential therapeutic targets. Several 

studies have reviewed the implication of genetic factors in ARDS susceptibility and 

outcomes.9 Overall, most genetic studies have focused on biologically motivated candidate 

genes mainly involved in the immune response, vascular permeability and metabolism.9 In 

addition, two small whole-exome sequencing studies in ARDS patients revealed that the 

MYLK gene was associated with ARDS severity as measured by ventilator-free days,10 and 

that three other genes (ARSD, XKR3, and ZNF335) were associated with ARDS 

susceptibility, severity and mortality outcomes.11

Two genome-wide association studies (GWAS) of ARDS have been published to date, one 

used trauma-associated ARDS cases of European ancestry12 and the other used all-cause 
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ARDS African-American cases.13 These studies revealed two potential ARDS genes, 

PPFIA1 and SELPLG, although the reported variants both failed to reach genome-wide 

significance. Despite the marginal associations, prior GWAS results were paired with 

functional analyses either based on expression quantitative trait loci (eQTL) or on animal 

models to reinforce the role of prioritized genes in ARDS susceptibility.

Nonetheless, the genetics of ARDS susceptibility remains largely elusive. Thus, further 

studies on a genomic scale and larger sample sizes are needed. To our knowledge, here we 

performed the first GWAS of susceptibility to ARDS in 1,935 individuals of European 

ancestry, using sepsis-associated ARDS patients as cases and sepsis patients without ARDS 

as controls. With the hypothesis that frequent genetic variants in the population associate 

with disease risk, we aimed to identify genetic variants associated with ARDS susceptibility 

and provide complementary functional evidence using in silico analyses, gene expression 

data, and luciferase reporter assays.

Methods

Study design and sample description

We performed a case-control GWAS of ARDS in sepsis patients of European ancestry. A 

discovery stage was designed to prioritize variants based on their suggestive association. At 

the conclusion of this stage (during November of 2017), investigators from two independent 

cohorts were contacted and their data were used to validate the associations in the replication 

stage. Finally, a meta-analysis combining the discovery and replication association results 

was performed during September of 2018 to identify variants significantly associated with 

ARDS.

The GEN-SEP cohort was used in the discovery stage (Figure 1 and Appendix). It consisted 

of 672 unrelated adult patients with sepsis14 who were followed for the development of 

ARDS according to the Berlin definition criteria.15 Controls constituted patients with all-

cause sepsis who did not develop ARDS during their ICU stay. DNA was extracted from 

peripheral blood of all patients (Appendix).

The replication stage was conducted on two independent datasets from European-ancestry 

ICU patients, where sepsis-associated ARDS were used as cases and sepsis without ARDS 

were considered as at-risk controls (Figure 1). The first dataset was derived from 605 

patients (268 cases and 337 controls) out of 1,263 patients of multiple ancestries from the 

“Molecular Epidemiology of Sepsis in the ICU” (MESSI) cohort study (U.S.A.). The second 

dataset was obtained from 740 patients (91 cases and 649 controls) out of 880 patients from 

the VISEP and MAXSEP trials of the SepNet study group (Germany). Patients in both 

studies meet the Berlin definition criteria for ARDS.15 These datasets, thereafter referred to 

as MESSI and SepNet datasets, have been previously described.16,17

Genotyping and statistical analyses

For the discovery stage, a total of 587,352 SNPs were genotyped using the Axiom Genome-

Wide Human CEU 1 Array (Affymetrix). Additionally, a principal component (PC) analysis 

(PCA) was conducted to reduce the effects of population stratification in the analysis 
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(Appendix and Supplementary Figure 1). SNPs were genotyped using the Affymetrix Axiom 

TxArray v.1 (Affymetrix) in the MESSI study, while HumanOmniExpressExome arrays 

(Illumina, Inc.) were used in the SepNet study. Genotyping procedures are detailed in the 

Appendix.

After variant imputation in GEN-SEP data, logistic regression models assumed an additive 

inheritance. Sex, age, and the Acute Physiology and Chronic Health Evaluation II (APACHE 

II) score were included as covariates to address potential bias. Variants with low allele 

frequency (MAF<1%) or with a low imputation quality (Rsq<0·3) were excluded from the 

analysis. Details of imputation and association procedures are described in Appendix. 

Independent variants showing a p<5·0×10−5 were followed up in the replication stage.

In the MESSI study, logistic regression models were performed assuming additive 

inheritance considering the first two PCs, age, and sex as covariates. For the SepNet study, 

logistic regressions were performed including the first three PCs, sex, age, and APACHE II 

as covariates. Meta-analysis was performed on the results of these two studies. For variants 

that showed a nominal association (p<0·05) with ARDS susceptibility in the replication 

stage, a meta-analysis including discovery and replication stages was also performed. 

Genome-wide significance was declared with a meta-analysed significance of p<9·26×10−8 

according to the most recent empirical estimations in European populations.18

FLT1 and VEGFA gene expression and functional annotation of genetic variants

In silico and in vitro approaches were used to investigate potential biological consequences 

of variants associated with ARDS. First, FLT1 and VEGFA expressions were assessed in 

nine lung biopsies from healthy individuals by means of RNA-sequencing (Appendix). In 

parallel, we accessed public gene expression data (GSE32707) from 88 critically-ill adult 

patients that were evaluated for sepsis and ARDS (Appendix). Next, to highlight the 

functional role of the associated variant and of SNPs that were LD proxies in Europeans 

(r2=1·0), we applied several in silico tools for variant prioritization [DeepSea, DSNetwork, 

Open Targets Genetics] and to predict potential regulatory genomic regions including 

epigenetic modifications [DeepSea, HaploReg, RegulomeDB], long-distance physical 

interactions [Capture Hi-C Plotter (CHiCP)], and tissue specific local expression quantitative 

trait loci (cis eQTLs) [GTEx, TIVAN]. Additional tools [VEP, SNPdelScore] were used to 

predict the likelihood of deleteriousness of each SNP. See Appendix for further details.

Dual-luciferase reporter assays

The potential regulatory effect of the ARDS-associated variant on promoter activity was 

investigated using a Dual-Luciferase Reporter Assay System® (Promega, Madison, WI). 

Experiments were performed using human lung epithelial (A549) and peripheral blood 

monocyte (THP-1) cell lines, both known to have an active FLT1 promoter activity and 

expressing VEGFR-1.19 Two types of constructs were generated: 1) a reporter construct 

including a fragment of the FLT1 promoter inserted into a promoterless pGL4.10 [luc2] 

luciferase reporter vector, and 2) two regulatory constructs including a region of intron 10 

containing either the reference or alternative alleles of the most significantly associated 

variant within FLT1 and its perfect LD proxies, which were inserted into the reporter 
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construct. Promoter activities were expressed as a relative response ratio of Firefly 
luciferase/Renilla luciferase signals. See Appendix for further details.

Literature mining of previously reported ARDS-associated genes

A literature search for all studies reporting genes which were significantly associated with 

ARDS was conducted. Association results in the discovery stage were extracted and an 

effective number of independent signals per gene was measured in order to adjust for 

multiple testing. See Appendix for further details.

Role of the funding source

The funders had no role in the study design, data collection, analysis, interpretation of data, 

decision to publish, or preparation of the manuscript. CF was involved in all stages of study 

development and delivery, had full access to all data in the study, and had final responsibility 

for the decision to submit for publication.

Results

GWAS of sepsis-associated ARDS

After filtering steps and the quality control, a total of 515,657 SNPs from 590 patients (274 

sepsis-associated ARDS cases and 316 controls with sepsis) were used for the discovery 

stage (Figure 1). Demographic and clinical features of these patients are shown in Table 1. 

Genotype imputation on the HRC r.1.1 allowed us to perform the association testing of this 

stage on 7·98 million variants with MAF≥1%. The genomic inflation factor (λ=0·98) did not 

show signs of inflation of the results (Supplementary Figure 2). Suggestive associations 

(p<5·0×10−5) were detected for 229 variants residing in 53 independent loci (lowest 

p=2·6×10−7) (Figure 2, Supplementary Table 1).

The replication stage in a total of 359 patients with sepsis-associated ARDS and 986 

controls with sepsis focused on the sentinel variants (variants with the smallest p-values) of 

52 autosomal loci (Figure 1, Supplementary Table 2). Because of the difficulties in accessing 

data, we did not follow up the X chromosome variants in the replication stage. Association 

testing in the replication stage revealed four SNPs that were nominally significant 

(uncorrected p<0·05; Table 2), although none of them was significantly associated with 

ARDS susceptibility after a Bonferroni correction (threshold p=9·62×10−4). The first signal 

is an intronic variant (rs9508032) of the FLT1 gene (Figure 3), encoding the transmembrane 

receptor known as the VEGFR-1. The other three SNPs were located intergenic 

(rs11195238) to the genes encoding the structural maintenance of chromosomes 3 (SMC3) 

and the RNA binding motif protein 20 (RBM20); intergenic (rs8001184) to the genes 

encoding slit and neurotrophic tyrosine kinase (NTRK) like family member 5 (SLITRK5) 

and glypican 5 (GPC5); and in intron one (rs2734600) of the gene encoding serine protease 

3 (PRSS3). Meta-analysis of results from the discovery and replication stages for these four 

SNPs revealed that the sentinel variant rs9508032, located intronic to the FLT1 gene, was 

the only SNP that reached genome-wide significance (Table 2). The FLT1 variant showed 

consistent direction of effects, with an odds ratio (OR) for the T allele of 0·61 (95% 

confidence interval (CI) = 0·41-0·91), and a p-value of 5·18×10−8. A sensitivity analysis of 
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the association of rs9508032 at FLT1 supported that the association was robust to adjustment 

for comorbidities, isolated pathogen, and disease severity (Supplementary Table 3), though 

clinical data was missing for a significant proportion of subjects for some variables (up to 

55%). The rs9508032-ARDS association demonstrated similar effect sizes and directions 

even when the sample size was significantly reduced due to missing clinical data. 

Furthermore, there were 16 additional variants residing in FLT1 among the 226 SNPs with 

suggestive associations in the discovery stage (Supplementary Table 4). All but one was 

nominally significant in the replication stage, and five achieved genome-wide significance 

after meta-analysis of discovery and replication stages. In ad hoc analyses, we evaluated if 

the association of the sentinel variant persisted when unselected population controls were 

used instead of the at-risk controls. Based on the genotypes from 927 unrelated Spanish 

individuals that were genotyped with the same array in previous studies,20,21 results also 

supported a significant association of rs9508032 with ARDS (OR= 0·73, 95% CI= 

0·58-0·90, p-value=3·86×10−3). We also evaluated if the sentinel variant predicted ICU 

mortality. However, our results indicated that it did not predict ICU survival among sepsis or 

ARDS patients from the GEN-SEP cohort (Supplementary Table 5). This evidence further 

supports that the FLT1 association with sepsis-associated ARDS was genuine. Finally, at this 

stage, we assessed if the sentinel variant (and perfect LD proxies) of the FLT1 also 

associated with ARDS after trauma, but none of them was present in the GWAS of Christie 

and colleagues (Appendix).12

Gene expression and functional impact predictions at variant sites

Transcriptomic data from lung biopsies obtained from non-ARDS control subjects revealed 

a high expression of FLT1 (9,977 counts per million on average ± 5,228) and VEGFA 
(19,221 counts per million on average ± 16,165) in lung tissues, which is in agreement with 

GTEx information supporting a prominent expression of these genes in the lung. Among the 

eight FLT1 isoforms that were evaluated on the RNAseq dataset, the canonical isoform 

encoding a membrane-spanning protein (FLT1-201, ENST00000282397) and the next one in 

size (FLT1-207, ENST00000615840), which encodes a secreted VEGF-binding protein of 

687 amino acids,22 accumulated more than 10 times more reads on average than the rest of 

the gene isoforms (Supplementary Table 6). Among the 29 VEGFA isoforms we assessed, 

those that had higher expression in the lungs were VEGFA-205 (ENST00000372067), 

VEGFA-229 (ENST00000621747), VEGFA-227 (ENST00000615393), VEGFA-222 

(ENST00000520948), VEGFA-206 (ENST00000372077), VEGFA-212 

(ENST00000480614), and VEGFA-215 (ENST00000497139) (Supplementary Table 6). We 

also accessed array expression data from peripheral blood obtained from a cohort of 

critically-ill patients that included donors with sepsis, with and without ARDS, as well as 

non-sepsis patients. These data strongly supported that the mean FLT1 expression level in 

peripheral blood varied significantly among patient groups (ANOVA, p=0·002), with a 

higher average FLT1 gene expression among ARDS patients than in ICU controls without 

sepsis or systemic inflammatory response syndrome (t-test, p=0·001) (Supplementary Figure 

3). On the contrary, the expression levels for the three available probes of VEGFA did not 

vary significantly among ICU patient groups (ANOVA; ILMN_2375879, p=0·638; 

ILMN_1693060, p=0·435; and ILMN_1803882, p=0·214) (Supplementary Figure 3). Next, 

we performed an in silico bioinformatic approach to explore the functional features of 
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rs9508032 and the other five variants of FLT1 that reached genome-wide significance after 

meta-analysis (Supplementary Table 4). Relevant functional information was found for 

rs9508032 and two of its proxies (rs722503 and rs8002446), all of them from intron 10, as 

these three SNPs were located in enhancer and promoter histone marks, in DNase I 

hypersensitive sites (DHS) of many cell types, and were related to the alteration of 

regulatory motifs (Supplementary Table 7). Additionally, rs722503 and rs8002446 have 

predicted effects on transcription factor binding. The algorithmic framework of DeepSEA 

predicted a significant functional effect for rs722503 (p=0·045). DSNetwork predicted 

similar results where rs722503 was prioritized as the best candidate variant for further 

functional analysis in this region. In contrast, Open Targets Genetics prioritized rs8002446 

as potentially functional based on information of DHS and enhancer- transcription start sites 

data. Using GTEx, no significant eQTLs were identified for rs9508032 or its proxies, 

although we did observe that both rs9508032 and rs722503 had high CellulAr dePendent 

dEactivating (CAPE) scores for eQTL and DNase I QTLs in human umbilical vein 

endothelial cells, fibroblasts, epithelial and immune (monocyte) cells (Supplementary Table 

7). Using the CHiCP to visualize capture Hi-C experiments conducted by Mifsud and 

colleagues,23 we observed the existence of physical interactions between the region 

containing the three variants and the FLT1 promoter region in a lymphoblastoid cell line 

(GM12878).

In vitro luciferase assays

Based on the above evidence, we then performed luciferase promoter assays to assess the 

effect of the intron 10 region containing the genome-wide significance SNPs on FLT1 
promoter activity (Figure 4A). Our results showed that the FLT1 intron 10 region containing 

these variants repressed gene promoter activity with a consistent effect on both peripheral 

blood monocytes (65·1 ± 10·7% reduction) and human lung epithelial cells (48·7 ± 4·1% 

reduction) (Wilcoxon test, p=4·10×10−4 and p=0·02, respectively) (Figure 4B). When we 

compared the constructs with reference vs. alternative alleles for all positions within intron 

10 of FLT1, we found that the presence of alternative alleles (protective for ARDS) were 

associated with a further decrease (48·6 ± 7·2% reduction) of the FLT1 promoter activity in 

peripheral blood monocytes (Wilcoxon test, p=4·66×10−3) (Figure 4C). No significant 

reduction of the FLT1 promoter activity was found for pneumocytes (Wilcoxon test, 

p=0·89).

Association of previously reported ARDS genes

Finally, we performed a thorough literature mining on genes previously associated with 

ARDS in our discovery stage. Results of our search merged with previous reviews identified 

96 genes with prior reported association with ARDS susceptibility or outcome 

(Supplementary Table 8). Although none of the 96 genes surpassed a study-wise Bonferroni-

corrected threshold in the discovery (p=2·18×10−6), the VEGFA gene reached a gene-wise 

significance after Bonferroni correction in the discovery study (top signal: OR= 0·55, 95% 

CI = 0·41-0·73; p=4·69×10−5) (Supplementary Table 8). Not surprisingly, VEGF-A is one of 

the main ligands of VEGFR-1.19
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Discussion

To our knowledge, here we reported the results of the first GWAS of sepsis-associated 

ARDS completed to date, where we identified a locus located in FLT1 associated with 

ARDS that reached genome-wide significance in a combined meta-analysis of all cohorts. 

Of note, the sentinel SNP of FLT1 (rs9508032) and the perfect LD proxies were all located 

in close proximity within intron 10, a region which we observed acting as a silencer of the 

FLT1 promoter activity in monocyte and human lung epithelial cell lines. In conjunction 

with human transcriptomics data, we also determined that different FLT1 isoforms are 

expressed in lung tissues, and that its expression in peripheral blood is positively correlated 

with the severity of illness, with the highest levels detected in ARDS patients. Evidence 

from our studies suggested a possible functional role of the sentinel SNP (rs9508032) and 

two of its perfect LD proxies in Europeans. Findings also revealed allelic effects of intron 10 

on the FLT1 promoter activity, which was particularly significant on monocytes. 

Interestingly, FLT1 and other nearby genes (FLT3 and PAN3) were strongly associated with 

monocyte counts in the UK Biobank.24 All these findings reinforce the concept that 

monocytes are also crucial in the VEGF-mediated lung response.19 Variants from FLT1 had 

never been associated with ARDS susceptibility or outcomes in previous independent 

studies, although Kim and colleagues25 have reported the association of FLT1 with all-cause 

pulmonary complications. Additionally, there is evidence of association of FLT1 with other 

complex diseases, such as coronary arterial disease26 and preeclampsia,27,28 where the 

endothelium plays an important pathophysiological role.

FLT1 encodes VEGFR-1, a tyrosine-protein kinase that acts as a transmembrane receptor of 

VEGF-A, other VEGF family members, and the placental growth factor (PLGF). VEGF was 

originally identified as a vascular permeability factor,19 although it has diverse and 

pleiotropic activities beyond the regulation of the alveolar-capillary barrier.29 VEGF has 

been involved in the fibroproliferative phase of ARDS30, as well as in resolution of 

ventilator-associated pneumonia.31 However, Ware and colleagues found that levels of 

VEGF were similar in undiluted edema fluid from hydrostatic and ARDS patients.32 

Although its role remains unclear, abundant evidence supports a negative regulatory role of 

an alternatively spliced soluble form of VEGFR-1 (sFLT-1) sequestering part of VEGF 

bioactivity.22 High levels of sFLT-1 in the alveolar space are associated in humans with the 

occurrence of late ARDS in trauma,33 as well as with sepsis severity, organ dysfunction, and 

ICU survival.34,35,36 In parallel, we have found that FLT1 expression varied between ARDS 

and other ICU patients in peripheral blood, while VEGFA expression did not show 

differences. Taken together, this suggests that disease-related VEGF bioavailability could be 

dependent on the receptor isoforms. Interestingly, the array-based transcriptomics 

experiment specifically targeted exon 30 of FLT1 (Supplementary Figure 3), which critically 

involves the canonical receptor (FLT1-201), one of the few highly expressed isoforms. These 

observations offer a potential mechanistic link between the GWAS results and ARDS 

pathophysiology, suggesting that the FLT1 SNPs could be linked to the expression of the 

VEGFR-1 transmembrane isoform. The decrease of FLT1 promoter activity in vitro in the 

presence of intron 10 alleles associated with ARDS protection may translate in a reduction 

of the canonical VEGFR-1 expression and, thus, in a decrease of VEGF signalling. This 
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hypothesis reconciles with the attenuation of many of the VEGF-mediated pathophysiologic 

effects in ARDS, including the formation of pulmonary edema. However, given the 

limitations to distinguish expression levels from gene isoforms in array-based 

transcriptomics experiments and that the cell type(s) that mechanistically link FLT1 SNPs 

with the ARDS pathophysiology remains unknown, this scenario is purely speculative.

Despite the central role of VEGF in ARDS and the availability of VEGF-targeting drugs, 

clinical trials using drugs directed towards VEGF pathways for ARDS patients are scarce. 

There is one entry of clinical trial of the efficacy of bevacizumab (anti-VEGF antibody) to 

prevent sepsis-associated ARDS (ClinicalTrials.gov identifier: NCT01314066). However, it 

was withdrawn without a single patient enrolled due to a lack of funding. A search in 

DrugBank37 and additional in silico explorations in Gene2drug38 allowed us to 

systematically identify available drugs targeting this pathway. Although most of them are 

currently in use for cancer treatment (none of them under evaluation in ARDS patients), 

nintedanib constitutes one of the few effective antifibrotic therapies as it targets VEGFR-1 

and slows the rate of forced vital capacity decline of idiopathic pulmonary fibrosis.39 In 

addition, the antifungal drug itraconazole is known to inhibit the glycosylation of VEGFR-1 

and VEGFR-2, affecting their migration pattern and signaling activity.40 Based on this and 

our findings, nintedanib and itraconazole potentially might be repurposed as ARDS drugs 

and warrant further investigation.

We acknowledge there are strengths and limitations of our study. The main strength is that, 

to our knowledge, our study is the first GWAS of sepsis-associated ARDS, a complex acute 

syndrome with a high morbidity and mortality in ICUs worldwide. We contrast our ARDS 

cases with similarly well-characterized critically ill sepsis patients that did not develop 

ARDS to address the heterogeneity of the syndrome. This approach allowed us to identify 

reproducible associations at one locus. We provide strong evidence (transcriptomics data, 

functional annotations and in vitro experiments) to sustain a functional implication of FLT1 
variants in ARDS physiopathology. However, this study also has some limitations. The main 

weakness is the small sample size overall, limiting the power for detecting variants of 

smaller effects or of lower frequency. The limited sample size can be attributed to the low 

incidence and high heterogeneity of the syndrome, which makes sample collection difficult 

and slow. In this respect, it is plausible that rare variants in or near the identified regions 

remain undetected because of technological limitations. Whole-exome and genome 

sequencing analyses would offer better resolution to achieve that aim. Therefore, more 

ARDS loci are to be expected as the genomic studies of ARDS increase in size and marker 

resolution. Additionally, this study focused only on European ancestry patients. Further 

studies are needed to identify whether FLT1 variation also impacts ARDS risk in non-

European populations. We used the A549 cell line as a model for human alveolar epithelial 

cell, which inherently entails experimental limitations because of its cancerous nature. 

Further experiments should evaluate primary human alveolar type 2 cells to assess the 

impact of this choice in our observations. Finally, because the X chromosome is usually 

filtered out from most GWAS because it adds a level of difficulty to the analyses, we were 

unable to follow-up a variant in OPHN1 gene (encoding a Rho-GTPase-activating protein) 

in the replication stage.
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In summary, we describe the results of a GWAS of sepsis-associated ARDS. We report one 

novel locus located in FLT1 involved in ARDS susceptibility. Based on these results and the 

accumulated evidence, this study provides an orthogonal demonstration of the genuine 

central role of VEGF signalling pathway in ARDS susceptibility and strongly favours that 

VEGFR-1 is a therapeutic target for preventing ARDS. Independent studies should aim to 

validate our findings, including independent association studies in non-sepsis ARDS 

patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study:

We conducted a literature search on PubMed for all studies reporting genes which were 

significantly associated with ARDS up to November 2018. Most previous genetic studies 

in ARDS have focused on biological candidate genes mainly involved in the immune 

response, vascular permeability, and metabolism. Two small whole-exome sequencing 

studies and two genome-wide association studies (GWAS) of ARDS have been published 

to date, although none of them focused exclusively on sepsis-associated ARDS.

Added value of this study:

To our knowledge, we report the results of the first GWAS of sepsis-associated ARDS 

susceptibility conducted on 1,935 European patients with sepsis. We reveal a novel 

protective genome-wide significant association with sepsis-associated ARDS within the 

Fms Related Tyrosine Kinase 1 (FLT1) gene, encoding the vascular endothelial growth 

factor receptor 1 (VEGFR-1). We also report that SNP alleles with protective effects in 

ARDS reduce FLT1 promoter activity. These findings reinforce the need to target VEGF 

signaling in ARDS pathogenesis, a pathway linked to vascular permeability and immune 

and inflammatory responses.

Implications of all the available evidence:

Our results support the central role of VEGF signaling in ARDS pathogenesis and 

suggest VEGFR-1 as a potential therapeutic target. There are effective drugs targeting 

this protein that are being used in other diseases and they could be potentially repurposed 

for ARDS.
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Figure 1. Flow chart of quality control steps for the samples and genotyped SNPs in the 
discovery and replication stages.
CR, Call rate; DQC, Affymetrix dish quality control; FLD, Fisher’s Linear Discriminant; 

HetSO, Heterozygous Cluster Strength Offset; HWE, Hardy-Weinberg Equilibrium; MAF, 

minor allele frequency; mtDNA, mitochondrial DNA; Y-chr, Y chromosome.

Guillen-Guio et al. Page 15

Lancet Respir Med. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Manhattan plot of GWAS results for the discovery stage.
Axes display the -log10 transformed p-values by position in each chromosome. The 

horizontal line indicates the threshold considered for prioritizing variants for the replication 

stage (p=5·0×10−5).
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Figure 3. Regional plot of association results for the genome-wide significant locus.
The -log10 transformed p-values for association tests are plotted by position. The SNP rs 

number indicated on the plot denotes the sentinel SNP. The remaining SNPs are color coded 

to reflect their degree of linkage disequilibrium with the indicated SNP based on pairwise r2 

values from the European population from The 1000 Genomes Project. Estimated 

recombination rates (light blue line) are plotted on the right y-axis.
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Figure 4. Luciferase reporter assay to assess the role of intron 10 and of rs9508032 and its 
perfect LD proxies on FLT1 promoter activity.
A) Scheme of vector constructs. B) Experimental data showing that the intron 10 fragment 

harboring the reference alleles suppresses the FLT1 promoter activity in A549 and THP-1 

cells. C) Experimental data showing that the intron 10 fragment harboring the alternative 

alleles further decreased the FLT1 promoter activity, showing a significant difference in 

THP-1 cells. Significance was assessed by Wilcoxon signed-rank tests (*p<0·05, #p<0·005, 

§p<0·0005). Ref and Alt indicate risk and protective alleles, respectively.
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Table 1.

Demographic and clinical features of the GEN-SEP study.

Controls (n=316) Cases (n=274)
p-value

†

Sex (n males/N) 197/316 (62·3%) 194/274 (70·8%) 0·04

Mean age (years)* 63·0 ± 15·0 62·5 ± 14·1 0·47

Hypertension (n/N) 60/144 (41·7%) 73/160 (45·6%) 0·56

Smokers (n/N) 61/188 (32·4%) 59/175 (33·7%) 0·88

Previous surgery (%) 32/127 (25·2%) 35/137 (25·5%) 1·00

Ischemic cardiac disease (n/N) 31/285 (10·9%) 19/210 (9·0%) 0·61

Pulmonary sepsis (n/N) 83/267 (31·1%) 128/252 (50·8%) 7·5×10−6

APACHE II (median) (P25–P75)* 20 (15-24) 22 (18-27) 2·2×10−5

ICU mortality (n/N) 79/310 (25·5%) 115/268 (42·9%) 1·5×10−5

Pathogen (n/N)

 Gram-positive 48/178 (27·0%) 58/162 (35·8%) 0·09

 Gram-negative 74/178 (41·6%) 59/162 (36·4%) 0·41

 Gram-positive and Gram-negative 26/178 (14·6%) 17/162 (10·5%) 0·34

 Fungi 5/178 (2·8%) 3/162 (1·9%) 0·83

 Virus 2/178 (1·1%) 9/162 (5·6%) 0·04

 Polymicrobial 16/178 (9·0%) 11/162 (6·8%) 0·45

Organ dysfunction (n/N)

 Circulatory 232/270 (85·9%) 238/255 (93·3%) 0·01

 Coagulation 62/270 (23·0%) 68/255 (26·7%) 0·38

 Hepatic 48/269 (17·8%) 41/255 (16·1%) 0·67

 Neurologic 54/270 (20·0%) 59/254 (23·2%) 0·43

 Renal 124/316 (39·2%) 108/274 (39·4%) 1·00

n=number of individuals with data available, N=group size.

*
All individuals have age and APACHE II data. Percentages refer only to the individuals with available data for each clinical feature.

†
Mean age and APACHE II comparisons were conducted by the Wilcoxon signed-rank test; the other variables were compared by a chi-square test. 

APACHE II, Acute Physiology and Chronic Health Evaluation II; ARDS, acute respiratory distress syndrome; ICU, intensive care unit; P25, 
percentile 25; P75, percentile 75.
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